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ABSTRACT Earthquakes pose a significant threat to urban areas, necessitating accurate forecasting models
to mitigate their impact. This study focuses on earthquake forecasting in Los Angeles, a region with high
seismic activity and limited research. We established a feature matrix for forecasting earthquakes within a
30-day period by analyzing the most predictive patterns from recent studies. Our model developed a subset
of features capable of forecasting the highest magnitude of an earthquake. Using advanced machine learning
algorithms and neural networks, our model achieved an accuracy of 69.14% in forecasting the maximum
magnitude earthquake as one of the 6 categories. We aim to provide a useful guideline for future researchers.

INDEX TERMS Earthquake forecasting, machine learning, neural networks, Los Angeles, seismic activity,
feature engineering, spatiotemporal analysis, predictive modeling, random forest, XGBoost, seismic energy.

I. INTRODUCTION
Earthquakes are natural disasters that can have devastating
consequences, making their forecasting a crucial area of
research to mitigate their impact. In our study, we delved
into various papers on earthquake forecasting to compile
predictive features and develop a predictive pattern matrix
specifically for earthquakes in Los Angeles. By leveraging
machine learning algorithms and neural networks, we aim to
forecast the highestmagnitude of earthquakeswithin a 30-day
period.

Our research draws on a diverse range of studies in the field
of earthquake forecasting from 1990 to 2024. Olsen et al.
[1] highlighted the significant ground velocities expected
during earthquakes, particularly near fault lines and in regions
like the Los Angeles basin, where prolonged shaking can
occur. This emphasizes the importance of understanding
the dynamics of seismic events in specific geographical
locations.
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In the realm of machine learning applications for earth-
quake forecasting, Asim et al. [2] explored the use of support
vector regressors and hybrid neural networks to develop
a predictive model. Their focus on seismic regions like
Hindukush, Chile, and Southern California aligns with our
interest in forecasting earthquakes in Los Angeles, shedding
light on the relevance of considering regional seismic activity
in predictive modeling.

Zhang et al. [3] proposed a precursory pattern-based fea-
ture extraction technique to enhance earthquake forecasting
performance. This approach underscores the significance
of extracting meaningful patterns from seismic data, which
resonates with our objective of creating a predictive pattern
matrix for earthquakes in Los Angeles.

The study by Bao et al. [4] on deep learning-based
electromagnetic signal analysis for earthquake magnitude
forecasting introduces an innovative method that combines
explicit and implicit features. This approach could offer
valuable insights into improving the accuracy of earthquake
forecasts, aligning with our goal of enhancing forecasting
precision.
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Incorporating advanced neural network models, such as
the graph convolutional neural network proposed by Bilal
et al. [5], can significantly improve earthquake forecasting
efficiency. Their emphasis on early earthquake detection
using sophisticated neural network architectures underscores
the potential for enhancing predictive capabilities through
cutting-edge technologies.

The work of Hsu and Pratomo [6] on early peak
ground acceleration forecasting using LSTMneural networks
showcases the importance of leveraging models capable of
capturing order dependence in seismic waves. This aligns
with our approach of utilizing machine learning algorithms to
forecast earthquake occurrences within a specific timeframe.

By integrating findings from a wide array of studies
on earthquake forecasting, our research aims to enhance
predictivemodeling techniques specifically for the LosAnge-
les region. Through the integration of machine learning
algorithms, feature extraction methods, and advanced neural
network architectures, we strive to enhance the accuracy
and timeliness of earthquake forecasts for improved disaster
preparedness and response strategies.

II. BACKGROUND
The background section of this study provides a compre-
hensive overview of the scientific and technical foundations
that underpin our research on earthquake forecasting in
the Los Angeles region. By integrating key findings from
various studies on seismic activity, fault systems, ground
motion, and earthquake hazards, this section elucidates
the factors influencing earthquake dynamics. It highlights
significant research that has shaped our understanding of
the geological conditions in Los Angeles, emphasizing the
importance of detailed, site-specific data in enhancing the
accuracy of seismic hazard assessments. This foundational
knowledge sets the stage for the application of advanced
machine learning and neural network algorithms to forecast
earthquake magnitudes, ultimately contributing to improved
preparedness and mitigation strategies.

The study ‘‘Site Amplification in the Los Angeles Basin
from Three-Dimensional Modeling of Ground Motion’’ by
Olsen [7], published in the Bulletin of the Seismological
Society of America, investigates how local geological condi-
tions in the Los Angeles Basin amplify ground motion during
earthquakes. Using three-dimensional modeling techniques,
the study demonstrates significant variations in ground
motion amplification due to the complex subsurface structure
of the basin. These findings highlight the importance of
incorporating detailed, site-specific geological data into
seismic hazard assessments to improve the accuracy of
earthquake impact forecasts in the Los Angeles area.

The article ‘‘Potential for a Large Earthquake Near
Los Angeles Inferred from the 2014 La Habra Earthquake,’’
published in Earth and Space Science, examines the impli-
cations of the 2014 La Habra earthquake for future seismic
activity near Los Angeles. Donnellan et al. [8] highlight the
interconnected fault systems in Los Angeles and their role in

accommodating tectonic movements. By analyzing geodetic
data, ground deformation, and fault interactions, the authors
emphasize the concurrent movement of regional thrust,
strike-slip, and oblique faults, underscoring their significance
in seismic activity. The research concludes that stress changes
and fault connectivity in the area could increase the likelihood
of a significant seismic event. This information is vital
for identifying potential earthquake triggers and patterns
in the region, underscoring the importance of continuous
monitoring and advanced modeling to better understand and
mitigate earthquake risks in the Los Angeles area.

Hauksson’s [9] research on earthquakes, faulting, and
stress in the Los Angeles Basin provides valuable insights
into the earthquake potential of thrust faults beneath the
basin. The study suggests that underestimating the earthquake
hazards in the region due to neglecting certain fault systems
could have significant implications. Incorporating such
findings into earthquake forecasting models is essential for
enhancing the accuracy of forecasts.

The study by Shen et al. [10] on crustal deformation
across the Los Angeles basin from geodetic measurements
offers valuable data on the structural dynamics of the region.
By aligning these findings with existing earthquake probabil-
ity models, researchers can refine their forecasting algorithms
and better anticipate seismic events in Los Angeles.

Loveless and Meade’s [11] work on stress modulation on
the San Andreas fault by fault system interactions provides
insights into how stress variations influence earthquake recur-
rence intervals. Understanding stress dynamics along fault
lines, especially those close to metropolitan Los Angeles,
is crucial for refining earthquake forecasting models and
assessing the likelihood of seismic events.

Incorporating insights from Romero et al. [12] on seismic
hazards and water supply performance in Los Angeles can
provide a holistic view of the environmental implications
of earthquakes in the region. By considering factors like
fault rupture, liquefaction, landslides, and site amplification,
researchers can develop more comprehensive earthquake
forecasting models that account for diverse hazards.

Roten et al.’s [13] study on expected seismic shaking in
Los Angeles reduced by San Andreas fault zone plasticity
offers valuable information on how fault characteristics
can influence ground motions. By simulating earthquake
scenarios and forecasting ground motions in the Los Angeles
Basin, researchers can refine their forecasting models and
enhance the accuracy of earthquake forecasts.

Shaw and Suppe’s [14] research on earthquake hazards of
active blind-thrust faults under the central Los Angeles basin
underscores the importance of considering newly identified
fault systems in seismic risk assessments. By integrating data
on these active faults into earthquake forecasting models,
researchers can improve the precision of their forecasts and
better prepare for potential seismic events.

Zechar and Jordan’s study [15] on testing alarm-based
earthquake forecasts offers valuable information on various
forecasting models, including relative intensity, pattern
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informatics, and the U.S. Geological Survey National Seis-
mic Hazard Map. The article, published in Geophysical
Journal International, evaluates the effectiveness of fore-
casting methods that issue alerts or ‘‘alarms’’ when certain
seismic criteria are met, indicating an increased likelihood of
an earthquake. The study involves statistical testing of these
alarm-based forecasting models to determine their accuracy
and reliability. Understanding the performance of these
models is essential for selecting the most effective approach
in forecasting earthquakes in Los Angeles. Their findings
emphasize the need for rigorous testing and validation of
forecasting methods to improve earthquake forecasting and
ultimately enhance public safety and preparedness.

Huang et al.’s work [16] on the application of an
improved Extreme Learning Machine (ELM) algorithm in
earthquake casualty forecasting provides insights into the
factors influencing earthquake casualties. By considering
variables such as earthquake intensity, building collapse
rate, and population density, researchers can enhance the
accuracy of casualty forecasts, which is vital for disaster
preparedness and response strategies in earthquake-prone
areas like Los Angeles.

Initiatives such as the Collaboratory for the Study of Earth-
quake Predictability (CSEP) and the Regional Earthquake
Likelihood Models Experiment (RELM) by Schorlemmer
et al. [17] have paved the way for prospective earthquake
forecasting efforts. Studies evaluating return periods and
occurrence probabilities of maximummagnitude earthquakes
by Al-Heety [18], and improved algorithms like Extreme
Learning Machines (ELM) by Huang et al. [16] enhance
earthquake casualty forecasts. Insights from studies on fixed
recurrence and slip models by Rubinstein et al. [19] and self-
organized criticality by Yang et al. [20] provide valuable
perspectives on earthquake behavior forecasting and the
challenges posed by complex seismic dynamics. Innovative
approaches, such as the use of deep learning neural networks
by Huang et al. [21] and attention mechanisms in earthquake
forecasting models by Kavianpour et al. [22], offer further
advancements.

While some studies, such as the work by Geller et al. [23],
express skepticism about the predictability of earthquakes,
highlighting the challenges in reliably forecasting the time,
location, and magnitude of seismic events, these challenges
continue to be addressed.

Eberhard et al.’s study [24] on a prospective earthquake
forecast experiment in the western Pacific emphasizes the
importance of ongoing experiments to enhance earthquake
predictability models. This focus on continuous testing and
refinement of forecasting models is crucial for improving the
reliability of earthquake forecasts, particularly in regions with
high seismic activity like Los Angeles.

Rubinstein et al.’s research [19] on fixed recurrence and
slip models for earthquake behavior forecasting underscores
the significance of understanding stress accumulation and
release on fault lines. By integrating these models into

earthquake forecasting algorithms, researchers can better
anticipate seismic events and their potential impacts on
regions like Los Angeles.

Tehseen et al.’s study [25] on earthquake forecasting
using expert systems highlights the importance of long-
term forecasts regarding the time, intensity, and location
of future earthquakes. By utilizing expert systems and
comprehensive data analysis, researchers can develop more
robust earthquake forecasting models tailored to specific
regions like Los Angeles.

Ogata’s perspective [26] on earthquake forecasting
research advocates for the development of statistical
models of seismicity to accurately evaluate their predictive
performance. By assessing the efficacy of statistical models
in earthquake forecasting, researchers can enhance the
reliability of forecasts and contribute to more effective
disaster mitigation strategies.

Banna et al.’s work [27] on attention-based Bi-Directional
Long Short-Term Memory (LSTM) networks for earthquake
forecasting highlights the potential of advanced machine
learning techniques in seismic forecasting. By leveraging
deep learning models like LSTM networks, researchers can
improve the accuracy of earthquake forecasts and enhance
preparedness measures in earthquake-prone regions such as
Los Angeles.

One pertinent reference is the study by Kagan [28]
on the potential forecasting of earthquakes, emphasizing
the role of real-time seismology in aiding relief efforts
and issuing warnings of severe shaking before earthquakes
occur. Understanding the feasibility of earthquake forecasting
through real-time monitoring is essential for improving
preparedness and response strategies in earthquake-prone
regions like Los Angeles.

The research by Ma et al. [29] evaluates the largest
possible earthquake magnitudes in mainland China based
on extreme value theory, underscoring the significance
of ground-based observations and statistical analyses in
earthquake forecasting. Incorporating insights from studies
on extreme value theory can help researchers refine their
forecasting models and enhance the accuracy of earthquake
forecasts in regions with high seismic activity.

Herrera et al.’s study [30] on long-term forecasting of
strong earthquakes in various regions, including North Amer-
ica and SouthAmerica, highlights the use ofmachine learning
techniques to cluster earthquakes based on historical intervals
with and without strong seismic events. This approach offers
valuable insights into seismic patterns and can improve the
predictive capabilities of earthquake forecasting models.

Michael’s research [31] on testing forecasting methods for
earthquake clustering versus the Poisson model stresses the
importance of statistical techniques in evaluating the efficacy
of earthquake forecasting methods. By comparing observed
outcomes with random chance, researchers can gauge the
success of different forecasting models and enhance their
approaches to earthquake forecasting.
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The work by Kodera et al. [32] on earthquake early
warning systems for the 2016 Kumamoto earthquake in
Japan provides insights into the performance evaluation of
earthquake warning systems under heavy loading conditions.
Understanding the effectiveness of early warning systems
can guide the development of similar systems in earthquake-
prone regions like Los Angeles to mitigate seismic risks.

