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ABSTRACT This study addresses the challenge of improving the accuracy and efficiency of lesion
segmentation in brain stroke Diffusion Weighted Images (DWI), with a particular focus on the issue of
class imbalance. Traditional clustering algorithms often fail to effectively segment brain stroke lesions due
to the significantly smaller area of lesion regions compared to other brain tissues and background areas.
To overcome this, we propose an Interclass Balance Factor-based Membership Fusion Semi-supervised
Fuzzy Clustering Algorithm (ICBF-MFSFCM). This novel algorithm introduces an interclass balance factor
to enhance the precision and consistency of clustering outcomes by better representing minority classes.
The method was validated on actual brain DWI image datasets, demonstrating its superiority and reliability
in improving lesion segmentation accuracy. The experimental results show that ICBF-MFSFCM outper-
forms traditional clustering algorithms in terms of Dice Coefficient (DSC), Intersection over Union (IoU),
F1-score, and Surface Dice Similarity Coefficient (SDSC). These improvements offer a more efficient
approach for the preliminary detection and treatment of cerebral stroke, contributing to better clinical
outcomes for patients.

INDEX TERMS Medical image segmentation, interclass balance, semi-supervised clustering, interclass
balance factor, membership fusion mechanism.

I. INTRODUCTION
High-quality medical image segmentation plays a pivotal role
in identifying and managing brain stroke. It can enhance
the accuracy of diagnoses, especially through automated
segmentation methods such as decision tree classifiers and
deep learning models. These technologies aid in more accu-
rately determining lesion areas, facilitating early detection
and effective treatment of brain stroke [1].Moreover, accurate
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image segmentation helps physicians better understand the
nature and extent of lesions, enabling them to develop more
effective treatment plans and expedite the decision-making
process, especially in cases of acute stroke [2].
However, medical image segmentation faces challenges

and limitations in processing Diffusion Weighted Images
(DWI) and segmenting brain stroke lesions. For example,
the quality of DWI images and the diversity of lesions can
impact segmentation accuracy. The complexity of lesion
shapes, sizes, and boundaries are major difficulties [3]. Fur-
thermore, although existing segmentation methods, such as
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deep learning models, are effective, their design and training
processes can be quite complex, requiring extensive data
and computational resources. Moreover, for complex cases,
these automated methods still necessitate the knowledge and
experience of professional physicians to interpret and validate
segmentation results [4], [5], [6], [7], [8]. Overall, despite
the critical role of high-quality medical image segmentation
in diagnosing and treating brain stroke, it still faces chal-
lenges regarding image quality, algorithm complexity, and
dependence on professional expertise. Therefore, continuous
technological innovation and the integration of professional
knowledge are key to optimizing this field [9], [10], [11],
[12], [13].

Semi-supervised fuzzy clustering algorithms have shown
significant potential in the field of medical image seg-
mentation, especially in handling complex images with
uncertainties and noise. The key advantage of this approach
lies in its combination of the flexibility of fuzzy cluster-
ing with the data efficiency of semi-supervised learning.
For instance, the seed-based FCM algorithm proposed by
Santos et al. utilizes information provided by doctors as con-
straints to enhance the determinacy of grouping, effectively
improving the detection and segmentation of regions of inter-
est in medical images [14].Miao et al. developed an improved
FCM algorithm that incorporates adaptive dictionary learning
to reduce noise and enhance segmentation precision [15].
Moreover, the research by Chen et al. achieved efficient
semi-supervised segmentation by combining unsupervised
and semi-supervised learning strategies, using deep learn-
ing neural networks [16]. Semi-supervised fuzzy clustering
methods can also overcome some limitations of traditional
methods, such as improving robustness to noise and image
heterogeneity. The application of this method in medical
image segmentation, as demonstrated by Dubey et al., can
effectively handle the uncertainties and fuzziness inMR brain
images while maintaining high accuracy [17]. Tuan et al.
research further extended this approach by using dynamic
semi-supervised clustering, utilizing different predefined
membership matrices to adapt to the unique structures of
each image [18]. Studies by Le Son et al. and Kumar et al.
have shown that this method enhances the efficiency and
accuracy of segmentation, reducing dependence on extensive
annotated data [19], [20].
Overall, semi-supervised fuzzy clustering methods,

by integrating various techniques and strategies, bring new
possibilities to the field of medical image segmentation. This
approach not only improves the precision and robustness of
segmentation but also reduces reliance on annotated data,
making it an effective tool for handling complex medical
images. These studies indicate that semi-supervised fuzzy
clustering will play an increasingly significant role in future
medical image processing, especially in situations of data
scarcity and poor image quality.

The aim of this study is to enhance the precision and effi-
ciency of brain stroke DWI image segmentation by proposing
and evaluating a suitable semi-supervised fuzzy clustering

approach. We expect this method to better handle the issue
of class imbalance in images, providing more accurate
lesion identification and, thus, more reliable information for
the diagnosis and treatment of brain stroke. Through this
research, we hope to offer a more effective tool for the early
diagnosis and treatment of brain stroke, ultimately improving
clinical outcomes for patients.

