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ABSTRACT Focusing on the challenges of vehicle detection in foggy weather, especially the algorithm
of low accuracy caused by small and incomplete targets in adverse weather conditions, a foggy weather
vehicle detection algorithm based on improved lightweight YOLOv8 was proposed. Firstly, the dataset was
processed through a combination of data transformation, Dehaze Formers and dark channel preprocessing.
Secondly, in the main body of YOLOv8, the C2f component was replaced with the dynamic convolution
C2f- DCN, enhancing its adaptability to geometric changes in the image. To further improve the detection
performance of the classifier, an improved S5attention module based on S2-MLP was introduced. This
module utilizes contextual information to capture long-range dependencies and assign weights to different
channels based on their relevance to the task at hand. By considering non-local features, the S5attention
module helps the model better capture important spatial relationships within the image. Additionally,
the feature extraction module was updated to FasterNext, improving the differential convolution’s feature
extraction capabilities. The Involution module was also introduced to reduce FLOPs during feature channel
fusion and reduce themodel’s parameter count. Experimental results show that on the RESIDE foggyweather
dataset, the improved algorithm has an mAP50 increase of 4.1% compared with the original algorithm, and
the model’s parameter quantity is only 9.06m, with a computational cost reduced from 28.7G to 28.1G. The
research model in this article will provide technical support for detecting vehicle targets in foggy weather,
ensuring fast and accurate operation.

INDEX TERMS Deep learning, foggy weather vehicle detection, YOLOv8, feature extraction.

I. INTRODUCTION
Complex weather condition is one of an important cause of
traffic accidents. Extreme weather conditions such as fog,
rain, and snow greatly reduce the visibility of roads and
make driving extremely dangerous. In these adverse weather
conditions, drivers often find it difficult to detect obstacles
and other vehicles in front of them in a timely manner,
resulting in collisions and traffic chaos. Solving traffic safety
issues in complex weather conditions is crucial, and timely
detection and prevention of vehicles and obstacles is of great
significance for maintaining traffic safety.

Vehicle detection technology in foggy weather mainly falls
into two categories: traditional object detection algorithms
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and object detection algorithms based on deep learning.
Traditional foggy road object detection methods can be
divided into two major approaches. One approach involves
a two-stage method where the first stage involves pre-
processing the image to remove fog, and the second stage
involves feeding the processed image into an object detection
model for detection. Li et al. [1] combined the PDR-Net
defogging network with Faster RCNN, significantly improv-
ing the network’s ability to understand image information,
especially under foggy conditions. However, this method
introduces artifacts in the processed image, which to some
extent affects the image quality and detection accuracy. The
other approach adopts a one-stage strategy that integrates
defogging and detection, such as Xiaomin et al. [2] proposed
end-to-end adaptive defogging generation network. Through
a clever two-stage mapping strategy, the defogging output
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of the primary network is used as input for the secondary
network, optimizing the defogging effect. Nonetheless, due
to its limited reliance on prior information and insufficient
utilization of scene depth information, the defogging effect
on distant targets is not satisfactory. In summary, defogging
algorithms still face issues such as loss of target information
and image blurring. Another category of deep learning-
based methods, through multiple layers of convolution and
pooling operations, can automatically learn patterns and
structures in images. With their high detection accuracy,
strong generalization performance, and other advantages,
algorithms can more accurately locate and recognize targets
in various complex backgrounds.