Yuan et al.’s analysis [33] and forecasting of the SARIMA
model for earthquakes in the Longmenshan Fault Zone offer
a scientific basis for earthquake risk management and a prac-
tical approach to forecasting earthquake occurrence times.
Leveraging advancedmodeling techniques like SARIMA can
enhance the accuracy of earthquake forecasts and improve
disaster preparedness measures.

Hajikhodaverdikhan et al.’s study [34] on earthquake
forecasting using meteorological data and particle filter-
based support vector regression highlights the potential of
intelligent analysis of historical meteorological datasets in
earthquake forecasting. Integrating meteorological data into
forecasting models can enhance the precision of earthquake
forecasts and improve early warning systems.

Astuti et al.’s research [35] on investigating the character-
istics of geoelectric field signals before earthquakes using
adaptive STFT techniques underscores the importance of
signal analysis on both normal days and the day of the earth-
quake for earthquake forecasting. These findings can serve as
valuable input parameters for refining earthquake forecasting
models and improving forecasting accuracy. Nishikawa’s
study [36] comparing statistical low-frequency earthquake
activity models highlights the significance of quantifying and
monitoring slow earthquake activity characteristics, as they
may change before major earthquakes occur. Understanding
these activity patterns can improve the effectiveness of
earthquake forecasting models and lead to more accurate
forecasts in earthquake-prone regions like Los Angeles.

The research by Nimmagadda and Dreher [37] on
ontology-based data warehouse modeling and mining of
earthquake data for forecasting analysis emphasizes the
efficacy of data warehousing in earthquake forecasting
analysis. Leveraging ontology-based approaches can enhance
the efficiency and accuracy of earthquake forecastingmodels,
aiding in disaster preparedness efforts.

Prasad et al.’s analysis [38] of earthquake magnitude
detection using primary waves and secondary waves, based
on the concept of an Early Earthquake Warning system,
stresses the importance of analyzing ground motion through
wave analysis for robust earthquake forecasting. Integrating
insights from this study can enhance the reliability of
earthquake forecasts in regions like Los Angeles.

Yang et al.’s research [39] on an automated regression
pipeline approach for high-efficiency earthquake forecasting
using LANL data highlights the complexity of data mining
steps involved in earthquake forecasting. By streamlining
data processing and model development through automated
pipelines, researchers can improve the efficiency and accu-
racy of earthquake forecasting models.

Research by Zheng and Tao [40] underscores the impor-
tance of regional parameters in ground motion attenuation
relationships, emphasizing the necessity of accurate geophys-
ical data for robust earthquake forecasting. Studies like those
by Hussain et al. [41] shed light on the relationship between
b-values and seismic stress levels, offering insights that can
aid in forecasting high-magnitude earthquakes.

Seismologists have also explored the use of diverse
data sources, such as GPS data, ionospheric data, and
outgoing longwave radiation, to enhance earthquake fore-
casting models. While Gitis et al. [42] emphasize the
significance of seismological data in systematic earthquake
forecasting systems, studies like those of Zhai et al. [43]
delve into the detection of thermal anomalies in earthquake
processes using non-seismic time series data, showcasing the
multidisciplinary nature of earthquake forecasting research.

In the pursuit of advancing earthquake forecasting method-
ologies, researchers have also explored the potential of
animal behavior as a precursor to seismic events. While
traditional seismological approaches rely on instrumental
data and geophysical parameters, investigations like those of
Woith et al. [44] have examined the ability of animals to
forecast earthquakes, highlighting the interdisciplinary nature
of earthquake forecasting research.

In summary, the existing body of research provides exten-
sive insights into the seismic activity, geological conditions,
and fault dynamics in the Los Angeles region. Studies
such as Olsen’s investigation into ground motion amplifica-
tion [7], Donnellan et al.’s analysis of fault systems [8], and
Hauksson’s work on regional seismicity [9] have collectively
enhanced our understanding of seismic hazards. Additional
research on geodetic data and ground deformation [10],
as well as historical earthquake analysis [45], has been
instrumental in shaping our approach. Despite these advance-
ments, a critical gap remains in the ability to accurately
forecast earthquake magnitudes with sufficient lead time to
implement effective mitigation strategies. Current models
often lack the integration of comprehensive, site-specific
data and advanced forecasting algorithms. Our research
endeavors to address this gap by employing sophisticated
machine learning and neural network techniques to forecast
earthquake magnitudes. We build upon the foundational
work of numerous previous studies [7], [8], [9], [10], [45],
striving to enhance the accuracy and reliability of seismic
forecasts. We hope that our approach will contribute to
improved earthquake preparedness and response efforts in the
Los Angeles region, recognizing that this is a collaborative
and ongoing endeavor within the scientific community.

III. DATASET
A. ORIGINAL DATASET
We used earthquake data from the Southern California Earth-
quake Data Center (SCEDC), maintained by the California
Institute of Technology, as our dataset [46]. We selected
the Los Angeles region with coordinates: Center Latitude
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34.0522, Center Longitude -118.2437, Outer Radius (km)
50, between dates 2001-10-29 00:00:00 and 2024-05-27
00:00:00.We filtered for earthquakes with a magnitude above
2.0 [47].

The dataset consists of the following columns:

• Date: The date of the earthquake occurrence.
• Time: The time of the earthquake occurrence.
• ET: Event type identifier.
• GT: Geographical type identifier.
• MAG: Magnitude type and value.
• M: Magnitude value.
• LAT: Latitude of the earthquake epicenter.
• LON: Longitude of the earthquake epicenter.
• DEPTH: Depth of the earthquake.
• Q: Quality indicator.
• EVID: Event identifier.
• NPH: Number of phases used in the solution.
• NGRM: Number of grams.

B. DATA PREPARATION
Our dataset contains 1256 Local Magnitude (ML), 18
Moment Magnitude (Mw), and 1 Revised Local Magnitude
(MLr ).
Local Magnitude (ML) and Moment Magnitude (Mw) are

two essential scales used in seismology to quantify the
size and energy release of earthquakes. Local Magnitude,
often referred to as Richter Magnitude, is a measure of the
amplitude of seismic waves recorded on seismographs near
the earthquake’s epicenter. It provides a rapid assessment
of an earthquake’s size based on the amplitude of ground
motion at a specific distance from the epicenter. Moment
Magnitude, on the other hand, is a more modern and
comprehensive scale that quantifies the seismic moment
released during an earthquake, taking into account the fault
area, slip, and rigidity. Moment Magnitude is considered a
more accurate measure of an earthquake’s size, especially for
larger events and those occurring at greater depths. Revised
Local Magnitude (MLr ) is a refinement of the traditional
Local Magnitude scale, aimed at improving accuracy by
incorporating additional data and correction factors.

To ensure our dataset is comparable and to make better
forecasts for future earthquakes, it is crucial to convert every-
thing to Local Magnitude (ML). Converting between Local
Magnitude (ML) and Moment Magnitude (Mw) is essential
for seismic hazard assessment, earthquake monitoring, and
research purposes. The conversion between ML and Mw
allows for consistency in earthquake magnitude reporting
and facilitates comparisons between different seismic events.
Various studies have established empirical relationships and
conversion formulas to translate ML values to Mw values
based on regional characteristics, seismic data analysis, and
geophysical parameters.

For instance, El-Aal et al. [48] presented a conversion
relationship between Mw and ML for earthquakes in Egypt,
where they used specific formulas to convert ML values

to Mw values based on the earthquake’s magnitude range.
Similarly, Nazaruddin [49] highlighted the importance of
converting different magnitude scales, including ML into
Moment Magnitude (Mw), to provide a unified magnitude
scale for earthquake events. These conversion relationships
are essential for creating consistent earthquake catalogs and
conducting seismic hazard assessments.

Studies like Ou et al. [50] have detailed equations and
methodologies for calculating Moment Magnitude (Mw)
from seismic moments and other geophysical parameters.
These approaches involve complex calculations based on the
seismic moment release, fault characteristics, and earthquake
source properties to derive accurate Moment Magnitude
values. By utilizing these conversion methods, researchers
can ensure standardized reporting of earthquake magnitudes
and enhance the understanding of seismic events’ energy
release and potential impact.

According to the Southern California Earthquake Data
Center (SCEDC) maintained by the California Institute of
Technology [51], starting at the end ofDecember 2015, SCSN
began calculating an additional magnitude type, labeled
Revised Local Magnitude (MLr ), which is a revised Local
Magnitude (ML). MLr magnitudes are only calculated for
events with ML between 3.0 and 6.0 and are obtained by
applying a linear adjustment to theML value. The adjustment
is designed to bring initial magnitude values derived from
ML into closer agreement with Moment Magnitude (Mw),
because Mw is expected to be the preferred magnitude type
for events above magnitude 3 [51].

For most areas in southern California,ML is systematically
larger than Mw for magnitudes greater than 3.5. Conse-
quently, the MLr adjustment is a reduction of the ML value
of up to 0.5 units (larger adjustment for larger events).MLr is
calculated using the following formula [51]:

MLr = ML × 0.853 + 0.40125 (1)

Solving forML , the formula becomes:

ML =
MLr − 0.40125

0.853
(2)

For the majority of earthquakes, ML will be the preferred
magnitude for events smaller than 3.5, and Mw preferred for
events greater than 3.5 [51].

For our dataset from the California EarthquakeData Center
(SCEDC), we converted every magnitude type to ML using
SCEDC’s own formulas to ensure consistency and facilitate
comparative analysis.

C. EXPLORATORY DATA ANALYSIS
To gain insights into the characteristics and patterns of earth-
quake data in Los Angeles, we performed an exploratory data
analysis (EDA). We generated and analyzed the following
graphs:

• Distribution of Earthquake Magnitudes: This his-
togram shows the frequency distribution of earthquake
magnitudes. It helps in understanding the common
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FIGURE 1. Distribution of earthquake magnitudes.

magnitude ranges of earthquakes in the region, as seen
in Fig. 1.

• Depth vs Magnitude Scatter Plot: This scatter plot
illustrates the relationship between the depth of earth-
quakes and their magnitudes. It helps in identifying any
patterns or correlations between these two variables,
as seen in Fig. 2.

FIGURE 2. Depth vs magnitude.

• Earthquake Count Over Time: This line plot shows
the number of earthquakes over time, aggregated
monthly. It helps in identifying trends, seasonality,
or any unusual activity over the analyzed period, as seen
in Fig. 3.

FIGURE 3. Earthquake count over time.

• Geographic Distribution of Earthquakes: This scatter
plot maps the geographical distribution of earthquakes,
with the magnitude represented by color. It helps in

identifying the locations with higher seismic activity,
as seen in Fig. 4.

FIGURE 4. Geographic distribution of earthquakes.

IV. FEATURE ENGINEERING
To enhance the dataset and improve its forecasting power,
we developed new features:

A. MAXIMUM MAGNITUDE OF NEXT SEISMIC EVENT IN
THE NEXT 30 DAYS
In this feature engineering step, we calculated the maximum
magnitude of the next seismic event occurring within the
next thirty days for each earthquake event. This feature,
named max magnitude for the next 30 days, helps in
understanding the potential magnitude of aftershocks or
subsequent earthquakes in the short term.

The distribution of the max magnitude for the next 30 days
feature is shown in Fig. 5.

FIGURE 5. Distribution of maximum magnitude of next seismic event in
the next 30 days.

To transform the earthquake forecasting problem into a
classification problem, we determined target classes based
on the magnitude of the most massive earthquake occurring
within the next 30 days. This results in six distinct classes.
The classification of the target variable is essential for
applying machine learning-based models to forecast seismic
activity effectively.

Previous studies indicated that an imbalanced dataset,
resulting from improper classification of the target variable,
can significantly diminish the performance of machine
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learning models in earthquake forecasting [52], [53], [54].
To address this issue, we utilized the frequency distribution of
the target variable to specify the intervals, ensuring a balanced
dataset, with our target variable for ML and NN methods
being the max magnitude for the next 30 days.
The Natural Breaks classification method, also known as

Jenks optimization, was employed to determine the class
boundaries. This method is specifically designed to identify
natural groupings and patterns in data byminimizing variance
within classes and maximizing variance between classes
[55], [56].
The Natural Breaks classification method is a data cluster-

ing technique designed to determine the optimal arrangement
of values into distinct classes based on the natural breaks
in the data distribution [57]. This method aims to identify
class boundaries that best group similar values together,
minimizing the variation within each class while maximizing
the differences between classes [58]. By utilizing the Jenks
optimization algorithm, researchers can effectively classify
data into a user-defined number of ranges, ensuring that
the intervals for the target variable accurately reflect the
underlying data distribution [59].

The Jenks Natural Breaks optimization method is par-
ticularly valuable in creating meaningful and interpretable
classes for the target variable, allowing for a nuanced
understanding of the data patterns [60]. By leveraging this
classification technique, researchers can ensure that the
classification thresholds are optimized to capture the inherent
variability in the dataset, leading to more accurate and
insightful analyses [61]. The Jenks optimization method is
known for its ability to minimize within-group distances
between values while maximizing the separation between
different classes, resulting in well-defined and meaningful
classification boundaries [62].