In segmenting brain stroke DWI images, we have found
that traditional semi-supervised clustering often performs
poorly in brain stroke lesion segmentation tasks [21], [22],
[23], [24]. The reason lies in the significantly smaller area
of brain stroke lesion regions compared to other brain tissue
and background areas at many times, leading to severe class
imbalance issues in clustering. In the field of distance-based
clustering, addressing class imbalance remains a complex
challenge. Traditional clustering methods such as K-means,
Fuzzy C-means and hierarchical clustering often fail to repre-
sent minority classes accurately due to their relatively smaller
size. This results in a skewed clustering process that tends
to favor larger classes, thereby overlooking the distinct char-
acteristics of smaller groups. Various strategies have been
developed to tackle this imbalance, as shown Table 1, in each
with its own set of advantages and limitations.

TABLE 1. The comparison table for methods dealing with class imbalance
in distance-based clustering.

Resampling techniques, such as the Synthetic Minority
Over-sampling Technique (SMOTE) [25], adjust the class
distribution by oversampling minority classes or undersam-
pling majority classes. While effective in balancing the
dataset and enhancing the fairness of the clustering process,
these techniques can lead to overfitting or significant data
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loss, depending on whether oversampling or undersampling
is used.

Another approach is modifying distance metrics within
algorithms like Weighted K-Means [26], where data points
are assigned weights based on their class size to amplify the
influence of minority classes during the clustering process.
This method integrates smoothly into existing algorithms
and improves the representation of smaller classes. How-
ever, it requires careful calibration of weights, which can
complicate the clustering process and increase computational
overhead.

Ensemble methods, such as Cluster Ensembles [27], com-
bine multiple clustering outputs to achieve a more stable
and accurate outcome. These methods are beneficial as they
capture multiple facets of the data structure, offering a com-
prehensive view that mitigates biases inherent in single-run
models. Despite their robustness, they are computationally
intensive and their effectiveness largely depends on the qual-
ity of individual clustering results.

Density-based methods like Density-Based Spatial Clus-
tering ofApplicationswithNoise (DBSCAN) [28] andOrder-
ing Points To Identify the Clustering Structure (OPTICS)
[29] excel in handling clusters of varying densities and are
less affected by class sizes. These methods are particularly
adept at identifying outliers and noise, crucial for datasets
with diverse class distributions. However, their effectiveness
is contingent on precise parameter settings and they often
struggle with high-dimensional data.

The Constrained K-Means algorithm [31], which incorpo-
rates prior knowledge through constraints like must-link or
cannot-link, enhances clustering accuracy and interpretabil-
ity. It ensures the clustering adheres to known relationships
within the data. Nevertheless, this method depends on the
availability of prior knowledge andmay lack flexibility due to
its constraints. The Semi-supervised Fuzzy C-means (SFCM)
algorithm, which also utilizes prior knowledge, has similar
drawbacks [30].

Inspired bymethods that modify distancemetrics and those
using prior knowledge, this paper proposes an Inter-Class
Balance Factor Membership Fusion Semi-Supervised Fuzzy
Clustering Algorithm (ICBF-MFSFCM). On one hand, this
study introduces an inter-class balance factor, where weights
can be adjusted based on the distribution of categories
within the dataset, thereby modifying the clustering distance
metric. Through this approach, the algorithm can amplify
the influence of smaller categories to accommodate var-
ious data distributions. In clustering algorithms, minority
classes are often overshadowed bymajority classes. By incor-
porating an inter-class balance factor, the algorithm more
effectively captures the characteristics of these minority
classes, thus enhancing the overall segmentation capabil-
ity of the algorithm. On the other hand, the proposed
algorithm employs a semi-supervised framework similar to
the Semi-supervised Fuzzy C-Means (SFCM) [30] algorithm,
integrating prior knowledge from labeled data to improve
the accuracy and interpretability of clustering. Furthermore,

this framework includes a membership fusion mechanism
introduced by Zhang et al. [32] to ensure stable guidance of
prior knowledge in clustering. These methods enhance the
fairness of the algorithm towards all categories, ensuring that
the algorithm does not favor larger categories but considers
all categories equally.

Contributions of this paper: This paper presents an
Inter-Class Balance Factor Membership Fusion Semi-
Supervised Fuzzy Clustering Algorithm (ICBF-MFSFCM)
that effectively addresses the issue of category imbalance.
Compared to other distance-based clustering algorithms,
it achieves superior and more stable performance in the task
of cerebral infarction lesion segmentation in brain images.
The effectiveness of the proposed ICBF-MFSFCM algorithm
is validated through experiments conducted on a real-world
brain image dataset.

II. RELATED WORK
A. FUZZY C-MEANS
The Fuzzy C-Means (FCM) algorithm is a clustering method
proposed by J.C. Dunn in 1973 and further developed
by J.C. Bezdek in 1981. It is an extension of the traditional
k-means algorithm, designed to allow one piece of data to
belong to two or more clusters. This method is particu-
larly useful in the fields of pattern recognition and machine
learning for handling datasets with overlapping or unclear
boundaries between clusters [33].