Numerous CNN-based object detection models have been
introduced recently, and they can be broadly categorized
into two types: one-stage and two-stage detectors. The two-
stage algorithms include R-CNN [3] and Faster-RCNN [4],
among others [5], [6]. These algorithms first identify
potential object regions and then classify them. However,
their two-stage nature can limit their efficiency in practical
applications. If it is directly used for road target detection,
it is difficult to meet the real-time requirements. In contrast,
one-stage object detectors directly produce localization and
classification from dense predictions derived from feature
maps. This approach offers superior speed and is well-
suited for scenarios with real-time requirements. One-stage
object detection algorithms include YOLO series algorithms
(you only look once) [7], [8], [9], [10], [11], [12], SSD
algorithms (Single Shot MultiBox Detector) [13], and so on.
In this context, numerous studies have been dedicated to
refining single-stage object detection algorithms, aiming to
enhance their practical utility and efficiency. For instance,
Gao et al. [14] improved the single-stage detection algorithm
for traffic sign detection based on SSD by incorporating depth
wise separable convolution to enhance feature extraction.
However, due to the SSD algorithm’s tendency to have a
high Intersection over Union (IOU) for small-sized objects
on lower-level feature maps, the algorithm performs poorly
in handling small-sized target. Xuan et al. [15] proposed a
target detection algorithm for traffic scenes under complex
meteorological conditions. They introduced DenseNet and
dilated convolution to improve the YOLOv3 structure, which
had a good detection effect on images taken under complex
meteorological conditions. However, because it used a dark
channel defogging algorithm to enhance the image, the
effect of image processing containing sky areas was poor,
this limits the algorithm’s generalization ability in various
complex scenarios. Wang et al. [16] artificially generated
fog images through an atmospheric scattering model and
the depth information of images to expand the sample size.
However, they did not take into account the differences that
exist in actual foggy scenes, which may adversely affect
the generalization performance of the model. Ze et al. [17]
proposed CSPDarkNet-53 as the backbone network for fea-
ture extraction from low-illuminance images. Additionally,

they introduced the Path Aggregation Enhancement Module
(PAEM) to further enhance the representation capability of
these features. This approach effectively addressed common
issues in low-illuminance images, such as low brightness,
excessive noise, and loss of detailed information. However,
this improvement also brought an increase in computational
complexity, which subsequently led to a decrease in detection
speed. Yin et al. [18] optimized the structure of YOLOv5
to address the issue of low recognition accuracy of traffic
annotations in haze weather and use the K-means clustering
algorithm to re-cluster the anchor boxes. They reduced the
depth of the feature pyramid and limited the maximum
down sampling ratio. However, a deeper feature pyramid
helps capture multi-scale information, and reducing its
depth may compromise the detection performance for small
targets. Kai et al. [19] combined the ideas of feature
separation and merging, introduced the SPPCSPC module,
and utilized coordinated attention from the efficient mobile
network design (CA) module to enhance the detection
capability of YOLOv7 in small target scenarios. Despite
significant progress made in enhancing target detection
performance under complex weather conditions, numerous
challenges and limitations remain. In particular, for small
object detection, current methods are constrained by envi-
ronmental disturbances and image blurriness, making it
difficult to accurately extract and detect features, resulting
in suboptimal detection outcomes. Moreover, inadequate
generalization of image enhancement techniques, a lack of
diversity in sample generation strategies, and the trade-off
between computational complexity and detection speed are
crucial factors limiting further improvements in detection
performance. Notably, while YOLO series algorithms excel
at detecting objects of all sizes, their performance for
specific-sized objects, particularly in complex scenarios
such as foggy weather, often lags behind dedicated small
object detection algorithms [20], [21]. Building upon this
foundation, this paper aims to explore and optimize the
detection capabilities of YOLO series algorithms for special-
sized objects under complex weather conditions, particularly
in foggy scenarios, by proposing an efficient and accurate
detection algorithm that provides robust technical support for
fields like intelligent transportation and autonomous driving.

This study introduces a road target detection algorithm
tailored for foggy weather, building upon an enhanced
YOLOv8 model. The advancements made in this algorithm
are manifested in the following steps:

1) We replaced the C2f layer in the backbone network
with the C2f-DCN module, which introduces a deformable
convolution kernel. By dynamically adjusting the shape and
position of the convolution kernel, it can more effectively
capture the features of objects with blurred contours and
uneven scales in foggy conditions.

2) The Involution module and FasterNet module are
applied to the feature extraction layer. The Involution module
utilizes its spatial specificity to extract spatial contextual
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FIGURE 1. Examples of raw image and data enhancement image.

information and adaptively assign weight files, thereby
improving the model’s ability to extract small targets and
blurred images. The FasterNet module adopts a partial convo-
lution (PConv) strategy, effectively reducing computational
complexity and memory access, and improving the network’s
inference speed and computational efficiency.