Moreover, the Jenks Natural Breaks classification method
is based on the principle of natural grouping of data to
minimize variation within classes and maximize differences
between classes [56]. This approach ensures that the classi-
fication of data is optimized to reflect the inherent structure
of the dataset, enhancing the interpretability and reliability
of the results [54]. By employing the Jenks optimization
method, researchers can effectively identify breakpoints
between classes, facilitating a more nuanced and accurate
classification of the target variable [53].

We applied the Natural Breaks classification method
to ensure that the intervals for the target variable were
determined in a way that reflected the natural distribution of
the data. This resulted in a more balanced dataset, which was
crucial for improving the performance and reliability of our
machine learning models in earthquake forecasting.

The classes for the target variable, max magnitude for the
next 30 days, were defined as follows: Class 1, Class 2,
Class 3, Class 4, Class 5, and Class 6.

As seen in Table 1, the distribution of these classes
is determined using the Natural Breaks method to ensure
balanced representation across the dataset.

TABLE 1. Natural breaks classification for maximum magnitude of next
seismic event in the next 30 days.

B. TIME SINCE LAST EARTHQUAKE
In this step of feature engineering, we calculated the time
since the last earthquake for each event. This feature helps
in understanding the temporal spacing between consecutive
earthquakes, providing insights into the frequency and
recurrence patterns of seismic activity in the Los Angeles
region. The calculation was performed by sorting the
dataset chronologically and computing the difference in time
between each earthquake and the previous one. This new
column is crucial for temporal analysis and can potentially
reveal patterns or trends in earthquake occurrences over time.

C. CALCULATION OF THE GUTENBERG-RICHTER b-VALUE
In this subsection, we delve into the detailed methodology
for calculating the Gutenberg-Richter b-value, a parameter
that plays a critical role in seismology for understanding
the distribution of earthquake magnitudes. The Gutenberg-
Richter law is expressed as:

N (M ) = 10a−bM (3)

where N (M ) is the number of events of Local Magnitude ≥

M , a and b are constants, and b is known as the b-value [45].

1) LEAST-SQUARES METHOD
The least-squares method is employed to estimate the b-value
by linearizing the Gutenberg-Richter law. By taking the
logarithm of both sides of the equation, we obtain a linear
relationship:

log10 N (M ) = a− bM (4)

Given a dataset of earthquakemagnitudes, we use the least-
squares regression to find the best-fit line, where the slope
of the line corresponds to −b. The equations for the least-
squares estimation are derived as follows:

First, rewrite the linear form of the Gutenberg-Richter law:

Y = a− bM (5)

where Y = log10 N (M ).
The least-squares method minimizes the sum of the

squared differences between the observed values and the
values forecasted by the model. The slope m (which
corresponds to −b) and the intercept c (which corresponds
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to a) of the best-fit line are given by:

m =
N

∑N
i=1 xiyi −

∑N
i=1 xi

∑N
i=1 yi

N
∑N

i=1 x
2
i − (

∑N
i=1 xi)2

(6)

c =

∑N
i=1 yi−m

∑N
i=1 xi

N
(7)

In our case, xi = Mi and yi = log10 Ni. So, the slope m
corresponds to −b:

−b =
N

∑N
i=1Mi log10 Ni −

∑N
i=1Mi

∑N
i=1 log10 Ni

N
∑N

i=1M
2
i − (

∑N
i=1Mi)2

(8)

where N is the number of data points,Mi are the magnitudes,
and log10 Ni are the logarithms of the cumulative number of
events [63].

2) MAXIMUM LIKELIHOOD ESTIMATION (MLE)
Despite the utility of the least-squares method, it is often
preferable to useMaximumLikelihood Estimation (MLE) for
the b-value due to its robustness, especially in dealing with
infrequent large-magnitude earthquakes [64]. The MLE for
the b-value is given by:

b =
log10 e

M̄ −Mmin
(9)

where M̄ is the mean magnitude and Mmin is the minimum
magnitude in the dataset.

To derive the formula for the b-value using Maximum
Likelihood Estimation (MLE), we start with the Gutenberg-
Richter law:

N (M ) = 10a−bM (10)

Taking the logarithm of both sides, we get:

log10 N (M ) = a− bM (11)

To use MLE, we need to derive the likelihood function for
the b-value. The likelihood function is based on the probabil-
ity density function (PDF) of the earthquake magnitudes.
Step 1: Probability Density Function (PDF)
The cumulative distribution function (CDF) of magnitudes

greater than or equal toM is:

F(M ) = 10−b(M−Mmin) (12)

where Mmin is the minimum magnitude in the dataset.
The PDF is obtained by differentiating the CDF with

respect to M :

f (M ) =
dF(M )
dM

= −b · 10−b(M−Mmin) · ln(10) (13)

Since we are considering magnitudesM ≥ Mmin, the PDF
simplifies to:

f (M ) = b · 10−b(M−Mmin) · ln(10) (14)

Step 2: Likelihood Function

Given a set of N earthquake magnitudes {M1,M2, . . .,
MN }, the likelihood function L(b) is the product of the
individual probabilities:

L(b) =

N∏
i=1

f (Mi) =

N∏
i=1

(
b · 10−b(Mi−Mmin) · ln(10)

)
(15)

Taking the natural logarithm of the likelihood function to
obtain the log-likelihood function, we get:

lnL(b) =

N∑
i=1

ln
(
b · 10−b(Mi−Mmin) · ln(10)

)
(16)

lnL(b)=
N∑
i=1

(ln b+ ln ln(10)−b(Mi−Mmin) ln(10)) (17)

lnL(b)=N ln b+N ln ln(10)−b ln(10)
N∑
i=1

(Mi−Mmin) (18)

Step 3: Maximizing the Log-Likelihood
To find the maximum likelihood estimate of b, we differ-

entiate the log-likelihood function with respect to b and set
the derivative to zero:

d lnL(b)
db

=
N
b

− ln(10)
N∑
i=1

(Mi −Mmin) = 0 (19)

Solving for b:

b =
N

ln(10)
∑N

i=1(Mi −Mmin)
(20)

Since M̄ is the mean magnitude:

M̄ =
1
N

N∑
i=1

Mi (21)

We can rewrite the summation as:
N∑
i=1

(Mi −Mmin) = N (M̄ −Mmin) (22)

Substituting this back into the equation for b:

b =
N

ln(10) · N (M̄ −Mmin)
(23)

Simplifying, we get:

b =
1

ln(10)(M̄ −Mmin)
(24)

Since log10 e =
1

ln(10) , we finally obtain:

b =
log10 e

M̄ −Mmin
(25)

To apply MLE, we followed these steps:
1. Calculated the mean magnitude M̄ :

M̄ =
1
N

N∑
i=1

Mi (26)
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2. Used the MLE formula to compute the b-value:

b =
log10 e

M̄ −Mmin
(27)

Maximum Likelihood Estimation (MLE) is a statistical
technique that offers a more robust and accurate approach
to estimating the Gutenberg-Richter b-value, particularly
in situations where there are limited data points or when
dealing with rare, large-magnitude earthquakes [65]. MLE
involves finding the parameter values that maximize the
likelihood of observing the given earthquake data, taking into
account the uncertainties associated with the observations.
By utilizing MLE, researchers can obtain more reliable
estimates of the b-value and better capture the underlying
seismicity patterns in a region.

The Least-Squares Method, while simpler and easier to
implement, does not match the robustness of Maximum
Likelihood Estimation in handling data with varying uncer-
tainties and complexities. It makes MLE a valuable tool
for accurately estimating the Gutenberg-Richter b-value in
seismicity analysis [65]. Selecting the appropriate method
based on the characteristics of the earthquake data and the
research objectives helps researchers obtain more precise and
reliable estimates of the b-value, enhancing the understanding
of seismic activity and earthquake hazard assessment.

3) ADDITION TO DATASET
We used the MLE method to calculate the b-value and added
the new feature column, b value, to our dataset. This column
represents the calculated b-value for each time window of
analysis [66]. We used the fifty events that occurred prior to
each event to calculate the b-value.

D. CALCULATION OF INCREMENTAL b-VALUES
We first calculated the b-values using the fifty events that
occurred prior to each event, as detailed in previous stud-
ies [67], [68]. This methodology allows us to track changes
in seismicity over time, which serve as forecasting features
for seismic activity analysis. After obtaining the b-values,
we calculated the incremental b-values by determining the
differences between b-values over various time windows,
specifically between events i and i−2, i−2 and i−4, i−4 and
i− 6, i− 6 and i− 8, and i− 8 and i− 10.
The study by Volant et al. [67] titled ‘‘b-Value, aseismic

deformation and brittle failure within an isolated geological
object: Evidences from a dome structure loaded by fluid
extraction’’ published in Geophysical Research Letters in
1992, explores the relationship between seismic activity,
aseismic deformation, and brittle failure within a geological
structure subjected to fluid extraction. This study investigates
the induced seismic activity and aseismic displacements
resulting from gas extraction in an area previously devoid of
displacement, shedding light on the impact of fluid extraction
on seismicity and deformation processes [67].
The study offers a unique perspective on the relation-

ship between fluid extraction, seismicity, and deformation,

providing valuable insights that could inform the devel-
opment of forecasting models incorporating incremental
b-values derived from seismic data analysis over time [67].
The study by Yousefzadeh et al. [68] titled ‘‘Spatiotem-

porally explicit earthquake forecasting using deep neural
network’’ published in Soil Dynamics and Earthquake Engi-
neering in 2021, investigates the effect of spatial parameters
on the performance of machine learning algorithms for
forecasting the magnitude of future earthquakes in Iran. This
study compares the performance of conventional methods
such as Support Vector Machine (SVM), Decision Tree (DT),
and Shallow Neural Network (SNN) with a contemporary
Deep Neural Network (DNN) method. One of the key
parameters introduced in this study is the Fault Density
(FD), which, along with incremental b-values, enhances the
accuracy of earthquake forecasting models.

The results showed that incremental b-values, which
measure the change in seismicity over time, signifi-
cantly contribute to the forecasting accuracy of earth-
quakes. The study highlights the importance of using
both temporal and spatial parameters, including incremental
b-values, in developing robust forecasting models for seismic
activity [68].

We detailed the methodology for calculating the incre-
mental b-values, which served as forecasting features for
seismic activity analysis.We derived the incremental b-values
from the differences in b-values calculated over various time
windows.

1) b-VALUE INCREMENTS BETWEEN EVENTS i AND i − 2
We calculated the b-value increment between events i and
i− 2 as follows:

1bi,i−2 = bi − bi−2 (28)

where bi is the b-value at event i and bi−2 is the b-value at
event i− 2.

2) b-VALUE INCREMENTS BETWEEN EVENTS i − 2 AND i − 4
We calculated the b-value increment between events i−2 and
i− 4 as follows:

1bi−2,i−4 = bi−2 − bi−4 (29)

where bi−2 is the b-value at event i−2 and bi−4 is the b-value
at event i− 4.

3) b-VALUE INCREMENTS BETWEEN EVENTS i − 4 AND i − 6
We calculated the b-value increment between events i−4 and
i− 6 as follows:

1bi−4,i−6 = bi−4 − bi−6 (30)

where bi−4 is the b-value at event i−4 and bi−6 is the b-value
at event i− 6.
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4) b-VALUE INCREMENTS BETWEEN EVENTS i − 6 AND i − 8
We calculated the b-value increment between events i−6 and
i− 8 as follows:

1bi−6,i−8 = bi−6 − bi−8 (31)

where bi−6 is the b-value at event i−6 and bi−8 is the b-value
at event i− 8.

5) b-VALUE INCREMENTS BETWEEN EVENTS i − 8 AND
i − 10
We calculated the b-value increment between events i−8 and
i− 10 as follows:

1bi−8,i−10 = bi−8 − bi−10 (32)

where bi−8 is the b-value at event i−8 and bi−10 is the b-value
at event i− 10.
These incremental b-values were crucial for understanding

the temporal variations in seismicity and have been shown to
be effective forecasting features in recent studies [68].

E. FAULT LINE EQUATIONS AND PERPENDICULAR
DISTANCE CALCULATION
The proximity to fault lines is a predictor of future
seismic events. Research has shown that seismic activity and
earthquake occurrences can be influenced by the distance to
fault lines, with seismicity often beingmore prevalent in areas
closer to active faults. Understanding the distance to fault
lines can offer valuable insights into the potential for future
seismic events and the seismic hazard level in a given region.

One study supporting the relationship between seismic
activity and distance from fault lines is the research by
Dieterich and Smith [69]. This study found that the number
of earthquakes concerning the distance from major faults in
southern California follows a power-law decay to distances
of 15 km, with decay exponent values around −1.5 [69].

1) FAULT LINES
Fig. 6 illustrates the geographical distribution of all earth-
quakes in our dataset along with the major fault lines in the
Los Angeles region. The fault lines included in the figure are
the San Andreas Fault, Newport-Inglewood Fault, Whittier
Fault, Puente Hills Thrust Fault, Raymond Fault, and Sierra
Madre Fault Zone. Each fault line is depicted in a different
color for clarity.