The FCM algorithm classifies data by assigning member-
ship levels between 0 and 1 to each data point for each cluster,
indicating the degree to which each data point belongs to each
cluster. Unlike k-means, where data strictly belong to one
cluster, in FCM, data points can belong to multiple clusters
with varying degrees of membership, reflecting the fuzzy
nature of the classification.

The objective function of FCM is defined as:

Jm =

N∑
i=1

C∑
j=1

umij |xi − cj|2 (1)

where N is the number of data points, C is the number
of clusters, xi is the ith data point, cj is the center of the
ith cluster, uij is the membership degree of xi in the cluster j,
m is the fuzziness index (m > 1), and |xi−cj| is the Euclidean
distance between xi and cj.

The FCM algorithm follows an iterative optimization pro-
cess to minimize the objective function Jm, which balances
the distance of data points from the cluster centers with the
degree of their membership in the clusters. The steps are as
follows:
(1) Initialization: Choose the number of clusters C and

initialize the cluster centers randomly.
(2) MembershipUpdate: For each data point and each clus-

ter center, update themembership uij using the formula:

uij =
1∑C

k=1

(
|xi−cj|
|xi−ck |

) 2
m−1

(2)
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(3) Cluster Centers Update: Update the cluster centers cj
for each cluster using the formula:

cj =

∑N
i=1 u

m
ij xi∑N

i=1 u
m
ij

(3)

(4) Repeat: Repeat steps 2 and 3 until the changes in uij
or cj between two consecutive iterations are below
a certain threshold, indicating that the algorithm has
converged.

The choice of the fuzziness index m influences the level
of cluster fuzziness; larger values result in fuzzier clusters.
The FCM algorithm is widely used for its flexibility and
effectiveness in producing soft clustering results, making it
applicable to a variety of complex real-world problems.

B. SEMI-SUPERVISED FUZZY C-MEANS
The Semi-supervised Fuzzy C-Means (SFCM) algorithm,
an advanced version of the traditional Fuzzy C-Means
approach, integrates a portion of labeled data into the clus-
tering mechanism. This method, pioneered by Pedrycz, seeks
to improve clustering outcomes by leveraging both labeled
and unlabeled data, offering a more nuanced analysis of data
groupings [30].SFCM stands out by utilizing labeled data to
influence the clustering of unlabeled data, thereby enhancing
the algorithm’s ability to discern the true structure of the
dataset. This approach merges the exploratory nature of unsu-
pervised learning with the directional guidance of supervised
learning, aiming for more accurate and meaningful clusters.

The objective function of SFCM aims to balance the tra-
ditional fuzzy clustering criteria with a correction term that
accounts for the discrepancy between the computed mem-
berships and the true labels of the labeled data. The revised
objective function is given by:

Js =

c∑
i=1

n∑
j=1

umij d
2
ij + α

c∑
i=1

n∑
j=1

(
uij − fijbj

)m d2ij (4)

In this formula: c indicates the number of clusters, n the
total number of points in the dataset, uij the membership
degree of the jth data point to the ith cluster, dij the distance
between the jth data point and the centroid of the ith cluster,
m represents the fuzziness index, α is a parameter balancing
supervised and unsupervised contributions, fij denotes the
true membership of labeled data, bj is a binary flag indicating
whether a data point is labeled.

Optimizing the SFCM involves a cyclic process aimed at
minimizing the objective function Js through the following
steps:
(1) Membership Adjustment: The algorithm recalculates

the membership degrees uij for each data point by
considering both their distance to cluster centroids and
the labels of the labeled data.

(2) Centroid Recalculation: It updates the cluster centroids
based on these new membership degrees, ensuring that
each cluster center is pulled towards the points most

strongly associated with it, while also respecting the
influence of labeled samples.

This iterative process repeats until the adjustments to the
objective function across iterations become negligible, signi-
fying that the algorithm has stabilized and found an optimal
clustering configuration. SFCM’s strategy of incorporating
labeled data into fuzzy clustering presents a sophisticated
technique for improving cluster analysis. By melding the
insights from labeled examples with the broader dataset,
it achieves a more informed and accurate partitioning of
the data, demonstrating the power of combining supervised
insights with unsupervised learning methods.

III. INTERCLASS BALANCE FACTOR BASED MEMBERSHIP
FUSION SEMI-SUPERVISED FUZZY C-MEANS
Within this part of the text, we propose an innovative objec-
tive function for fuzzy clustering incorporating an interclass
balance factor relying on a mechanism for fusing member-
ships and derive an algorithm to minimize this objective
function.

J = (1 − η)

C∑
i=1

σi

N∑
j=1

umij d
2
ij

+ ηα

C∑
i=1

N∑
j=1

bj
(∣∣uij − fij

∣∣m + umij
)
d2ij (5)

This function (5) consists of two main parts:
(1) Unlabeled data loss: (1 − η)

∑C
i=1 σi

∑N
j=1 u

m
ij d

2
ij ,

involving unlabeled data, where σi is the interclass
balance factor, and m is the fuzzifier.