3) We propose an improved S5-attention module based
on S2-MLP. This module captures non-local features in the
image through clever spatial displacement operations by
fusing feature maps of different scales, better addressing the
challenges posed by occlusion and small objects.

This paper is divided into the following sections: Section II
introduces the selected dataset and the improved methodol-
ogy presented in this paper; Section III focuses on experimen-
tal results and comparative experiments; Section IV provides
conclusions as well as directions for subsequent work and
improvements.

II. MATERIALS AND METHODS
A. DATA COLLECTION AND PRETREATMENT
In this experiment, a new large-scale benchmark dataset
consisting of both synthetic and real-world blurred images,
referred to as RESIDE (Realistic Single Image Dehazing)
[22] was utilized. Considering the complexity of foggy
scenes, three advanced data augmentation methods involving
Transformer, Dehaze Formers, and Dark Channel are adopted
to prevent overfitting during training. These methods not
only help generate richer and more diverse training data
sets, but also significantly improve themodel’s generalization
ability. From this dataset, 16,000 foggy images were selected
and divided into training, testing, and validation sets in an
8:1:1 ratio. Additionally, data augmentation was performed
on 2,000 of these images, resulting in 6,000 augmented
images. These images primarily encompass fivemajor human
vehicle scene categories: Person, Car, Bus, Bicycle, and
Motorbike. Figure1 presents typical images before and after
data augmentation.

B. IMPROVED YOLOv8 MODEL
Real-time object detection has become a critical component
in numerous applications, including autonomous driving,

robotics, and unmanned aerial vehicles (UAVs). Among the
various object detection algorithms, the YOLO algorithm
stands out for its speed and accuracy. With the release of
the YOLOv8 version, the algorithm not only meets real-
time requirements but also achieves faster and more accurate
results compared to previous versions, while minimizing
computational complexity, parameter count, and model
complexity. This makes it suitable for targeted optimization
and modification of objects in autonomous driving scenarios.
The backbone network consists of Conv, C2f, and SPPF [23]
modules. The Conv module performs convolution, Batch
Normalization (BN) [24], and SILU activation function
operations on the input image. The C2f module introduces
modifications to the CSPLayer, incorporating a cross-stage
partial bottleneck with two convolutions that combines deep
features with contextual information, enhancing inference
speed and detection accuracy. The SPPF module is a spatial
pyramid pooling layer inspired by SPP, which addresses
redundant feature information ex-traction in convolutional
neural networks, enabling local and global feature fusion and
enriching feature information. In the head segment, a popular
decoupled head structure is implemented, which separates
the classification head from the detection head. Compared to
other algorithms, YOLOv8 is extremely friendly in practical
deployment, boasting high accuracy while consuming signif-
icantly fewer resources than the transformer [25] structure.
This makes it capable of running smoothly on various
hardware platforms. This optimized balance between high
performance and resource consumption makes YOLOv8 a
highly competitive object detection algorithm in practical
applications. However, the original YOLOv8 model demon-
strates less than ideal performance when dealing with small
objects. This phenomenon is primarily attributed to its task-
aligned assignment mechanism, which relies on the model’s
prediction score and Intersection over Union (IOU). Due
to the uneven distribution of large and small targets in
the dataset, the label assignment for positive and negative
samples is not accurate enough in the initial stages of model
training, which can adversely affect the convergence of
results. Secondly, slight changes in the position of small tar-
gets can cause fluctuations in IOU, affecting the localization
of these targets. To enhance the accuracy of vehicle detection
in foggy weather, an improved detection network model,
YOLOv8-DF, based on YOLOv8s is proposed. The network
structure of the algorithm model YOLOv8-DF presented
in this paper is depicted in Figure 2, which high-lights
three main improvements. To address the issue of small and
incomplete vehicle targets in complex weather conditions,
the cf2-DCN module is introduced, which incorporates
offset weights and positional information. To reduce the
number of parameters and enhance model lightweighting,
the involution model is introduced. The FasterNet module
strengthens information processing capabilities, accelerates
the fusion of network feature information, and improves
prediction accuracy. The S5Attention serves as a crucial
attention mechanism, strengthening the meticulous capture
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FIGURE 2. Structure diagram of the improved model of YOLOV8-DF.

of image details, simplifying the architecture, and boosting
computational efficiency.