The earthquakes are represented by colored dots, with each
color corresponding to a specific magnitude range:

• Class 1 (0.00 - 2.38): Blue
• Class 2 (2.38 - 2.79): Green
• Class 3 (2.79 - 3.26): Yellow
• Class 4 (3.26 - 3.80): Orange
• Class 5 (3.80 - 4.46): Red
• Class 6 (4.46 - 5.44): Red

a: SAN ANDREAS FAULT
The San Andreas Fault can be approximated by a straight
line in a 2D coordinate system. Using the coordinates

FIGURE 6. Fault lines and earthquakes in Los Angeles.

(35.768, −119.703) and (33.021,−115.354), we derive the
equation of the line as follows:

Given two points (x1, y1) and (x2, y2), the line equation can
be written as:

(y2 − y1)x − (x2 − x1)y+ (x2y1 − x1y2) = 0 (33)

Plugging in the values, we get:

−2.747x + 4.349y− 205.684 = 0 (34)

b: NEWPORT-INGLEWOOD FAULT
The Newport-Inglewood Fault runs from the Westside of
Los Angeles down through the Orange County coast. Using
the coordinates (33.949,−118.395) and (33.628,−117.928),
we derive the line equation as follows:

−0.321x − 0.467y+ 209.690 = 0 (35)

c: WHITTIER FAULT
The Whittier Fault runs fromWhittier to the Puente Hills and
can produce significant earthquakes. Using the coordinates
(33.976, −118.034) and (33.927,−117.865), we derive the
line equation as follows:

−0.049x − 0.169y+ 198.878 = 0 (36)

d: PUENTE HILLS THRUST FAULT
The Puente Hills Thrust Fault is located beneath the
central Los Angeles basin and is considered capable of
generating significant earthquakes. Using the coordinates
(34.034, −118.180) and (34.061,−118.115), we derive the
line equation as follows:

0.027x − 0.065y+ 401.665 = 0 (37)

e: RAYMOND FAULT
The Raymond Fault runs through the San Gabriel Valley
and into the Los Angeles basin. Using the coordinates
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(34.145, −118.090) and (34.121, −118.003), we derive the
line equation as follows:

−0.024x − 0.087y+ 296.526 = 0 (38)

f: SIERRA MADRE FAULT ZONE
The Sierra Madre Fault Zone runs along the base of the
San Gabriel Mountains and poses a risk to the northern
Los Angeles area. Using the coordinates (34.202,−118.125)
and (34.267, −118.062), we derive the line equation as
follows:

0.065x − 0.063y+ 403.566 = 0 (39)

2) PERPENDICULAR DISTANCE FROM A POINT TO THE LINE
Given a point (x0, y0), the perpendicular distance d from the
point to the line Ax + By+ C = 0 is given by:

d =
|Ax0 + By0 + C|

√
A2 + B2

(40)

3) IMPLEMENTATION
We have implemented this calculation in our dataset as
follows:

i San Andreas Fault: For each point (x0, y0) in the
dataset, we calculate the perpendicular distance to the
San Andreas Fault line using the formula:

d =
| − 2.747x0 + 4.349y0 − 205.684|

√
2.7472 + 4.3492

(41)

ii Newport-Inglewood Fault: For each point (x0, y0) in
the dataset, we calculate the perpendicular distance to
the Newport-Inglewood Fault line using the formula:

d =
| − 0.321x0 − 0.467y0 + 209.690|

√
0.3212 + 0.4672

(42)

iii Whittier Fault: For each point (x0, y0) in the dataset,
we calculate the perpendicular distance to the Whittier
Fault line using the formula:

d =
| − 0.049x0 − 0.169y0 + 198.878|

√
0.0492 + 0.1692

(43)

iv Puente Hills Thrust Fault: For each point (x0, y0) in
the dataset, we calculate the perpendicular distance to
the Puente Hills Thrust Fault line using the formula:

d =
|0.027x0 − 0.065y0 + 401.665|

√
0.0272 + 0.0652

(44)

v Raymond Fault: For each point (x0, y0) in the dataset,
we calculate the perpendicular distance to the Raymond
Fault line using the formula:

d =
| − 0.024x0 − 0.087y0 + 296.526|

√
0.0242 + 0.0872

(45)

vi SierraMadre Fault Zone: For each point (x0, y0) in the
dataset, we calculate the perpendicular distance to the
Sierra Madre Fault Zone line using the formula:

d =
|0.065x0 − 0.063y0 + 403.566|

√
0.0652 + 0.0632

(46)

These formulas are applied to each data point in the dataset
to compute the perpendicular distances to each of the fault
lines. This allows us to analyze the proximity of earthquake
events to the major fault lines in the Los Angeles region,
providing insights into potential correlations between fault
proximity and earthquake characteristics.

F. MAXIMUM MAGNITUDE RECORDED DURING THE LAST
WEEK
The maximum magnitude recorded during the last week
is a crucial feature for assessing recent seismic activity
and the potential for future earthquakes. Martinsson and
Törnman [70] provide insights into the relationship between
induced seismic activity and production rates, depth, and
size within a mining context. The study highlights that high
seismic activity in a given week can increase the likelihood
of elevated seismicity in the subsequent week, emphasizing
the importance of monitoring and analyzing seismic events
over short time intervals to assess evolving seismic activity
patterns.

Bohnhoff et al. [71] discuss seismicity patterns following
the Gutenberg-Richter law, indicating that a high-magnitude
seismic event can be preceded by foreshocks. Monitoring the
maximum magnitude recorded in a given period can offer
valuable insights into the potential for larger seismic events.

Zhang et al. [3] focus on feature extraction techniques
for earthquake prediction, emphasizing the importance of
identifying precursory patterns in seismic data. This study
highlights the significance of monitoring the maximum
magnitude as a key feature for forecasting seismic events and
understanding seismic activity trends.

Asim et al. [2] delve into earthquake prediction models
using support vector regressor and hybrid neural net-
works, showcasing the capability of these methodologies
in forecasting seismic events of specific magnitudes. The
study underscores the importance of advanced forecasting
techniques in assessing seismic hazards and the potential
impact of earthquakes based on their magnitudes.

In conclusion, leveraging insights from studies empha-
sizing the dynamic nature of seismicity, the Gutenberg-
Richter law, and advanced forecast models can enhance our
understanding of seismic patterns and improve earthquake
forecasts based on the maximum magnitude data recorded
over specific time intervals.

This metric provides a snapshot of the largest seismic event
within a short, fixed time window, which can be indicative
of the stress accumulation and release in the region. This
approach has been utilized in recent forecasting studies to
enhance the accuracy of earthquake forecasting models.

1) CALCULATION METHODOLOGY
To calculate themaximummagnitude recorded during the last
week, we followed these steps:

i Defined the Time Window: Considered a sliding win-
dow of 7 days (one week) for each event in the dataset.
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ii Identified Relevant Events: For each event i, identified
all seismic events that occurred within the 7 days prior
to the event i.

iii Determined the Maximum Magnitude: Calculated the
maximum magnitude from the identified events.

Mathematically, this can be expressed as:

M last week
max = max{Mj | ti − 7 days ≤ tj < ti} (47)

whereM last week
max is the maximum magnitude recorded during

the last week, Mj is the magnitude of event j, ti is the time of
event i, and tj is the time of event j.

2) IMPLEMENTATION
In the dataset, we performed this calculation for each event,
resulting in a new column that recorded the maximum
magnitude observed in the week preceding each event.

G. PROBABILITY OF EVENTS WITH MAGNITUDE ≥ 5.0
The research by Zhang et al. [3] on ‘‘Precursory Pattern Based
Feature Extraction Techniques for Earthquake Prediction’’
in IEEE Access focuses on feature extraction methods
for earthquake forecasting, emphasizing the importance of
identifying precursory patterns in seismic data. By incorpo-
rating the probability of high-magnitude seismic events as a
feature, we can enhance the predictive capabilities ofmachine
learning algorithms and improve the accuracy of earthquake
forecasts.

The probability of events with a magnitude greater than or
equal to 5.0 (P(M ≥ 5.0)) is an important predictive feature in
seismology. This probability is derived from the Gutenberg-
Richter law, which describes the relationship between the
magnitude and total number of earthquakes. The data with the
maximummagnitude (5.44) come from an event that occurred
on 2008-07-29 at 18:42:15.670Z, with a latitude of 33.9485,
longitude of -117.766333, and a depth of 15.503 km. Recent
studies have demonstrated the utility of this probability in
improving earthquake forecasting models.

1) MATHEMATICAL FOUNDATION
The probability of an earthquake having a magnitude greater
than or equal to a specific valueM can be expressed as:

P(M ≥ Ms) = 10−(b(Ms−Mmin)) (48)

where Ms is the specified magnitude threshold (in this case,
5.0), andMmin is the minimum magnitude in the dataset.

2) DERIVATION OF THE FORMULA
The Gutenberg-Richter law is given by:

log10 N (M ) = a− bM (49)

where: - N (M ) is the cumulative number of earthquakes with
magnitude greater than or equal toM . - a and b are constants.

This can be rewritten as:

N (M ) = 10a−bM (50)

The cumulative distribution function (CDF), F(M ), rep-
resents the probability that an earthquake has a magnitude
greater than or equal toM . Using the Gutenberg-Richter law,
we get:

F(M ) =
N (M )
N (Mmin)

(51)

where Mmin is the minimum magnitude in the dataset, and
N (Mmin) is the total number of earthquakes in the dataset.
Substituting the Gutenberg-Richter law, we have:

F(M ) =
10a−bM

10a−bMmin
(52)

Simplifying the expression:

F(M ) = 10a−bM−(a−bMmin) = 10−b(M−Mmin) (53)

Thus, the probability of an earthquake having a magnitude
greater than or equal toM is:

P(M ≥ Ms) = 10−b(Ms−Mmin) (54)

where Ms is the specified magnitude threshold and Mmin is
the minimum magnitude in the dataset.

3) IMPLEMENTATION
We implemented this calculation in our dataset as follows:

i Calculate the b-value: We used the maximum likelihood
estimation (MLE) method.

ii Compute the Probability: We applied the derived
formula to compute P(M ≥ Ms) for each event in the
dataset.

H. GUTENBERG-RICHTER a-VALUE
The a-value in the Gutenberg-Richter law is a crucial
parameter that represents the seismic activity rate in a region.
It indicates the overall productivity of earthquakes and is used
in conjunction with the b-value to describe the frequency-
magnitude distribution of seismic events. Recent studies have
highlighted the importance of accurately determining the a-
value for improved seismic hazard assessment [68].

1) MATHEMATICAL FOUNDATION
The a-value can be determined from the linear relationship
obtained from plotting the logarithm of the cumulative
number of events against the magnitude. Given a set of
magnitudes and their cumulative counts, the a-value is
calculated as the intercept of the regression line on the
log10 N (M ) axis.

Mathematically, the a-value can be expressed as:

a = log10 N + bM (55)

where: - log10 N is the logarithm of the total number of
earthquakes, -M is the mean magnitude of the earthquakes.
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2) IMPLEMENTATION
We implemented this calculation in our dataset as follows:

i Calculated the b-value: We used the maximum likeli-
hood estimation (MLE) method or another appropriate
method.

ii Computed the total number of earthquakes and their
mean magnitude within a given time window.

iii Applied the formula to determine the a-value.

I. SUM OF THE MEAN SQUARE DEVIATION (η) FROM THE
REGRESSION LINE BASED ON THE GUTENBERG-RICHTER
LAW
The sum of the mean square deviation (η) from the regression
line based on the Gutenberg-Richter (GR) law is a valuable
metric for assessing the fit of the observed earthquake data to
the GRmodel. This metric helps in quantifying the variability
and reliability of the seismic activity forecasts. Recent studies
have demonstrated that η offers valuable insights into seismic
forecasts [72].

The sum of the mean square deviation (η) from the
regression line based on the Gutenberg-Richter law is a
valuable predictor of future seismic events. By analyzing the
deviations of observed seismicity data from the regression
line defined by the Gutenberg-Richter law, researchers gain
insights into the consistency of seismic activity patterns
and the potential for future earthquakes. The study by
Fahandezhsadi & Sadi [73] on ‘‘Earthquake Magnitude
Forecasting using Probabilistic Classifiers’’ in 2020 explores
the use of the sum of the mean square deviation about
the regression line as a feature for earthquake magnitude
forecasting, highlighting its significance in assessing seismic
activity trends and forecasting future events.

1) MATHEMATICAL FOUNDATION
The mean square deviation from the regression line is
calculated to measure how well the observed data fit the
GR law. For a set of observed magnitudes {Mi} and their
corresponding cumulative counts {Ni}, the deviation for each
magnitude is given by:

di = log10 Ni − (a− bMi) (56)

The mean square deviation is then:

η =
1
n

n∑
i=1

d2i (57)

where n is the number of data points.

2) IMPLEMENTATION
We implemented this calculation in our dataset as follows:

i Calculated the a-value and b-value using the observed
data.

ii Computed the deviations di for each observed magni-
tude.

iii Calculated the mean square deviation (η) using the
formula provided.