(2) Labeled data loss: ηα
∑C

i=1
∑N

j=1 bj
(∣∣uij − fij

∣∣m + umij
)

d2ij , involving labeled data, where η is the supervision
rate, α is an adaptive parameter, bj is a Boolean value
representing whether there is a label at j, fij is the
supervisory information, such as the real label of the jth
pixel on class i or the given knownmembership degree,
and

(∣∣uij − fij
∣∣m + umij

)
is a membership fusion term,

adopting the membership fusion mechanism proposed
by Zhang in 2023 [32], aimed at achieving more stable
clustering effects through the more stable influence
of labeled data. The presence of umij in the supervi-
sory term keeps it consistent with the unsupervised
term, making it more intuitive and computationally
convenient, where m serves the same function as in the
standard FCM formula.

In the pursuit of achieving balance among different cate-
gories in unlabeled data, this study introduces an inter-class
balance factor, σ . This innovative measure aims to intuitively
manage the varying degrees of influence each category has
on the processing of unlabeled data. By adjusting the contri-
butions of different categories, σ is designed to coordinate
their impact, ensuring that no single category disproportion-
ately affects the model’s learning process from unlabeled
data. Traditional fuzzy clustering algorithms encounter an
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issue when the desired segmentation results involve large
differences in category sizes: smaller categories, due to their
fewer numbers, can tolerate higher values of umij d

2
ij , meaning

the objective function does not sufficiently constrain their
membership degrees. This often leads to the misclustering
of members of smaller categories. Due to the character-
istics of its objective function, traditional fuzzy clustering
tends to cluster data into categories of similar sizes. There-
fore, these smaller categories end up being classified into
larger, semantically meaningless categories where they do
not belong. This can be acceptable when the goal of cluster-
ing is to uncover hidden commonalities or patterns among
data, but when clustering serves as a means for medical
image segmentation, where the characteristics of the cat-
egories are known and the goal is to segment based on
these features, the emergence of large but semantically void
categories is undesirable and should be avoided. In tra-
ditional unsupervised clustering, it is difficult to directly
introduce a factor to regulate category balance, as the order
of the categories during the clustering process is random and
unknown. Conversely, as this algorithm incorporates prior
knowledge through

∣∣uij − fij
∣∣m, the order of categories is no

longer random but known before clustering, thus the resulting
category semantics often align with expectations. There-
fore, introducing the inter-class balance factor σ becomes a
viable solution. Furthermore, this paper discusses the sce-
nario of overall data category imbalance, assuming that the
supervisory information between categories is balanced. This
assumption is plausible because, unlike the overall data with
category imbalance, balanced supervisory information is not
difficult to obtain in clinical applications of image segmen-
tation. Therefore, σ is introduced only in the unsupervised
term to address the category imbalance in the overall data,
resulting in (1 − η)

∑C
i=1 σi

∑N
j=1 u

m
ij d

2
ij , without the need to

introduce it into the supervision term corresponding to the
labeled information.

Figure 1 and Figure 2 illustrate the effect of σ whenm = 2.
In these figures, when either σ , membership, or distance
is small, the individual unsupervised item is smaller; when
membership or distance is 0, the individual unsupervised item

FIGURE 1. The value of σi u2
ij d

2
ij and its relationship with the quantity of

variables in a three-dimensional scatter plot.

FIGURE 2. The influence of σ and ud on the value of σi u2
ij d

2
ij .

is minimized; and when all three values are large, it is larger.
Therefore, when it is necessary for smaller categories not to
be ignored, setting a larger σ for that category makes the
objective function more sensitive to umij d

2
ij for that category,

encouraging smaller umij d
2
ij values, and vice versa. The intro-

duction of the interclass balance factor σ aims to enable the
algorithm to not only adapt to diverse datasets but also to
perform better when dealing with issues of class imbalance
and data sparsity.

To strategically balance the influence of labeled and unla-
beled data within our model, we introduce the supervision
rate η. The larger the value of η, the greater the weight
of the supervision term, and the greater the influence of
prior knowledge from labeled data on the clustering results.
This approach aims to optimize the model’s performance
by carefully calibrating the weight given to each data type.
We further innovate with the adaptive parameter α, which,
akin to η, fine-tunes the labeled data’s overall impact on our
algorithm. Unlike η, which requires empirical determination
and manual adjustment, α dynamically adjusts based on the
formula α =

N
L . Therefore, this adjustment is contingent

upon the proportional dimensions of the labeled and unla-
beled pattern collections, aligning the influence of labeled
pixels with their proportion in the dataset to ensure they are
adequately considered.

bj =

{
1 if pattern xj is labeled
0 otherwise

(6)

In defining the presence of labels within our dataset,
we employ a binary vector b =

[
bj
]
j=1,2,···,n where the

value of bj is obtained from formula (6). This methodological
choice serves to clearly demarcate labeled from unlabeled
patterns, facilitating more precise algorithmic adjustments.
The degree of membership for labeled samples is encap-
sulated in a matrix F =

[
fij
]
i=1,2,···,c,j=1,2,···,n designed

to quantitatively represent the affiliation of each sample to
the identified classes. This matrix is pivotal in refining our
model’s classification accuracy by providing a structured
framework to assess the certainty of each label association.
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An iterative algorithm to minimize (5) can be developed
through the assessment of centroids and memberships that
meet the zero-gradient criterion. By applying Lagrange mul-
tipliers to uphold the conditions set in

∑c
i=1 uij = 1, the

Lagrangian function L (u, v, λ) is obtained, as shown in
equation (7).