C. DEFORMABLE CONVOLUTION
Due to the complexities of road scene targets, particularly in
foggy weather, there are small target sizes and incomplete
target information. The original YOLOv8 model exhibited
poor performance in detecting small targets after feature
extraction by the backbone network. To effectively handle
and represent multi-scale features and improve the modeling
ability for deformed targets, the C2f module was modified
to add Deformable Conv [26], [27] to correct the amplitude
of input features from different spatial locations. This subtly

design combines offset weights and positional information,
enabling the network to better adapt to objects of varying
scales and shapes. The module increased the target detection
size range of the YOLOv8 network and enhanced its
detection robustness in complex road backgrounds. Figure 3
demonstrates the sampling methods of regular convolution
and deformable convolution with kernel size of 3× 3. It can
be divided into two steps: (1) By adding a displacement to the
traditional convolution process, we predict the convolution
offset from the input feature map. (2) We set a penalty
term coefficient based on the convolution offset position to
prevent the convolution offset from exceeding a certain range
and optimize the sampling region. This coefficient not only
limits the range of convolution offset, but also helps optimize
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the sampling area, thereby improving the accuracy and
effectiveness of feature extraction. The calculation process
for the output feature map y at position P is as follows:

y(P) =
K∑
k=1

Wk ∗ x (P+ Pn +1Pn) ∗1mk (1)

Traditional convolution computes the output feature map by
performing a weighted sum over each point in the input
feature map, using the formula ppp. Here, each output point
y(p) is obtained by weighted summation of the input x at
position P+Pn with the convolution kernel Wk, aligning
with the center of the kernel. However, in Deformable
Convolution (DCONV), an offset Pn is introduced to enhance
the model’s geometric adaptability. This offset allows the
convolution kernel to sample at non-fixed positions on the
input feature map. To prevent unreasonable deformations
from negatively impacting the model’s ability to learn
image information, DCONV also incorporates a weighting
coefficient mk. This coefficient adjusts the effectiveness
of the sampling region determined by the offset, ensuring
that the model focuses on truly meaningful image areas
and thus improving the accuracy and efficiency of feature
extraction.

D. LIGHTWEIGHT BACKBONE NETWORK
In order to improve network inference speed and reduce
network parameters and computational cost, convolutional
modules are replaced in the backbone network with involu-
tion. Classical convolution ensures spatial invariance; i.e., the
sharing of information by the convolution kernel at different
locations, but its locality limits the high-level receptive field,
making feature extraction for small targets and blurry images
difficult. However, involution can extract feature information
from a broader spatial context and adaptively allocate weight
coefficients according to spatial differences, prioritizing the
most important information. Involution has fewer parameters
and reduces model complexity. Figure 4 shows the specific
process of involution.

For input and output feature maps, the input is denoted as
F ∈ RCin ×H×W and the output as Fout ∈RCout ×H×W. Where
Cin represents the number of channels in the input feature
map, Cout represents the number of channels in the output
feature map, and H,W correspond to the height and width of
the feature map, respectively. Given the channel specificity
of convolutional operations, the Cout groups of convolution
kernels can be represented as C ∈ RCin×Cout ×K×K, where
K denotes the size of the convolution kernel. After each
group of convolution kernels processes the input feature map,
it generates a corresponding output F ′c ∈ RH×W, where
c = 1, 2,Cin . Finally, all c are integrated to obtain the final
input feature map Fout ∈ RCout ×H×W .
Contrary to the design principle of traditional convolution,

Involution emphasizes spatial specificity when processing
input feature maps, meaning that different convolution
kernels are used in different spaces within the same group.