These steps help in assessing the goodness-of-fit of the
observed data to the Gutenberg-Richter model, providing a
quantitative measure of the model’s reliability [72].

J. DIFFERENCE BETWEEN THE LARGEST OBSERVED
MAGNITUDE AND LARGEST EXPECTED BASED ON THE
GUTENBERG-RICHTER LAW
Saichev and Sornette’s study on the ‘‘Distribution of the
largest aftershocks in branching models of triggered seis-
micity’’ in Physical Review E discusses Båth’s law, which
empirically shows an average magnitude difference of 1.2,
independent of the mainshockmagnitude [74]. This reference
underscores the importance of evaluating the difference
between observed and expected magnitudes to understand
seismic activity and forecast future events accurately.

The difference between the largest observed magni-
tude and the largest expected magnitude based on the
Gutenberg-Richter (GR) law, denoted as1M , is an important
metric for evaluating seismic hazard. This metric helps
identify regions where the observed seismicity deviates from
expected patterns, which is crucial for assessing the potential
for large, unexpected earthquakes. Recent studies have shown
that 1M can provide significant insights into seismic hazard
assessments [75].

1) MATHEMATICAL FOUNDATION
The largest expected magnitude (Mexpected) can be estimated
using the GR law by considering the total number of events
and the b-value. The Gutenberg-Richter law is given by:

log10 N (M ) = a− bM (58)

To find the largest expected magnitude, we consider the
equation when N (M ) = 1 (i.e., the magnitude at which
we expect to see one event. The cumulative number of
earthquakes with a magnitude greater than or equal to the
greatest magnitude is one.):

log10(1) = a− bMexpected (59)

Since log10(1) = 0, the equation simplifies to:

0 = a− bMexpected (60)

Solving forMexpected, we get:

Mexpected =
a
b

(61)

The difference 1M between the largest observed mag-
nitude (Mobserved) and the largest expected magnitude
(Mexpected) is then calculated as:

1M = Mobserved −Mexpected (62)

2) IMPLEMENTATION
We implemented this calculation in our dataset as follows:

i Calculated the a-value and b-value using the observed
data.
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ii Determined the largest observed magnitudeMobserved in
the dataset.

iii Estimated the largest expected magnitude Mexpected
using the formulaMexpected =

a
b .

iv Computed 1M using the formula provided.

K. ELAPSED TIME (T ) BETWEEN THE LAST N EVENTS
Research by Faro et al. [76] in the Journal of Personality
and Social Psychology explores the influence of causal
relationships on time perception and judgments of elapsed
time between events. This study emphasizes the role of
causal associations in shaping temporal judgments, providing
insights into the forecasting value of elapsed time between
seismic events.

Incorporating the elapsed time between events as a
forecasting feature in machine learning algorithms can
enhance themodels’ ability to capture temporal dependencies
in seismic activity. The study by Nguyen et al. [77]
highlights the informative nature of elapsed time between
events, suggesting its relevance in forecasting modeling and
decision-making processes.

The elapsed time (T ) between the last n events is a critical
metric for understanding the temporal patterns in seismic
activity. This metric helps identify periods of increased or
decreased seismic activity.

1) MATHEMATICAL FOUNDATION
The elapsed time (T ) is defined as the total time interval
between the first and last event in a specified window of n
events. For a given set of events, let t1 be the time of the first
event and tn be the time of the n-th event. The elapsed time T
is calculated as:

T = tn − t1 (63)

where: - t1 is the time of the first event in the window, - tn is
the time of the n-th event in the window.

This simple yet powerful metric can reveal changes in the
seismic activity rate over time.

2) IMPLEMENTATION
We implemented this calculation in our dataset as follows:

i Extracted the times of the first (t1) and last (tn) events in
the specified window of n events.

ii Calculated the elapsed time T using the formula T =

tn − t1.

L. MEAN TIME BETWEEN EVENTS (µ)
The study by Salam et al. [78] on ‘‘Earthquake Predic-
tion using Hybrid Machine Learning Techniques’’ in the
International Journal of Advanced Computer Science and
Applications includes the average time between events (µ)
as one of the indicators used for earthquake forecasting. This
reference highlights the importance of temporal features in
predictive modeling and suggests that the mean time between

events can be a valuable predictor for forecasting seismic
events.

The mean time between events (µ) is an important
metric for understanding the temporal distribution of seismic
activity.

1) MATHEMATICAL FOUNDATION
The mean time between events (µ) is defined as the average
time interval between consecutive earthquake events. For a
given set of n events, let ti be the time of the i-th event. The
time interval between consecutive events is given by:

1ti = ti+1 − ti (64)

The mean time between events is then calculated as the
average of these time intervals:

µ =
1

n− 1

n−1∑
i=1

1ti (65)

where: - ti is the time of the i-th event, -1ti is the time interval
between the i-th event and the (i+ 1)-th event, - n is the total
number of events.

2) IMPLEMENTATION
We implemented this calculation in our dataset as follows:

i Extracted the times of the events in the specifiedwindow
of n events.

ii Calculated the time intervals 1ti between consecutive
events.

iii Computed the mean time between events µ using the
formula provided.

M. COEFFICIENT OF VARIATION (C)
The study by Rosenau & Oncken [79] in the Journal of Geo-
physical Research Atmospheres discusses the relationship
between the coefficient of variation of recurrence intervals
and seismic activity patterns in subduction zones. This
reference highlights the importance of understanding the
variability in recurrence intervals for forecasting seismic
events and assessing the frequency-size distribution of
earthquakes in different geological settings.

The coefficient of variation (C) is a normalized measure of
the dispersion of the inter-event times in a set of earthquake
occurrences. It is an important metric for understanding the
variability and predictability of seismic activity. A higher
coefficient of variation indicates more irregular and unpre-
dictable seismic activity, whereas a lower coefficient suggests
more regular and predictable occurrences.

1) MATHEMATICAL FOUNDATION
The coefficient of variation (C) is defined as the ratio of
the standard deviation (σ ) to the mean (µ) of the inter-event
times. For a given set of n events, let 1ti be the time interval
between consecutive events. The mean (µ) and standard
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deviation (σ ) of these time intervals are given by:

µ =
1

n− 1

n−1∑
i=1

1ti (66)

σ =

√√√√ 1
n− 1

n−1∑
i=1

(1ti − µ)2 (67)

The coefficient of variation (C) is then calculated as:

C =
σ

µ
(68)

where: -µ is themean time between events, - σ is the standard
deviation of the time intervals, - n is the total number of
events.

2) IMPLEMENTATION
We implemented this calculation in our dataset as follows:

i Extracted the time intervals 1ti between consecutive
events in the specified window of n events.

ii Calculated the mean time between events (µ) using the
formula provided.

iii Calculated the standard deviation of the time intervals
(σ ).

iv Computed the coefficient of variation (C) using the
formula provided.

N. THE SQUARE ROOT OF THE CUMULATIVE SEISMIC
ENERGY
Salam et al. [78] conducted a study on ‘‘Earthquake
Prediction using Hybrid Machine Learning Techniques’’ in
the International Journal of Advanced Computer Science and
Applications, which highlights the significance of energy-
related features in earthquake forecasting models. The study
includes the square root of the released energy during
a specific time as one of the indicators for earthquake
forecasting, supporting the notion that the rate of seismic
energy release can be a valuable predictor for forecasting
seismic events.

The rate of the square root of seismic energy is a metric
used to quantify the energy released by seismic events.
It provides a normalized measure of seismic activity by
considering the energy release rate, which is important for
understanding the dynamics of earthquake processes and
assessing seismic hazards [68], [80].

1) MATHEMATICAL FOUNDATION
The seismic energy (E) released by an earthquake can be
estimated using its magnitude (M ) through the following
relationship:

E = 101.5M+4.8 (69)

where: - E is the seismic energy in joules, - M is the
magnitude of the earthquake.

To calculate the square root of the cumulative seismic
energy (

√
E6), we first compute the seismic energy for each

event using the formula 101.5Mi+4.8. Then, we sum these
values over a specified window of n = 50 events and take
the square root of the sum. The expression is given by:

√
E6 =

√√√√ 50∑
i=1

101.5Mi+4.8 (70)

where: -Mi is the magnitude of the i-th event in the window.

2) IMPLEMENTATION
We implemented this calculation in our dataset as follows:

i Extracted the magnitudes Mi of the events in the
specified window of n = 50 events.

ii Computed the seismic energy Ei = 101.5Mi+4.8 for each
event.

iii Summed the seismic energy values.
iv Computed the square root of the cumulative seismic

energy (
√
E6) using the formula provided.

O. MEAN MAGNITUDE OF THE LAST N EVENTS (Mmean)
The mean magnitude (Mmean) of the last n events is a
straightforward yet powerful metric for characterizing the
average size of recent earthquakes. This metric is crucial
for understanding the general trend in seismic activity
and for making short-term predictions about future seismic
events [81], [82].

In their study on ‘‘Earthquake Prediction using Hybrid
Machine Learning Techniques,’’ Salam et al. [78] utilized
the average magnitude of N events (Mmean) as an indicator
for earthquake forecasting. This research highlights the
significance of magnitude-related features in earthquake
forecasting models and suggests that the mean magnitude
of recent events can be a valuable predictor for forecasting
seismic events.

1) MATHEMATICAL FOUNDATION
The mean magnitude (Mmean) is calculated as the arithmetic
mean of the magnitudes of the last n events. For a given set of
n events, letMi be the magnitude of the i-th event. The mean
magnitude is then given by:

Mmean =
1
n

n∑
i=1

Mi (71)

where: - Mi is the magnitude of the i-th event, - n is the total
number of events considered.

2) IMPLEMENTATION
We implement this calculation in our dataset as follows:

i Extract the magnitudesMi of the events in the specified
window of n events.

ii Sum the magnitudes of these n events.
iii Compute themeanmagnitude (Mmean) using the formula

provided.
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V. METHODOLOGY
A. EARTHQUAKE FORECASTING USING MACHINE
LEARNING AND NEURAL NETWORKS
In this study, we evaluated various machine learning (ML)
algorithms and neural network (NN) models to forecast the
class of earthquake magnitudes within the next 30 days. The
models were trained and tested using a dataset of seismic
events with features scaled for optimal performance. We uti-
lized a dataset from the Southern California Earthquake
Data Center (SCEDC) for the Los Angeles region, covering
earthquakes from 2001 to 2024. The dataset includes a range
of features engineered to enhance predictive power. The
features used in our analysis are summarized in Table 2.
By integrating these features, we aim to develop robust
machine learning models capable of forecasting the class of
future seismic events in the Los Angeles region.

For repeatability, we used a random state of 15 for each of
the methodologies. The random state ensures that the results
are reproducible by setting the seed for the random number
generator used in the algorithms. Also, our test sample was
20% throughout the project. Our methodology is shown in
Fig. 7.

FIGURE 7. Methodology for earthquake forecasting.

Our Machine Learning (ML) algorithms included Logistic
Regression, Decision Trees, Random Forest, Gradient Boost-
ing Machines (GBM), Support Vector Machines (SVM),
k-Nearest Neighbors (k-NN), Naive Bayes, AdaBoost,
XGBoost, and LightGBM. These models are based on
statistical methods and mathematical algorithms to make
predictions based on input data.

Our Neural Networks (NN) included Multilayer Per-
ceptron (MLP), Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), Long Short-Term Mem-
ory Networks (LSTM), Gated Recurrent Units (GRU), and
Transformer Models. These models are inspired by the
structure and function of the human brain, using layers of
interconnected nodes (neurons) to learn from data.

1) XGBoost
We applied XGBoost to forecast earthquake categories, and
the resulting accuracy is shown in Table 3. XGBoost, which
stands for Extreme Gradient Boosting, is a machine learning
algorithm that has gained popularity across various fields
due to its efficiency and effectiveness in handling complex
datasets. In the field of seismology, XGBoost shows promise

TABLE 2. Our input variables for earthquake forecasting.

in earthquake forecasting and analysis. Seismologists are
exploring the application of machine learning techniques
like XGBoost to enhance their ability to forecast seismic
events accurately and efficiently [83]. By utilizing XGBoost,
researchers have developed models capable of forecasting
earthquakes by analyzing various features and patterns in
seismic data [83]. This approach signifies a shift towards
more advanced and data-drivenmethodologies in seismology,
aiming to improve the accuracy and timeliness of earthquake
forecasts.
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In the realm of earthquake forecasting, XGBoost has been
used alongside other artificial intelligence models to evaluate
earthquake spatial probability, particularly in regions like
the Arabian Peninsula [84]. The integration of XGBoost
with explainable artificial intelligence (XAI) models shows
promising results, emphasizing the importance of including
additional factors such as seismic gaps and tectonic contacts
to enhance forecast accuracy [84]. This fusion of advanced
machine learning techniques with traditional seismic anal-
ysis methods demonstrates a multidimensional approach
to earthquake forecasting, highlighting the significance of
comprehensive data analysis in seismology.