L (u,v,λ) = (1 − η)

C∑
i=1

σi

N∑
j=1

umij d
2
ij

+ ηα

C∑
i=1

N∑
j=1

bj
(∣∣uij − fij

∣∣m + umij
)
d2ij

+

N∑
j=1

λj

(
1 −

C∑
i=1

uij

)
(7)

λ =
[
λj
]
j=1,2,··· ,n is a Lagrange multiplier used to enforce the

constraint that the sum of membership degrees for each data
point across all clusters equals one. This constraint ensures
that each data point is fully assigned to the clusters, thereby
maintaining the integrity of the clustering process.

Computing the partial derivative of (7) concerning uij,
we obtain

∂L (u,v, λ)

∂uij
= m (1 − η) σid2iju

m−1
ij

+ mηαbjd2ij
(∣∣uij − fij

∣∣m−1
+ um−1

ij

)
− λj

(8)

Setting the partial derivative to zero, with m = 2, we have
an explicit formula

uij =
2ηαbjd2ij fij + λj

2
[
(1 − η) σi + 2ηαbj

]
d2ij

(9)

To solve for λj, using the constraint equation
∑c

i=1 uij = 1,
we get

C∑
i=1

2ηαbjd2ij fij + λj

2
[
(1 − η) σi + 2ηαbj

]
d2ij

= 1 (10)

Expressing λj, we find

λj = 2×
1 −

∑C
i=1

ηαbjfij
(1−η)σi+2ηαbj∑C

i=1
1

[(1−η)σi+2ηαbj]d2ij

(11)

Combining equations (9) and (11), we derive the necessary
conditions for uij at the local minimum of the objective
function

uij =

ηαbjd2ij fij +
1−
∑C

i=1
ηαbjfij

(1−η)σi+2ηαbj∑C
i=1

1

[(1−η)σi+2ηαbj]d2ij[
(1 − η) σi + 2ηαbj

]
d2ij

(12)

The presence of the parameter m in the supervision term
simplifies the iterative formula for uij into a concise expres-
sion. Utilizing other exponential forms would result in a more

complex equation. When η = 0 and σ = [1, 1, . . . , 1],
(12) corresponds to the formula for determining membership
values in standard FCM; when σ = [1, 1, . . . , 1], then (12)
corresponds to the equation for computing membership val-
ues in MFM-SFCM [32]. Similar to the SFCM algorithm,
for any value of m other than 2, the optimization conditions
require additional computational work. This is because uij
and the Lagrange multipliers are now connected in the form
of polynomial equations, the solutions of which need to be
computed numerically. Whenm ̸= 2, an alternative approach
is to reconstruct the equations incorporating m according to
formula (12). This paper focuses solely on the case where
m = 2.
For the iterative formula regarding cluster centers vi, taking

the partial derivative of the objective function (5) with respect
to vi, we obtain

∂L (u,v, λ)

∂vi
= 2 (1 − η) σi

N∑
j=1

umij
(
vi − xj

)
+ 2ηα

N∑
j=1

bj
(∣∣uij − fij

∣∣m + umij
) (
vi − xj

)
(13)

Setting the partial derivative to zero yields

vi =

(1 − η) σi6
N
j=1u

m
ij xj+ηα6N

j=1bj
(∣∣uij − fij

∣∣m + umij
)
xj

(1 − η) σi6
N
j=1u

m
ij+ηα6N

j=1bj
(∣∣uij − fij

∣∣m + umij
)
(14)

The iteration of these necessary conditions forms an
algorithm to minimize the ICBF-MFSFCM objective func-
tion. Steps include:
(1) Obtain an initial estimate for centroids vi.
(2) Calculate the membership using (12).
(3) Calculate centroids using (14).
(4) Return to step 2 and continue the process until conver-

gence is achieved.
To prove that the calculations in step 2 of the

ICBF-MFSFCM algorithm will definitely reduce the value
of the objective function labeled as (5), it is only necessary
to prove that the Hessian matrix concerning u1j, . . . , uCj for
each pixel j is positive definite. This C × C matrix will be
diagonal, with diagonal elements pi satisfying

pi = m (1 − η) σid2ij (m− 1) um−2
ij

+ mηαbjd2ij
{
(m− 1)

[
sign

(
uij − fij

)
·
∣∣uij − fij

∣∣m−2
]

+ (m− 1) um−2
ij

}
(15)

By substituting (12) into uij and since |xj − vi| > 0, each pi is
strictly positive, thus the Hessian matrix is positive definite.

Similarly, to prove that the calculations in step 3 of the
ICBF-MFSFCM algorithm will definitely reduce the value
of the objective function labeled as (5), it is only necessary
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to prove that the Hessian matrix concerning v1, . . . , vC is
positive definite. This C × C matrix will assume a diagonal
form, where the diagonal entries qi satisfying

qi = 2 (1 − η) σi

N∑
j=1

umij+2ηα

N∑
j=1

bj
(∣∣uij − fij

∣∣m + umij
)
(16)

By substituting (14) into uij and since |xj − vi| > 0,∣∣uij − fij
∣∣ > 0, each qi is strictly positive, thus the Hessian

matrix is positive definite. In summary, it can be guaranteed
that the ICBF-MFSFCM algorithm’s objective function will
gradually diminish progressively with every cycle of the
algorithm.