The process of generating the Involution kernel can be
represented as:

Ii,j = φ
(
Fi,j

)
= W1σ

(
W0Fi,j

)
(2)

In the formula, φ(•) is the generation function of the Involu-
tion kernel, which consists of,W0 ∈ R

c
c c
r ,W1 ∈ RK∗K∗G∗C/r ,

where (r) represents the scaling ratio; σ = Relu(BN (•)) is the
intermediate batch normalization (BN) and ReLU function.
By selecting a feature vector Fi,j ∈ R1×1×C from a certain
pixel on the input feature map (F), a new feature vector F ′i,j ∈
R1×1×C is obtained through φ (W0 − FBN − FRELU −W1).
This new feature vector is then reshaped to obtain the
Involution kernel for that pixel. Finally, the output feature
map Fout is obtained by multiplying and adding the feature
vectors of adjacent coordinates. When optimizing deep
learning networks, we often face the challenge of striking a
balance between reducing network parameters and memory
access. Although operators can effectively decrease the
number of parameters, they may increase memory access due
to additional data processing steps such as concatenation,
data rearrangement, and pooling, which are crucial for
enhancing network inference speed. Regarding the V8model,
we observed redundant computations in its network structure,
which not only increased floating point operations (FLOPs)
but also led to increased model processing latency. Model
latency can be described by the formula Latency = FLOPs

FLOPS .
Therefore, the improvement focuses on how to effectively
reduce FLOPs and increase floating point operations per
second (FLOPS) while maintaining accuracy, to achieve the
goal of reducing latency and improving overall computation
speed. Depthwise separable convolution [28] (DWConv)
significantly reduces redundant computations and FLOPs by
combining depthwise convolution and pointwise convolution.
However, it’s worth noting that since it only operates on
a single channel during the separated convolution stage,
ignoring the correlation between channels, directly replacing
regular convolution may lead to a decrease in model
accuracy. To compensate for this accuracy loss, the method
of increasing the number of DWConv channels from c to
c′ was adopted to improve model accuracy. Nevertheless,
this approach also increases the computational burden and
memory access cost accordingly. The memory access amount
of DWConv can be represented by formula (3), where h
and w represent the length and width of the feature map,
respectively, and c represents the number of channels.

h× w× 2c′ + k2 × c′ ≈ h× w× 2c′ (3)

The memory accesses for regular convolution are:

h × w× 2C + k2 × C ≈ h× w× 2C (4)

When c′ > c, the memory access amount of DWConv
will be higher than that of regular convolution. Therefore,
a new type of convolution module is needed to address
the efficiency deficiencies of both regular convolution and
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FIGURE 3. Convolution and deformable convolution process: a. Convolution, b. Deformable convolution
The blue arrow represents the displacement amount added to the sampling.

FIGURE 4. The specific process of involution.

DWConv, thereby improving detection speed. In the Faster-
Net [29] architecture, an improved method for traditional
convolution is adopted: only a portion of the input channels
undergo regular convolution for feature extraction, while the
remaining channels remain unchanged. Compared to regular
convolution, PConv (Partial Convolution) exhibits higher
efficiency because it only processes data from a subset of
channels. Specifically, when the partial ratio is set to 1/4 (i.e.,
r = cp/c = 1/4, where cp represents the number of affected
channels and c represents the total number of channels), only
1/4 of the channels undergo convolution calculations. This
optimization significantly reduces computational complexity,
making the computational complexity of PConv [30] only
1/16 that of regular convolution. The FasterNet module
consists of two PWCONV layers and one PCONV layer.
BN and RELU are added in the next two PWCONV layers
to accelerate model training and avoid gradient vanishing
problems, effectively reducing latency and maintaining
efficient flow of feature information. Its structure is shown
in the figure 5.

E. ENHANCED ATTENTION MODULE
During driving in foggy weather, due to the obstructed
line of sight, it is difficult to analyze using a single scale.
Highly discriminative features can improve the detection
performance of the classifier; however, traditional attention

FIGURE 5. Structure of FasterNet block.

modules only focus on spatial and channel dimensions,
neglecting the information provided by non-local features.
Therefore, multi-scale attention mechanism is applied to
driving scenarios. By fusing feature maps of different scales,
it is possible to better understand the distribution of obstacles
and road conditions around the vehicle. In order to utilize
contextual information, this module enhances feature extrac-
tion capabilities by introducing self-attention mechanism
and multilayer perceptron (MLP), Through clever spatial
displacement operations, enabling it to better capture non-
local features in the image. This paper proposes an improved
S5attention module based on S2-MLP [31], as shown in
Figure 6 of this article.
The spatial shift MLP module consists of 4 MLP layers

for channel mixing and one mixing patch for spatial shift,
as shown in Figure 7.
The input to the spatial-shift layer is a feature X of size

x ∗ h ∗ c. First, X is evenly divided into four parts along the
channel dimension. Then, for each part, a shift operation is
performed in four different directions. The formula (5)-(8)
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FIGURE 6. S5attention module.