XGBoost has been integrated into earthquake monitoring
and early warning systems to provide real-time alerts before
significant ground shaking occurs [85]. By employing broad-
band P waveform data and XGBoost algorithms, researchers
have developed systems capable of issuing earthquake
warnings several seconds prior to the onset of a seismic
event [85]. This proactive approach to earthquake forecasting
underscores the potential of machine learning algorithms
like XGBoost in improving seismic monitoring and disaster
mitigation efforts.

XGBoost has been incorporated into comprehensive earth-
quake forecasting models, combining neural networks and
other machine learning classifiers to analyze seismic data and
forecast earthquake impacts [86].

2) RANDOM FOREST
We utilized a Random Forest model with 100 estimators to
forecast earthquake categories, and the resulting accuracy is
presented in Table 3. Random Forest is a machine learning
algorithm that has been successfully applied in seismology
for earthquake forecasting and analysis. Researchers have
utilized Random Forest to develop models that can forecast
earthquakes by analyzing seismic data and identifying
patterns that precede seismic activity [87]. This approach
represents a significant advancement in earthquake forecast-
ing methodologies, emphasizing data-driven techniques to
enhance the reliability of seismic forecasts.

In seismology, Random Forest has been used to distinguish
seismic waveforms, allowing researchers to differentiate
between earthquake signals and background noise effec-
tively [88]. By training Random Forest classifiers with
a substantial dataset of earthquake and noise waveforms,
researchers have created models capable of automatically
extracting features and classifying seismic events with high
accuracy [88]. This application of Random Forest under-
scores its potential in improving earthquake early warning
systems by facilitating rapid and precise identification of
seismic events.

Random Forest has been employed in detecting and
classifying seismic signals related to various geological
phenomena, such as landslides and glacial earthquakes [87],
[89]. By utilizing Random Forest classifiers, researchers have
automated the process of identifying and categorizing seismic

events, leading to more efficient monitoring and analysis of
geological activities [87], [89]. This automated approach not
only enhances event recognition speed but also improves the
overall comprehension of seismic processes in geologically
active regions.

In the field of earthquake forecasting, Random Forest
shows promise in forecasting the magnitude and occurrence
of seismic events [89]. Studies indicate that Random Forest
models can effectively forecast earthquake magnitudes in
specific regions, providing valuable insights for disaster
preparedness and risk mitigation strategies [89]. This predic-
tive capability highlights the potential of Random Forest in
supporting decision-making processes related to earthquake
response and mitigation efforts.

3) LIGHTGBM
We applied LightGBM using the following parameters:
force_col_wise: True, min_split_gain: 0.5, min_child_
samples: 20, num_leaves: 64, and max_depth: 6 to forecast
earthquake categories. The resulting accuracy is shown in
Table 3.
LightGBM, a tree-based boosting algorithm, has been

utilized in earthquake forecasting within seismology.
Researchers successfully used LightGBM to develop models
capable of forecasting earthquake magnitudes and mapping
seismic vulnerability by leveraging artificial intelligence
techniques [90]. By utilizing historical strong motion data
from databases like NGA-west2, LightGBM models demon-
strated the ability to swiftly and accurately replicate the
distribution of strong motion near earthquake epicenters [90].
This application of LightGBM represents a significant
advancement in earthquake forecasting methodologies,
showcasing the algorithm’s efficiency in handling seismic
data and enhancing predictive capabilities in seismology.

LightGBM is acknowledged for its efficiency in data
processing and memory consumption reduction, making it
a valuable tool for analyzing seismic data in large sample
applications [91]. The algorithm’s capacity to enhance
processing speed while maintaining accuracy is particularly
advantageous in seismology, where timely analysis of seismic
events is critical for effective earthquake forecasting and
risk assessment. By leveraging LightGBM’s capabilities,
researchers can streamline data processing tasks and improve
the efficiency of earthquake forecasting models.

In the realm of earthquake forecasting, LightGBM plays a
crucial role in forecasting seismic events and evaluating seis-
mic vulnerability in earthquake-prone regions. Through the
integration of LightGBM into predictive models, researchers
have been able to analyze seismological parameters and
forecast the areas impacted by earthquake-induced landslides
using sophisticated data processing techniques [92]. This
approach underscores the algorithm’s versatility in handling
complex seismic datasets and providing valuable insights into
earthquake impacts, aiding in disaster preparedness and risk
mitigation efforts.
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The incorporation of LightGBM into earthquake forecast-
ing models enables researchers to enhance the accuracy of
seismic forecasts and deepen the understanding of seismic
processes. By integrating LightGBM into comprehensive
earthquake forecasting frameworks, seismologists can lever-
age the algorithm’s capabilities to analyze seismic data,
identify seismic patterns, and forecast earthquakemagnitudes
with greater precision [2].

4) GRADIENT BOOSTING MACHINES (GBM)
We applied Gradient Boosting Machines (GBM) to forecast
earthquake categories, and the resulting accuracy is shown
in Table 3. Gradient Boosting Machines (GBM) are an
ensemble learning technique developed by Jerome Friedman.
GBM is composed of weak learners, typically regression
trees, that are boosted by adding weak learners using a
functional gradient descent to minimize the loss function of
the entire ensemble [93]. In seismology, GBM is utilized
to enhance earthquake forecasting models by optimizing
the loss function and improving the accuracy of seismic
forecasts.

5) MULTILAYER PERCEPTRON (MLP)
We employed a Multilayer Perceptron (MLP) with the
following parameters to forecast earthquake categories, and
the resulting accuracy is detailed in Table 3: max_iter:
1000, learning_rate_init: 0.001, hidden_layer_sizes: (100,
100). In seismology, the Multilayer Perceptron (MLP) neural
network model has been utilized to forecast earthquake
magnitudes and assess seismic events accurately. Researchers
have employed MLP to develop models capable of forecast-
ing the magnitude of earthquakes, providing valuable insights
into seismic activity [94]. By leveraging the capabilities of
MLP, seismologists can analyze seismic data and forecast
earthquakemagnitudes with enhanced precision, contributing
to more effective disaster preparedness and risk mitigation
strategies in earthquake-prone regions.

The application of MLP in seismology enables researchers
to forecast the magnitude of earthquakes using neural
network models with multiple hidden layers [94]. By training
MLP models with seismic data, researchers can extract
patterns and features that aid in forecasting earthquake
magnitudes, thereby improving the accuracy of seismic event
forecasts. This approach highlights the effectiveness of MLP
in handling complex seismic datasets and enhancing the
understanding of seismic processes in seismology.

MLP is utilized to forecast the occurrence of seismic
events and assess earthquake magnitudes based on historical
seismic data [95]. By employing MLP neural networks
with backpropagation learning algorithms, researchers can
analyze seismic patterns and forecast the magnitude of
earthquakes accurately. This utilization ofMLP in earthquake
forecasting models demonstrates the algorithm’s effective-
ness in handling seismic data and enhancing the reliability
of seismic forecasts in seismology.

MLP is applied in seismology to create earthquake
forecasting models that utilize artificial neural networks to
forecast seismic events [96].

6) DECISION TREES
We employed Decision Trees to forecast earthquake cate-
gories, and the resulting accuracy is detailed in Table 3.

Decision Trees are a widely used machine learning
algorithm in seismology for earthquake forecasting and
analysis. They are structured as tree-like models where each
internal node represents a feature or attribute, each branch
signifies a decision rule, and each leaf node indicates the
outcome or prediction [97]. In seismology, Decision Trees
have been effectively utilized to analyze seismic data, fore-
cast earthquake magnitudes, evaluate seismic vulnerability,
and categorize seismic events based on various parameters.

Researchers have applied Decision Trees in seismology
to forecast earthquake magnitudes and assess seismic vul-
nerability by creating models and forecasting seismic events
using a tree structure [97]. By developing Decision Trees
based on seismic data, researchers can identify patterns and
relationships that assist in forecasting earthquake magnitudes
and comprehending seismic processes. This methodology
showcases the efficacy of Decision Trees in managing
intricate seismic datasets and enhancing the precision of
earthquake forecasts in seismology.

Decision Trees have been utilized to assess parameters
influencing earthquake damage and simulate earthquake
damage distributions in seismically active regions [98].
Through the application of Decision Tree techniques,
researchers holistically evaluate earthquake damages, consid-
ering both structural and non-structural factors to accurately
forecast andmodel earthquake damage distributions. This use
of Decision Trees underscores their adaptability in analyzing
seismic data and forecasting the impact of seismic events on
structures and infrastructure.

In the realm of earthquake forecasting, Decision Trees
have been employed to classify seismic events, differentiate
between various types of seismic signals, and forecast
the likelihood of earthquakes based on historical seismic
data [99]. By leveraging Decision Trees, researchers establish
models that aid in decision-making during seismic events,
enhance earthquake emergency response strategies, and
refine earthquake forecasting methodologies. This utilization
of Decision Trees demonstrates their effectiveness in analyz-
ing seismic data and supporting decision-making processes
in seismology.

Decision Trees have been integrated with other machine
learning algorithms to forecast earthquake occurrences,
evaluate the seismic performance of structures, and enhance
disaster planning and response strategies [100].

7) SUPPORT VECTOR MACHINES (SVM)
We used Support Vector Machines (SVM) to forecast
earthquake categories, and the accuracy results are shown in
Table 3.
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Support VectorMachines (SVM) have been utilized in seis-
mology for earthquake forecasting and analysis. Researchers
have employed SVM as a machine learning tool to enhance
earthquake forecasting models and improve the accuracy of
seismic event forecasts [101]. By leveraging the capabilities
of SVM, seismologists analyze seismic data, classify seismic
events, and forecast earthquake occurrences with greater pre-
cision, contributing to more effective disaster management
strategies and risk mitigation efforts in earthquake-prone
regions.

In the context of seismology, SVM is used to classify seis-
mic signals, differentiate between various types of seismic
events, and forecast the likelihood of earthquakes based on
historical seismic data [101]. By utilizing SVM algorithms,
researchers develop models that aid in decision-making dur-
ing seismic events, enhance earthquake emergency response
strategies, and refine earthquake forecasting methodologies.
This application of SVM highlights its effectiveness in
analyzing seismic data and supporting decision-making
processes in seismology.

SVM has been combined with other machine learning
algorithms to forecast earthquake occurrences, assess seismic
vulnerability, and improve disaster planning and response
strategies [102].

8) K-NEAREST NEIGHBORS (K-NN)
We applied k-Nearest Neighbors (k-NN) to forecast earth-
quake categories, and the accuracy results are shown in
Table 3. In seismology, the k-Nearest Neighbors (k-NN)
algorithm has been utilized as a valuable tool for earthquake
forecasting and analysis. The k-NN algorithm is a popular
non-parametricmethod used for classification and regression,
making it suitable for handling seismic data and forecasting
seismic events [103]. By leveraging the k-NN algorithm,
seismologists analyze seismic patterns, classify seismic
events, and forecast earthquake occurrences with enhanced
accuracy, contributing to more effective disaster management
strategies and risk mitigation efforts in earthquake-prone
regions.

Researchers have employed the k-NN algorithm in seis-
mology to classify seismic signals, differentiate between
various types of seismic events, and forecast the likelihood
of earthquakes based on historical seismic data [104].
By applying the k-NN algorithm, researchers develop models
that aid in decision-making during seismic events, improve
earthquake emergency response strategies, and refine earth-
quake forecasting methodologies. This utilization of the
k-NN algorithm demonstrates its effectiveness in analyzing
seismic data and supporting decision-making processes in
seismology [105].

9) AdaBoost
WeutilizedAdaBoost with the SAMME algorithm to forecast
earthquake categories. The accuracy results are displayed
in Table 3. In seismology, the AdaBoost machine learning

algorithm has enhanced earthquake prediction models and
improved the accuracy of seismic event forecasts. AdaBoost,
which stands for Adaptive Boosting, is a boosting algorithm
that combines multiple weak learners to create a strong
predictive model. Researchers have employed AdaBoost in
seismology to analyze seismic data, predict earthquake occur-
rences, and assess seismic vulnerability effectively [106].
A study introduced a novel earthquake prediction

framework based on the classical AdaBoost machine
learning algorithm, incorporating satellite remote sensing
products like infrared and hyperspectral gases to detect
earthquake perturbations [107]. By integrating AdaBoost
within the framework of inverse boosting pruning trees
(IBPT), the researchers achieved promising forecasting
results in the retrospective validation of global earthquake
cases, demonstrating the algorithm’s effectiveness in earth-
quake prediction [107].
AdaBoost has been integrated into earthquake prediction

models to evaluate seismic vulnerability and forecast seismic
ground motions. The seismic vulnerability of Reinforced
Concrete (RC) structures under single and multiple seis-
mic events was forecasted using various machine learning
algorithms, including the AdaBoost Regressor [108]. This
incorporation of AdaBoost into seismic vulnerability assess-
ment models underscores its usefulness in analyzing seismic
data and improving the prediction of earthquake impacts on
structures.

AdaBoost has been applied in earthquake prediction
systems that merge earthquake indicators with genetic
programming to enhance prediction accuracy. An earthquake
prediction system that utilizes AdaBoost alongside earth-
quake forecasting indicators has led to improved results in
earthquake forecasting [109].