Correctly selecting the σ parameter is crucial for achiev-
ing peak or nearly peak performance. The suitable σ value
varies according to the image subject to clustering. From (5)
and (12), it is apparent that this value is contingent upon
the image’s luminosity and the changes in intensity levels in
relation to the centroids of each category. The appropriate
σ and η values will be investigated through experimental
studies in the experimental section of this paper.

IV. RESULT AND DISCUSSION
To verify capability of ICBF-MFSFCM in managing
clustering operations, we evaluated the ICBF-MFSFCM
algorithm using authentic DWI images supplied by a hos-
pital. First, we describe the experimental setup and dataset.
Then, we explore the selection of different parameters.
Finally, we compare the clustering performance of the
ICBF-MFSFCM algorithm with that of five other algorithms.

A. EXPERIMENTAL ENVIRONMENT
Unless otherwise specified, all experiments were conducted
on a PC equipped with an Intel Core i7- 12800HX CPU at
4.80GHz, and Python 3.7 was the programming environment
used.

B. EVALUATION METRICS
In our experiments, five evaluation metrics were used to
assess the performance of all algorithms: Intersection over
Union (IoU), Dice Coefficient (DSC), Surface DSC (SDSC),
Precision, and Recall [34], [35]. They are used to measure
the overlap extent between the segmentation outcomes and
the gold standard, thereby quantitatively evaluating the seg-
mentation effect.

The definition of IoU:

IoU =
|A ∩ B|

|A ∪ B|
(17)

The definition of DSC is as follows:

DSC =
2|A ∩ B|

|A| + |B|
(18)

wherein, A and B denote the pixel sets of the segmentation
result and the baseline truth labels, respectively, |A| and |B|

denote the size of these sets.

The Surface Dice Similarity Coefficient (Surface-DSC)
is an indicator for evaluating the quality of image seg-
mentation, with a particular emphasis on the similarity
between segmentation surfaces. It assesses the performance
of image segmentation algorithms by quantifying the con-
sistency between the segmented surface and the true surface.
Surface-DSC is especially suitable for those application sce-
narios that require high precision of segmentation surfaces,
such as medical image segmentation, where accurate surface
details are crucial for subsequent analysis and applications.
The calculation of Surface-DSC is based on the traditional
DSC, which measures the similarity between two samples by
comparing their overlap. Unlike DSC, Surface-DSC focuses
more on the overlap and consistency of surfaces rather than
just the overall volume or area overlap. The calculation for-
mula for SDSC is as follows:

Surface − DSC =
2 ×

∣∣Sp∩Sr ∣∣∣∣Sp∣∣+ |Sr |
(19)

wherein: Sp represents the set of points on the predicted
segmentation surface, Sr represents the set of points on the
real segmentation surface,

∣∣Sp ∩ Sr
∣∣ denotes the number of

points matching or overlapping between the predicted and
real surfaces, and Sp and Sr are the total number of points
on the predicted and real surfaces, respectively. In practical
applications, the point sets of surfaces can be defined by
extracting points on the segmentation boundaries or by using
specific algorithms to approximate the surface. Calculating
the intersection between Sp and Sr typically requires defining
a distance threshold to determine whether points on the two
surfaces are sufficiently close to be considered overlapping
or matching. The choice of this threshold depends on the
specific application and the resolution of the images. Surface-
DSC provides a method to measure the performance of image
segmentation algorithms in terms of surface precision.

One other core evaluation metric is F1-score. Our
F1-score calculation method focuses solely on lesions rather
than averaging across all categories. Here, TP (True Posi-
tives) refers to the number of samples correctly identified as
lesions; FP (False Positives) refers to the number of sam-
ples incorrectly classified as lesions from other categories;
FN (False Negatives) refers to the number of lesion sam-
ples incorrectly classified as other categories. This approach
allows for a more accurate assessment of the model’s perfor-
mance on the target task, avoiding the interference of class
imbalance, and concentrates on improving the segmentation
accuracy of lesion areas. This aligns with clinical needs and
can more effectively guide model optimization.

C. DATA SET
As shown in Table 2, the experimental dataset was provided
by Changshu No.1 People’s Hospital. Two experienced radi-
ologists selected 200 representative DWI images of patients
with brain stroke from clinical data and completed the
annotation of gold standard segmentation for comparison
of segmentation results. The number of classes for image
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TABLE 2. Dataset details.

clustering was set to three: brain stroke lesions, other brain
tissues, and background. We assume that each class has only
one cluster center. This assumption is reasonable for the task
of lesion segmentation in diffusion-weighted imaging (DWI)
data for stroke, as each target area (particularly lesions and
background) typically exhibits relatively consistent charac-
teristics. Moreover, by assuming each class has only one
cluster center, we can significantly enhance the consistency
of the segmentation results.