FIGURE 7. Spatial shift MLP module.

represents this process as follows:

X
[
2 : h, :, 1 :

c
4

]
← X

[
1 : h− 1, : 1 :

c
4

]
(5)

X
[
1 : h− 1, :,

c
4
+ 1 : c/2

]
← X

[
2 : h, :, 1+

c
4
:
c
2

]
(6)

X
[
:, 2 : w,

c
2
: 3c/4

]
← X

[
: .1 : w− 1,

c
2
: 3c/4

]
(7)

X [:, 1 : w− 1, 3c/4 : c]← X
[
:, 2 : w,

3c
4
: c

]
(8)

The process is divided into four steps. Firstly, select the first
1/4 channels 1 : c

4 of the feature map X in the vertical
direction. Move the features in these channels up by one
pixel vertically, which means the data from the second row
to the h row is replaced by the data from the first row to
the h-1 throw. Then, similar operations are performed on the
remaining 1/4 channels, respectively, by shifting vertically
down, horizontally right, and horizontally left. Through these
precise spatial shift operations, we can effectively simulate
slight movements of objects in the image, thereby improving
the model’s robustness to spatial transformations.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. CONFIGURING THE PARAMETERS AND THE
EXPERIMENTAL SETUP
Windows 10 was used as the experimental operating system
in this study, and the deep learning models created were
frame worked using PyTorch. Table 1 contains particular
information on the experimental setup. Stochastic gradient

TABLE 1. Experimental environment configuration.

descent (SGD) was used to optimize the training phase.
It started with a learning rate of 0.01 and used a cosine
annealing hyperparameter of 0.1, a momentum factor of
0.937, and a weight decay coefficient of 0.0005. Training was
carried out over 300 epochs with a batch size of 16 and input
photos normalized to 640 × 640.

B. EVALUATION INDICATORS
The evaluation indicators chosen for this article include
parameters, floating-point operations per second (FLOPs),
accuracy, recall, mean average precision (mAP), and frames
per second (FPS). The corresponding calculation formulas
are as follows:

Precision =
TP

TP+ FP
(9)

Recall =
TP

TP+ FN
(10)
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AP@0.5=
1
N

n∑
i=1

Pi=
1
n
P1+

1
n
P2+. . .+

1
n
Pn (11)

mAP@0.5 : 0.95 =
1
C

C∑
K=1

AP@0.5K (12)

FPS =
Frames
Time

(13)

Among them, TP (True Positives) represents the bounding
boxes correctly detected by the model, FP (False Positives)
refers to the bounding boxes falsely detected by the model,
and FN (False Negatives) corresponds to the bounding boxes
missed by the model.

Precision is a crucial metric. A higher precision value
indicates a higher accuracy rate when the model predicts
a positive class, meaning the model’s prediction results are
more credible. Recall, on the other hand, measures the
model’s ability to identify all positive classes. Especially in
traffic driving, a low missed detection rate is particularly
critical as it directly relates to driving safety.

Additionally, AP (Average Precision), as a reflection of
object detection accuracy, provides us with the model’s
performance on a single category. When we need to evaluate
the comprehensive accuracy of the model for all object
recognition, mAP (mean Average Precision) becomes an
indispensablemetric. It is often used tomeasure the reliability
and overall performance of the model.

Meanwhile, Frames represents the number of frames
processed, and Time indicates the detection duration.
In autonomous or assisted driving scenarios, real-time
detection of road objects requires the model to have a
fast response capability to ensure safety and smoothness
during driving. Therefore, these metrics together form a
comprehensive framework for evaluating the performance
of object detection models, providing us with a basis for
assessing and improving models from different perspectives.