10) CONVOLUTIONAL NEURAL NETWORKS (CNN)
We utilized Convolutional Neural Networks (CNN) to
forecast earthquake categories. The accuracy results are
displayed in Table 3. Our architecture is as follows: Input
layer with shape (number of features, 1); Conv1D layer with
32 filters, kernel size of 3, and ‘relu’ activation; Flatten layer;
Dense layer with 64 units and ‘relu’ activation; and Dense
layer with Softmax activation for output. In seismology,
Convolutional Neural Networks (CNN) have proven to be
valuable tools for earthquake prediction and analysis. CNNs,
a type of deep neural network that incorporates convolution
calculations and has a deep structure, are well-suited for
handling seismic data and forecasting seismic events [110].
Researchers have successfully utilized CNNs in seismology
to analyze seismic patterns, classify seismic events, and
forecast earthquake occurrences with increased accuracy,
contributing to more effective disaster management strategies
and risk mitigation efforts in earthquake-prone regions.

A study demonstrated the development of a CNN
model capable of detecting and classifying seismic body
wave phases across various circumstances, highlighting the
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effectiveness of CNNs in seismic phase detection [111].
Through the application of CNNs, researchers can auto-
mate the process of identifying seismic phases, leading to
improved seismic event classification and analysis. This
utilization of CNNs emphasizes their value in enhancing
seismic data processing and interpretation in seismology.

CNNs have been integrated into earthquake prediction
models to assess seismic vulnerability and forecast seismic
ground motions. By incorporating CNNs into seismic vul-
nerability assessment frameworks, researchers can enhance
the accuracy of seismic impact predictions on structures and
infrastructure. This integration showcases the effectiveness
of CNNs in analyzing seismic data and improving the
prediction of earthquake impacts, thereby supporting disaster
preparedness and risk mitigation strategies in seismology.

CNNs have been employed in the classification of seismic
events based on waveform data, showcasing their ability
to process complex seismic signals and accurately classify
seismic events [112].

11) RECURRENT NEURAL NETWORKS (RNN)
We employed Recurrent Neural Networks (RNN) to forecast
earthquake categories, and the accuracy results are shown in
Table 3. Our architecture includes the following layers: an
input layer with shape (number of features, 1); an LSTM layer
with 64 units and return sequences set to True; a flatten layer;
a dense layer with 64 units and ‘relu’ activation; and a dense
layer with Softmax activation for output. Recurrent Neural
Networks (RNN) have become a valuable tool in seismology
for earthquake forecasting and analysis. RNNs, a type of
neural network incorporating feedback loops, are well-suited
for handling seismic time-series data due to their ability
to capture temporal dependencies in sequential data [113].
Researchers have successfully applied RNNs in seismology
to model postseismic deformation, classify seismic events,
and forecast earthquake occurrences with improved accuracy,
contributing to more effective disaster management strategies
and risk mitigation efforts in earthquake-prone regions.

A study introduced a machine-learning approach using
RNNs to characterize the postseismic deformation of
the 2011 Tohoku-Oki Earthquake based on time-series data,
demonstrating the effectiveness of RNNs in accurately
modeling observed seismic phenomena [113]. By leveraging
the capabilities of RNNs, researchers can analyze seismic
data over time and forecast the evolution of seismic events,
providing valuable insights into the dynamics of seismic
processes in seismology.

RNNs have been utilized in earthquake detection systems
to analyze seismic array data and detect seismic events effi-
ciently. A study focused on developing a graph-partitioning
based CNN for earthquake detection using a seismic array
showcased the effectiveness of RNNs in processing large-
scale seismic network data sets and improving earthquake
detection techniques [114]. This application of RNNs high-
lights their ability to handle complex spatiotemporal data and
enhance earthquake detection capabilities in seismology.

RNNs have been integrated into seismic event classifi-
cation models to analyze seismic waveforms and classify
seismic events accurately. By leveraging RNNs for seismic
event classification, researchers can extract features from
seismic signals and categorize seismic events based on their
characteristics, leading to more precise earthquake forecasts
and assessments in seismology [115].

12) LONG SHORT-TERM MEMORY NETWORKS (LSTM)
We used Long Short-Term Memory Networks (LSTM) to
forecast earthquake categories, and the accuracy results are
presented in Table 3. Our architecture includes the following
layers: an input layer with a shape of (number of features, 1);
an LSTM layer with 64 units; a dense layer with 64 units and
‘relu’ activation; and a dense layer with Softmax activation
for output.

Long Short-Term Memory Networks (LSTM) are a type
of neural network architecture that is particularly well-
suited for sequential data analysis due to their ability
to retain information over long periods. In the context
of seismology, LSTM networks have been increasingly
utilized for earthquake forecasting. These networks excel
in capturing the temporal dependencies present in seismic
data, making them valuable tools for forecasting seismic
events. Studies such as those by Hsu et al. [116], Cao
et al. [117], and Abri and Artuner [118] have demonstrated
the effectiveness of LSTM networks in forecasting various
seismic parameters like peak ground acceleration (PGA) and
earthquake occurrences.

In the realm of seismology, the forecasting of earthquakes
has long been a challenging and critical endeavor due to
its implications for public safety and disaster mitigation.
Researchers have explored various approaches to improve
earthquake forecasting accuracy, with a focus on leverag-
ing advanced technologies like deep learning and neural
networks. The study by Dias and Papa [96] highlights
the application of neural networks, specifically multilayer
perceptron models, for probabilistic earthquake forecasting,
showcasing the potential of machine learning techniques in
seismic event forecasting.

The integration of attention mechanisms with LSTM
networks, as demonstrated in the work by Banna et al. [27],
has shown promising results in enhancing earthquake fore-
casting accuracy. By incorporating attention mechanisms,
which allow the model to focus on relevant parts of the
input sequence, the LSTM network can better capture subtle
patterns in seismic data, leading to improved forecasting
capabilities.

13) GATED RECURRENT UNITS (GRU)
We implemented Gated Recurrent Units (GRU) to forecast
earthquake categories, and the accuracy results are detailed
in Table 3. Our architecture comprises: an input layer
with a shape of (number of features, 1); a GRU layer
with 64 units; a dense layer with 64 units and ‘relu’
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activation; and a dense layer with Softmax activation for
output. Gated Recurrent Units (GRU) are a type of neural
network architecture designed to efficiently model sequential
data, similar to LSTM networks. In seismology, GRUs
have become valuable for earthquake forecasting due to
their streamlined architecture with fewer parameters, making
them computationally efficient for certain applications in
earthquake forecasting. Studies by Dias and Papa [96] and
Wang et al. [119] have explored the use of neural networks,
including GRUs, in earthquake forecasting, demonstrating
the potential of these models in capturing complex temporal
patterns in seismic data.

Seismologists increasingly utilize advanced machine
learning techniques, such as GRUs, to enhance the accuracy
and reliability of earthquake forecasting models. By employ-
ing GRU networks, researchers can analyze seismic data
sequences effectively and extract meaningful patterns for
more precise seismic event forecasts. Akter [120] utilized
an Evidential Reasoning Approach to forecast earthquakes
based on specific signs and patterns, showcasing the versa-
tility of neural network models like GRUs in seismic hazard
assessment.

Integrating GRUs with additional data sources, such as
GPS data and outgoing longwave radiation, shows promise
in improving earthquake forecasting accuracy. While Gitis
et al. [42] stress the importance of using artificial neural
networks for earthquake forecasting, studies like that of Zhai
et al. [43] demonstrate the effectiveness of combining GRU
models with time series forecasting techniques to detect
thermal anomalies in earthquake processes, highlighting the
interdisciplinary approach required in modern seismology
research.

In earthquake forecasting, evaluating seismic parameters
and their spatial variations is crucial for developing robust
forecasting models. Research by Hussain et al. [41] on
the spatial variation of b-values and their relationship with
fault blocks suggests the potential of using such parameters
alongside GRU networks to forecast high-magnitude earth-
quakes. Additionally, studies like that of Marc et al. [92]
focus on forecasting the area affected by earthquake-induced
landsliding based on seismological parameters, illustrating
the practical applications of integrating GRU models with
geophysical data for hazard assessment.

Analyzing earthquake catalogs and historical seismicity
patterns provides valuable insights for refining earthquake
forecasting models. Investigations such as those by Chou-
liaras [121] on the earthquake catalog of the National
Observatory of Athens and Alabi et al. [122] on seismicity
patterns in Southern Africa emphasize the importance of
leveraging historical seismic data to enhance the performance
of GRU-based forecasting models.

14) TRANSFORMER MODELS
We utilized Transformer Models to forecast earthquake
categories, and the accuracy results are presented in Table 3.

Our architecture includes: an input layer with a shape of
(number of features, 1); a dense layer with 64 units and
‘relu’ activation; and a dense layer with Softmax activation
for output. Transformer models have become a valuable tool
in various seismological applications, including earthquake
forecasting and seismic event analysis. In the context of
seismology, transformer models are utilized for tasks such
as earthquake detection, phase picking, earthquake source
characterization, and early warning systems [123]. These
models have demonstrated their effectiveness in processing
large volumes of seismic data efficiently and capturing
complex temporal patterns present in seismic signals.

Seismologists increasingly turn to machine learning tech-
niques, including transformer models, to enhance earthquake
forecasting accuracy and improve seismic event forecasting.
The ability of transformer models to handle sequential
data and learn dependencies across different time steps
makes them well-suited for analyzing seismic signals and
extracting meaningful features for earthquake forecasting.
The application of transformer models in seismology has
shown promising results in enhancing the understanding of
seismic events and improving the reliability of earthquake
forecasts.

Transformer models have been instrumental in separating
earthquake signals from ambient noise in seismograms,
contributing to more accurate earthquake detection and
analysis [123].

15) LOGISTIC REGRESSION
We applied Logistic Regression to forecast earthquake
categories, and the accuracy results are displayed in Table 3.

Logistic regression is a statistical method commonly
used in various fields, including seismology, to analyze the
relationship between a binary outcome and one or more
predictor variables. In the context of seismology, logistic
regression has been applied to forecast and assess different
aspects related to earthquakes. For instance, Jessee et al.
[124] developed a global empirical model for assessing
seismically induced landslides using logistic regression to
understand the distribution of earthquake-triggered landslides
based on factors like ground shaking, topographic slope, and
land cover type. This study highlights the utility of logistic
regression in modeling the impact of earthquakes on the
occurrence of landslides.

Logistic regression has been utilized in earthquake fore-
casting studies, although it is noted that traditional models
based on physical principles and statistical seismology laws
have limitations in forecasting large earthquakes [125].While
logistic regression has been used in earthquake forecasting
models, it is essential to acknowledge the challenges in
accurately forecasting significant seismic events solely based
on empirical laws and physical principles.

In the specific context of seismically induced damage
patterns, Rawat et al. [126] employed logistic regression
to investigate seismic hazard assessment by considering
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site-specific parameters such as lithology, proximity to fault
lines, soil texture, and groundwater. This application demon-
strates how logistic regression can be used to understand
the factors influencing seismic damage patterns and assess
earthquake risks in different geological settings.

Logistic regression has been applied in studies focusing
on earthquake-induced landslides. Vilder et al. [127] used
a logistic regression model to correlate earthquake-induced
landslide inventories with various topographic, geological,
and seismological parameters to determine the factors
contributing to coseismic landslides.

16) NAIVE BAYES
We used Naive Bayes to forecast earthquake categories, and
the accuracy results are shown in Table 3. One study by
Fahandezhsadi and Sadi [73] focused on earthquake mag-
nitude forecasting using probabilistic classifiers, including
Naive Bayes. The research aimed to enhance the accuracy of
Naive Bayes by relaxing its strong conditional independence
assumption, indicating an interest in exploring the potential of
Naive Bayes in seismic event forecasting. This study suggests
that Naive Bayes, when adapted and optimized for seismic
data, could potentially contribute to earthquake forecasting
efforts.

In a broader context of seismic event discrimination,
a study by Elkhouly [128] employed multiple machine
learning techniques, including Naive Bayes, to distinguish
between nuclear explosions and natural earthquakes. While
the primary focus was on seismic discrimination, the
inclusion of Naive Bayes in the machine learning models
underscores its versatility and potential applicability in seis-
mic data analysis. This research highlights the adaptability of
Naive Bayes in complex seismic event classification tasks.

A study by Murwantara et al. [129] comparing machine
learning algorithms for earthquake forecasting in Indone-
sia evaluated Naive Bayes alongside other methods like
multinomial logistic regression and support vector machine.
The research aimed to assess the performance of these
algorithms in medium-to-long-term earthquake forecasting
using historical data, indicating the consideration of Naive
Bayes as a potential tool for seismic forecasting. This study
suggests that Naive Bayes can be part of a comprehensive
approach to earthquake forecasting when combined with
other predictive models.

B. ACCURACY COMPARISON
After applying machine learning and neural networks,
we calculated the accuracies of each model. These results,
along with their statistical significance, are presented in
Table 3. According to this table, eight models demonstrate
statistically significant accuracies: XGBoost, Random For-
est, LightGBM, Gradient Boosting Machines, Multilayer
Perceptron, Decision Trees, Support Vector Machines, and k-
Nearest Neighbors.