D. PARAMETERS OPTIMIZATION
In this part, we employ a genetic algorithm with an elitist
preservation strategy to determine the optimal values of the
parameters η ∈ [0, 1) and σ (a three-dimensional vector with
element values between 0 and 1) for the ICBF-MFSFCM
algorithm. First, we encode these parameters as chromo-
somes, using a real number encoding method to preserve the
continuity of the parameters. The initial population size of the
genetic algorithm is set to 80. Through selection, crossover
(crossover rate of 0.8), and mutation (mutation rate of 0.05)
operations, we carry out 40 generations of iterations to search
for the optimal combination of parameters, retaining elite
individuals in each iteration.

Our defined fitness function is based on the predictive
performance of the algorithm, specifically selecting the Inter-
section over Union (IoU) between the segmentation results
on the dataset and the standard segmentation as the fitness.
Through iterative optimization, the algorithm identifies an
optimal set of parameters. As illustrated in Figure 3, owing to
the implementation of an elitist preservation strategy, the fit-
ness of each generation is incremental. Experimental results
show that the optimized parameter η is 0.74, while the optimal
values for the three-dimensional vector σ are [1, 0.07, 0.14].
The iterative valuation process for these two parameters is
illustrated in Figure 4 and Figure 5.

E. PARAMETER σ

In this experiment, we investigated the impact of different
σ values on the algorithm’s segmentation effectiveness. The
algorithm starts with a non-random initialization, using the
average values of each category with label information as

FIGURE 3. Fitness over generations.

FIGURE 4. σ over generations.

FIGURE 5. η over generations.

the initial clustering centers for the corresponding categories.
Therefore, if there is no confusion of categories during the
clustering process, σ1 is the weight for the first category,
i.e., brain stroke lesions, σ2 for the second category, i.e.,
background, and σ3 for the third category, i.e., other brain
tissues. Let m = 2, η = 0, at this point, only the values of σ

affect the segmentation effect of the algorithm. We employed
a grid search method over

{
σ ∈ R1×C

|σi ∈ [0, 1]∀i
}
to find

the optimal values of the σ vector that yield the best segmen-
tation effect on the dataset, aiming for the highest SDSC score
during the optimization process.

The experimental results are shown in Figure 6. The first
graph displays the relationship between the values of the
vector σ and the SDSC score, and the second graph shows
the relationship between the values of the vector σ and the
IoU score, where the depth of color represents the size of
the SDSC and IoU scores, with colors closer to yellow indi-
cating higher scores. The horizontal axis is the multiple of
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FIGURE 6. The impact of the σ value on the algorithm’s segmentation
effectiveness.

σ2 relative to σ1, and the vertical axis is the multiple of σ3
relative to σ1. Letting σ1 = 1, we can clearly see several
key points: (1) SDSC Score: The highest SDSC score appears
when σ2 = 0.01, σ3 = 0.03, where the SDSC score is
close to 0.96, indicating a very high structural similarity of
the image. As σ2, σ3 increase, the SDSC score drops sharply
to 0, showing a significant decrease in image similarity.
(2) IoU Score: The highest IoU score is also observed at
σ2 = 0.01, σ3 = 0.03, with a score of about 0.44, indicating
that the accuracy of prediction peaks under this parameter
setting. Similar to the SDSC score, the IoU score significantly
decreases as σ2, σ3 increase. Therefore, it can be concluded
that σ = (1, 0.01, 0.03) is an optimal value.
Figure 7 shows a DWI image from the dataset with a

more severe class imbalance and correspondingly greater
segmentation challenge. As an example, it can be observed
that the entire contour of the lesion is correctly identified,
so the SDSC score is high, reaching 0.96; however, a flaw
is that a part of the area inside the lesion contour (the middle
black part) was not correctly classified, so the correspond-
ing IoU is 0.44. This demonstrates that with η = 0, i.e.,
without a supervisory component, our proposed algorithm
with appropriate σ values can still successfully cluster the
desired categories, thanks to the non-random initialization.
If σ = (1, 1, 1) is set, the algorithm degenerates to the FCM
algorithm, and the corresponding results will be shown in the
algorithm comparison section below.

FIGURE 7. A DWI image with severe class imbalance in the dataset and
its segmentation effect.

F. PARAMETER η

In this experiment, we investigate the impact of different
η values on the algorithm’s segmentation effectiveness and
performance.

FIGURE 8. The average segmentation effect score for different values of η

across 10 random sets of σ .

(1) We randomly generate 10 sets of σ vectors, each paired
sequentially with η values of [0.0, 0.1, . . . , 0.9] for clustering
segmentation on the dataset. We then calculate the average
segmentation effectiveness scores for these different η values
across the 10 sets of randomly generated σ , thereby obtain-
ing a general representation of the performance of different
η values. From Figure 8, we can see that when η = 0,
all evaluation metrics are almost zero. As the value of η

increases, the segmentation performance of the algorithm
generally improves.

(2) We select a set of σ values obtained previously in
section 4.3.1, η ∈ [0.0, 0.1, . . . , 0.9], and experiment with
its segmentation effectiveness on the dataset for other η in
η ∈ [0.0, 0.1, . . . , 0.9] values. This set of values provides
decent segmentation performance when η = 0. However,
as shown in Figure 9, with the increase of η, the scores of all
metrics decrease, but nometric drops to 0 even when η = 0.9.