C. COMPARISON OF DETECTION PERFORMANCE
BETWEEN DIFFERENT MODELS
The Faster-RCNN, SSD, YOLOv3, YOLOX, RTMDET [21]
and DINO [32] were chosen for comparative trials to assess
the effectiveness of the enhanced algorithm suggested in this
research. With identical proportions maintained across the
training and test sets, these trials were carried out using the
same apparatus, dataset, and data augmentation techniques.
For testing purposes, the best results from the 200 repetitions
of the trials were selected. Table 2 provides comparison
information for parameters, recall rate, mAP, precision, and
flops.

According to Table 2, YOLOv8s outperforms Faster-
RCNN, SSD, YOLOv3, YOLOX, RTMDET and Dino.in
terms of accuracy, regression rate, and mAP. Compared to the
original YOLOv8s, the improved algorithm YOLO-DF has
slightly lower FPS but has a smaller number of parameters
and model size, and its accuracy is superior to the original
YOLOv8s algorithm.

TABLE 2. Contrast experiment.

TABLE 3. Ablation experiment results.

FIGURE 8. Heat map visualizations before and after adding S5attention.

D. ABLATION STUDY
An ablation study was conducted to confirm the efficacy of
the proposed improvement methods in this article, and the
results are summarized in Table 3. The ablation experiment
was divided into 6 groups, with each group maintaining
consistency in input images, training hyperparameters, etc.
Among them, C2f-DCN, S5attention, FasterNext and Involu-
tion(F/I)are the improved methods proposed in this article.

Table 3 reveals that the integration of lightweight models
FasterNex and Involution preserves accuracy and recall while
significantly reducing the model’s weight and improving
speed of reasoning, thereby advancing subsequent model
deployment. The addition of c2f-DCN increased the model’s
mAP from 76.9% to 78.9%, further improving accuracy from
95.4% to 97.1%. In contrast, the increase of the S5attention
module led to an increase in model parameters and a decrease
in network inference speed, but it resulted in a significant
increase in the mAP of the algorithm, with the mAP of the
test set increasing from 76.9% to 79.1%. Figure 8 provides
an intuitive comparison of some detection results before and
after adding the S5attention module through heat maps.
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Two common scenes from real roads are selected in
Figure 8. Image 1 displays a pedestrian crossing, while Image
2 depicts a traffic intersection with traffic lights. Prior to the
integration of the S5attention module, observable deficien-
cies and missed detections were noted in the model’s focus
areas. Specifically, the model’s recognition capability for
distant or partially obscured targets required improvement.
However, with the incorporation of the designed S5attention
module, the model’s comprehension of image information
has been significantly enhanced. This improvement has
enabled the model to better focus on and recognize target
information, thereby effectively boosting the overall recog-
nition accuracy and performance.

In this study, a comparative analysis was conducted
among seven network models, and it was found that
the final improved YOLOv8s showed the most superior
overall detection performance. Compared to the original
YOLOv8s network, the improved network showed significant
enhancements in p-value (2.1%) and mAP (4.1%). The
YOLOv8 loss includes classification loss (VFL loss) and
regression loss (CIOU loss + distribution focus loss (DFL)),
which are weighted by specific weight ratios. The formulas
for these losses are as follows:

VELp, q

=

{
−q(q(log (p)+ (1− q) log (1− p) q < 0
−αpγ loglog (1− p) q = 0

(14)

LCIoU = 1− IoU+
ρ2

(
b,bgt

)
c2

+ αv (15)

DFL (Si,Si+1)

= −
(
(yi+1 − y) logSi + log (S i+1

)
(y− yi) (16)

Among them, the Variant Focal Loss (VFL) is an improved
version of Focal Loss, designed to address the issue of class
imbalance. When the label q of a sample is less than 0,
it means the sample is categorized as a negative sample.
In this case, VFL adopts the standard binary cross-entropy
loss function to calculate the loss, ensuring that the model
does not overfit samples of non-target categories. When q
equals 0, it usually indicates that although the sample is
labeled as non-target, there may be some uncertainty or
ambiguity. A modified form is adopted to reduce the loss of
easily classified samples, allowing the model to focus more
on those that are difficult to classify or more informative.
IoU represents Intersection over Union, q stands for

the label, the center points of the bounding boxes are
denoted by b and bgt , ρ represents the Euclidean distance
between the two bounding boxes, c represents their diagonal
distance, v is used to measure the consistency of the
relative proportions between the bounding boxes, and α
is the weighting coefficient. Firstly, 1 − IoU gives the
loss component of overlap. The squared Euclidean distance
between the predicted and ground truth bounding box centers
is calculated and then divided by the squared length of the
diagonal of their minimum bounding rectangle, resulting

in the loss component for center point deviation, which is
adjusted by the weighting coefficient α.
Si =