TABLE 3. Statistical significance of different models.

Baseline accuracy in machine learning models refers to the
minimum level of accuracy that a model should achieve to
be considered better than random guessing or a simplistic
approach. It serves as a reference point for evaluating the
performance of a model [130].

To assess the statistical significance of accuracy for
machine learning (ML) models using confidence interval
calculations, researchers can rely on established method-
ologies and techniques. Confidence intervals are crucial
in quantifying the uncertainty associated with estimated
parameter values derived from a sample [131].

1) BASELINE ACCURACY
The baseline accuracy is the accuracy achieved by always
predicting the most frequent class. In our dataset, the baseline
accuracy is:

Baseline Accuracy = 31.60% ≈ 0.3160 (72)

2) Z-SCORE CALCULATION
The Z-score for a 95% confidence interval is the value that
leaves 2.5% in each tail of the standard normal distribution.
This is found using the cumulative distribution function
(CDF):

Z = CDF−1(0.975) ≈ 1.96 (73)

3) CONFIDENCE INTERVAL CALCULATION
For a 95% confidence interval, we use the Z-score corre-
sponding to the desired confidence level (for 95%, Z ≈ 1.96).
The confidence interval (CI) is calculated as:

CI = p± Z × SE (74)

4) CRITICAL ACCURACY DETERMINATION
The critical accuracy, which is the upper bound of the
confidence interval, is given by:

Critical Accuracy = p+ Z × SE (75)
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5) RESULTS
Given our dataset:

p = 0.3160 (76)

n = (0.2 × Data Size) (77)

The 95% confidence interval for the baseline accuracy is:

CI ≈ (0.2576, 0.3745) (78)

Any model accuracy significantly above 37.45% would be
considered statistically significant compared to the baseline
accuracy at a 95% confidence level. The results are shown in
Fig 8.

FIGURE 8. Normal distribution with 95% confidence interval for baseline
accuracy.

VI. HIGHEST ACCURACY: XGBoost
Since the XGBoost ML Algorithm achieved the highest
accuracy and captured complex patterns in the earthquake
data better than other models, leading to higher forecasting
accuracy, we will continue our analysis with XGBoost.
XGBoost, which stands for Extreme Gradient Boosting,
is a machine learning algorithm known for its efficiency
and effectiveness across various domains. The algorithm
optimizes by boosting weak learners, typically decision trees,
into a strong learner through gradient descent optimization.
This process involves iteratively adding new models to
correct errors made by existing models [132].

Mathematically, XGBoost can be represented as an
optimization problem aiming to minimize the sum of the
loss function and a regularization term. This formulation
enables XGBoost to handle complex datasets efficiently
while preventing overfitting by penalizing overly complex
models [133]. XGBoost incorporates features from the
random forest algorithm, continuously reduces residuals to
decrease overfitting, uses standardized regularization terms
to mitigate overfitting, and allows for parallel calculations to
enhance forecast efficiency and precision [134].
Studies comparing XGBoost with other machine learning

algorithms have shown its superior forecasting performance,
especially in risk forecasting models, where it outperformed
random forest, support vector machine, and k-nearest neigh-
bor algorithms [135]. XGBoost has been successfully applied
in finance, accounting, business, and audit, demonstrating its
versatility and robustness [136].

XGBoost’s ability to handle imbalanced datasets effec-
tively makes it suitable for tasks like intrusion detection,
where data distribution is skewed [137]. Its perfor-
mance in handling complex datasets and providing
interpretable insights has proven valuable in healthcare
settings for forecasting complications and unplanned
readmissions [138].

In terms of optimization, XGBoost utilizes gradient boost-
ing to enhance its performance by iteratively minimizing the
loss function using gradient descent. This iterative process
allows XGBoost to construct a strong ensemble model from
weak learners, leading to highly accurate forecasts [132].

XGBoost’s efficiencywith large-scale datasets is attributed
to its implementation ofweighted quantile sketch for proposal
calculation, a sparsity-aware algorithm for parallel tree
learning, and a cache-aware block structure for out-of-core
tree learning. These features contribute to the algorithm’s
scalability and performance, enabling it to process massive
amounts of data efficiently [139].

A. MATHEMATICAL BACKGROUND OF XGBoost
XGBoost, short for eXtreme Gradient Boosting, is an
efficient and scalable implementation of gradient boosting
that leverages decision trees as base learners. The core idea
of gradient boosting is to build an ensemble of weak learners,
typically decision trees, in a sequential manner, where each
new tree attempts to correct the errors made by the previous
ones. The mathematical foundation of XGBoost involves the
following key components:

1) OBJECTIVE FUNCTION
The objective function in XGBoost consists of two parts: the
loss function and the regularization term. The loss function
measures how well the model fits the training data, while the
regularization term penalizes model complexity to prevent
overfitting. The objective function L for XGBoost can be
expressed as:

L(θ ) =

n∑
i=1

l(yi, ŷi) +

K∑
k=1

�(fk ) (79)

where l is the loss function (e.g., mean squared error for
regression, log loss for classification), ŷi is the predicted value
for the i-th instance,� is the regularization term, fk represents
the k-th decision tree, and K is the number of trees.

2) ADDITIVE TRAINING
XGBoost builds trees additively, meaning that new trees are
added to the model to correct the residuals (errors) of the
existing trees. At each step t , the prediction ŷ(t)i is updated
by adding the prediction from the new tree ft (xi):

ŷ(t)i = ŷ(t−1)
i + ft (xi) (80)

The new tree ft is trained to minimize the objective function.
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3) GRADIENT DESCENT AND TREE CONSTRUCTION
The trees in XGBoost are constructed using gradient descent
to optimize the objective function. For a given iteration t , the
objective function can be approximated using a second-order
Taylor expansion:

L(t)
≈

n∑
i=1

[
l(yi, ŷ

(t−1)
i ) + gift (xi) +

1
2
hif 2t (xi)

]
+ �(ft )

(81)

where gi = ∂ŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) and hi = ∂2

ŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) are

the first and second-order gradients of the loss function with
respect to the prediction. The regularization term for tree t
can be defined as:

�(ft ) = γT +
1
2
λ

T∑
j=1

w2
j (82)

where T is the number of leaves in the tree, wj is the weight
of leaf j, and γ and λ are regularization parameters.

4) SPLIT FINDING AND LEAF WEIGHT CALCULATION
To construct the tree, XGBoost evaluates all possible splits
for each feature and selects the split that maximizes the gain
in the objective function. The gain from a split j is calculated
as:

Gain(j)=
1
2

[
(GL + GR)2

HL + HR + λ
−

G2
L

HL + λ
−

G2
R

HR + λ

]
−γ (83)

whereGL andGR are the sums of the first-order gradients and
HL and HR are the sums of the second-order gradients for the
left and right child nodes, respectively.

Once the best split is found, the weights for the leaves are
updated to minimize the objective function:

wj = −
Gj

Hj + λ
(84)

where Gj and Hj are the sums of the first and second-order
gradients for leaf j.

5) REGULARIZATION AND PRUNING
XGBoost includes regularization terms to prevent overfitting.
The parameters γ and λ control the complexity of the model
by penalizing the number of leaves and the weights of the
leaves, respectively. XGBoost also performs tree pruning by
removing splits that do not improve the objective function
sufficiently, using a minimum loss reduction parameter.

B. GETTING THE HIGHEST ACCURACY SUBSET WITH THE
INFORMATION GAIN METHOD FOR XGBoost
As seen in Table 4, we calculated the Information Gain
(IG) values for each feature to assess their importance in
forecasting the earthquake class.

The Information Gain method is a fundamental tech-
nique used in machine learning algorithms to improve the
efficiency and accuracy of models by selecting the most

TABLE 4. Feature importance scores.

relevant features for training [140]. This method works by
assessing the information provided by each feature to the
model, thereby enhancing the model’s performance [141].
Metrics such as the Gini index and information gain are
calculated from the feature vector to construct decision trees
more effectively, resulting in improved classification and
forecasting outcomes [141]. Various studies have applied
the Information Gain method to optimize performance and
operational efficiency by reducing the number of features in
machine learning models [142].

The Information Gain method has been combined with
other techniques to enhance its effectiveness in different
applications. For example, the fusion of InformationGain and
Recursive Feature Elimination (IG-RFE) with Support Vector
Machines (SVM) has been suggested to enhance the stability
and performance of feature selection methods, particularly in
gene expression data analysis. This integration showcases the
versatility of the Information Gain method across different
domains and its contribution to optimizing machine learning
processes [143].
The Information Gain method has been utilized in studies

related to cybersecurity and malware detection. In the
assessment of features for identifying cyber-phishing attacks,
methods like ANOVA, X2̂, and Information Gain have been
employed to evaluate the relevance of different features in
detecting phishing attempts [144]. Similarly, in the realm of
Android malware detection, feature selection based on the
Genetic Algorithm combined with Information Gain has been
used to boost the accuracy and efficiency of machine learning
models in recognizing malicious software [142].
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The Information Gain method has been valuable in
addressing challenges such as overfitting and underfitting
in machine learning algorithms. By leveraging information-
theoretic insights, researchers have gained a new perspective
on algorithm capacity and performance issues, leading to the
development of more robust and generalizable models [145].
In machine learning, Information Gain (IG) is used to

measure the reduction in uncertainty or entropy when a
dataset is split based on a feature. It is a critical metric in
decision trees and ensemble methods like XGBoost, helping
to select the most informative features for building the model.

Entropy is a measure of the impurity or randomness in the
data. For a datasetDwith classesC1,C2, . . . ,Ck , the entropy
H (D) is defined as:

H (D) = −

k∑
i=1

p(Ci) log2 p(Ci) (85)

where p(Ci) is the proportion of examples in D that belong to
class Ci.
Information Gain measures the reduction in entropy after

the dataset is split based on a feature. For a feature A
with possible values {a1, a2, . . . , av}, the Information Gain
IG(D,A) is calculated as:

IG(D,A) = H (D) −

v∑
j=1

|Dj|
|D|

H (Dj) (86)

where: - H (D) is the entropy of the original dataset D. - Dj
is the subset of D where feature A has value aj. - |Dj| is
the number of examples in Dj. - |D| is the total number of
examples in D. - H (Dj) is the entropy of subset Dj.
We then built subsets of features based on their IG

values, starting with the most important feature and
incrementally adding one feature at a time. For each
subset, we trained an XGBoost model and evaluated its
accuracy.

The accuracy of the model was calculated for each subset
of features, and the results are documented in Table 5,
showing the feature set and the corresponding accuracy:

The highest accuracy of 0.650206 was achieved with
the 7 Variable Subset, as seen in Table 6.

C. GETTING THE HIGHEST ACCURACY SUBSET THROUGH
ITERATION OF ALL COMBINATIONS OF SUBSETS
For this part of the study, high-performance computing (HPC)
systems of Georgia Southern University were utilized. The
highest accuracy subset, determined using the Information
Gain method with XGBoost, was found to be 65% in
the previous section. We wondered if there is a subset
with a higher accuracy, which when trained with 80% of
the data, can forecast with a higher accuracy the 20%
test data. For this, we examined all the subsets of the
27 features.

Mathematically, the total number of possible subsets of n
features is given by the power set, which is 2n. Excluding the

TABLE 5. Accuracy results for incremental feature subsets with the
information gain method for XGBoost.

TABLE 6. Selected features for earthquake forecasting.

empty subset, the number of non-empty subsets is calculated
as:

n∑
r=1

(
n
r

)
= 2n − 1 (87)

where
(n
r

)
is the binomial coefficient representing the number

of ways to choose r features from n. With 27 features, the
total number of non-empty subsets is:

227 − 1 = 134, 217, 727 (88)

Given the large number of subsets, the tasks were
divided into 100 jobs on the Georgia Southern University’s
Talon servers to facilitate efficient computation. By iterating
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through all these possible combinations of feature subsets, the
subset yielding the highest accuracy was identified.

The subset of features yielding the highest accuracy, which
is 69.14% for forecasting the maximum class of earthquake
within a 30-day period, is shown in Table 7.

TABLE 7. Subset of features yielding the highest accuracy.

VII. CONCLUSION
In our study, we have analyzed numerous references
related to earthquake forecasting. Our research involved
the development of a predictive pattern matrix, integrating
machine learning algorithms and neural networks to forecast
earthquakes. By feature engineering 27 diverse predictive
features from historical earthquake records, we have achieved
an accuracy of 69.14% with 9 features for the Los Angeles
region. This result underscores the importance of combining
advanced computational techniques with thorough data
analysis, offering a promising direction for future research
and application in earthquake forecasting. Our ability to
correctly forecast the category of earthquakes across six
different categories within a 30-day period is significant. One
interesting aspect was that closeness to fault lines did not
play an important role in forecasting themaximummagnitude
class in the Los Angeles region. Achieving this level of
accuracy is crucial for improving disaster preparedness and
response strategies in Los Angeles, a region prone to seismic
activity. Our approach provides a comprehensive and precise
method for earthquake forecasting, contributing valuable
insights to the field of seismology.
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