(yi+1−y)
(yy+1−y)

, and Si+1 =
(y−yi)

(yy+1−yi)
correspond to

the prediction probabilities of yi and yi+1. DFL adjusts the
probabilities of the two prediction positions yi+1 and yi
closest to the true label y in a cross-entropy optimization
manner, forcing the network to focus on the positions near
the true label y. The Train/loss, precision and mAP curves of
the seven models are shown in Figure 9.
Figure 9.a show the decreasing trend of the loss function

value during the model training process, indicating that
the difference between the predicted and actual labels
is gradually narrowing, proving the effectiveness of the
improved model. Figure 9.b shows that the accuracy of the
improved model (ALL) has steadily increased, and compared
with other models, the improved model not only achieves
higher peak accuracy, but also experiences less fluctuation
during the training process. This performance indicates
that the improved model encounters less noise interference
during the backpropagation process, enabling it to more
effectively extract valuable information from the training
data, thus achieving higher prediction accuracy. Figure 9.c
shows the average precision (mAP) of the models involved
in this experiment across different categories, providing
a comprehensive evaluation of the overall performance
of the model across all target categories. Analyzing the
graphical data, it is observed that the improved model
(ALL) has a higher mAP value compared to the other seven
models, reflecting its higher accuracy and generalization
ability.

E. ALGORITHM VERIFICATION
The given text discusses a study that compares seven network
models and finds that the improved YOLOv8s has the
best overall detection performance. In comparison to the
original YOLOv8s, the improved network exhibits significant
improvements in p-value and map, and the improved network
manifests an enhancement in terms of p-value by 2.1% and an
increase in mAP by 4.1%. As shown in Figure 10, the results
of actual road target detection by the original model and the
improved model are presented.

The comparative experiments in Group A focused on the
performance of road object detection in foggy conditions.
As evidenced by the experimental results, the original model
erroneously identified background as a BUS in the left region,
whereas the improvedmodel avoided suchmisclassifications.
Group B’s testing scenarios involved the detection of multiple
objects with high overlap, where the enhanced algorithm
demonstrated superior target localization capabilities, ensur-
ing no missed detections. Furthermore, in Group C’s low-
visibility tests, even with blurred vehicle images and limited
information, the improved model still exhibited remarkable
accuracy in recognition. This demonstrates that the enhanced
YOLOv8-DF algorithm is capable of handling the challenges
of object recognition in complex weather scenarios.
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FIGURE 9. a. Training curve, b. Precision curve, c. mAP curve.

FIGURE 10. Comparison of road target detection results.

IV. CONCLUSION
In this paper, an efficient and lightweight YOLOv8-DF
network model is proposed for detecting and recognizing
traffic targets in foggy weather. By introducing the DCN
module and the Involution and FasterNex modules, the model

parameters and model size are reduced. A new attention
module named S5attention is designed to enhance the feature
fusion ability of the model. Additionally, a small target
detection layer is added to im-prove the accuracy of detecting
small targets, the boundary box regression performance of
the network model is improved. Compared with the original
network model, the improved YOLOv8-DF network model
has a higher accuracy and mAP, with an increase of 2.1%
and 4.1% respectively. Moreover, the model parameters and
model size are reduced by 0.6 G and 2.04 MB respectively
compared to the original network model. Future work will
continue to study and improve the network model based
on this model, to achieve higher detection accuracy while
maintaining fast detection speed. In addition, considering the
practical application value of this application direction in real
life, edge mobile platform transplantation verification and
improvement of the model will be carried out in the future
to make the model smaller and easier to deploy.
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