FIGURE 9. The segmentation effect of different values of η when
σ = (1, 0.01, 0.03).

(3) Setting η = 0.5, we employ a grid search algorithm
to find a set of σ values that yield the best segmentation
performance at η = 0.5, and similarly experiment with
its segmentation effectiveness on the dataset for other η ∈

[0.0, 0.1, . . . , 0.9] values. Observing Figure 10, we find that
at η = 0.5, scores for all metrics except recall reach their
optimum. When η ≤ 0.4, scores for multiple metrics drop
to 0, resulting in complete segmentation failure, while for
η > 0.5, scores for all metrics decline as η increases.

Synthesizing the above results, it is not difficult to observe
that, for all average cases, a larger η value can endow the
algorithmwith better segmentation capability. However, once
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FIGURE 10. The segmentation effect with the optimal σ value at
η = 0.5 across different values of η.

σ has been optimized, the value of η is no longer a case
of ‘‘the larger, the better.’’ On the contrary, the appropriate
value of η at this point shows a strong correlation with σ ;
even with η = 0, a suitably chosen σ can still successfully
cluster the desired categories. Nevertheless, due to the larger
η values emphasizing the guiding role of the supervisory
term, the algorithm always maintains a decent segmentation
performance, especially achieving commendable scores in
SDSC. It’s worth mentioning that the larger the η, the more
it relies on the supervisory term, demanding higher accuracy
of the provided supervisory data, which might lead to poorer
generalization capability.

G. PERFORMANCE COMPARISON
In this section, we compared the segmentation performance
of five algorithms on the dataset: Fuzzy C-Means clustering
algorithm (FCM), Kernelized Generalized Fuzzy C-Means
(KGFCM) [36], POCS-based clustering(POCS-based) [37],
SFCM algorithm, and ICBF-MFSFCM algorithm. Among
them, the KGFCM (Kernelized Generalized Fuzzy C-Means)
algorithm is a fuzzy clustering algorithm based on ker-
nel methods, which extends the traditional FCM algorithm.
The KGFCM algorithm performs well in handling nonlin-
ear data because it utilizes kernel tricks to map data into
a high-dimensional feature space for clustering [36]. POCS
(Projection Onto Convex Sets) is a commonly used method
for optimization problems, and the POCS-based clustering
algorithm is a technique that employs the POCS method
for clustering. This method is primarily used to address the
clustering of high-dimensional data, where the data is usually
considered to exist within a low-dimensional subspace. The
core idea of the POCS-based clustering algorithm is to clus-
ter data points by iteratively projecting them onto different
convex sets [37].

The FCM, SFCM, and ICBF-MFSFCM algorithms used
the Euclidean distance in the experiments. Based on the
composition of the dataset, the number of clusters was set
to 3, representing brain stroke lesions, background, and other
brain areas, respectively. Except for the ICBF-MFSFCM
algorithm, which used the optimal parameters found through
the genetic algorithm search mentioned in the parameter opti-
mization section, the remaining algorithms used the optimal

TABLE 3. Table of parameters values used for testing algorithms.

TABLE 4. Quantitative comparison of the effects of all algorithms on the
DWI image dataset.

parameters identified via grid search strategies, as shown in
Table 3.

Table 4 showcases the clustering outcomes of the 5 algo-
rithms using the optimal parameters, measured by the average
scores of the algorithms on the dataset images. The scores
include: DSC, IoU, SDSC, F1-score, and the time taken for
segmentation. Scores that are highest are emphasized in bold.
We selected four DWI images from the dataset, where the area
ratio of the lesion region progressively decreases, as examples
to demonstrate the segmentation effectiveness of the five
algorithms on images with varying areas in Figure 11.
Table 4 reveals that the ICBF-MFSFCM algorithm

achieved the best average scores in DSC, IoU, SDSC, and
F1-score. The reason for this can be found in Figure 11: With
the four example DWI images, the area ratio of the lesion
region decreases sequentially, the degree of class imbal-
ance increases, and the difficulty of correct segmentation
also increases. In the first example DWI image, where the
lesion area is relatively large, all algorithms except KGFCM

FIGURE 11. The segmentation effect on the example images. (a) Source
image, (b) Gold standard segmentation, (c)FCM, (d) KGFCM,
(e) POCS-based, (f) SFCM, (g) ICBF-MFSFCM.
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essentially succeeded in segmentation; in the second example
image, as the lesion area decreases, not only the KGFCM
algorithm but also the FCM algorithm failed in segmentation;
in the third example image, where the degree of class imbal-
ance is severe, only the SFCM algorithm and the proposed
ICBF-MFSFCM algorithm succeeded in segmentation; by
the fourth example image, with the most severe class imbal-
ance, the proposed ICBF-MFSFCM algorithm, thanks to the
introduction of the class balance factor, became the sole suc-
cess. Other algorithms, to varying extents, misclassified large
areas as lesions. In summary, the proposed ICBF-MFSFCM
algorithm achieved the best segmentation performance on the
dataset.

V. CONCLUSION
This paper delves into the significance of high-quality med-
ical image segmentation in the diagnosis and treatment of
brain stroke and the challenges it faces. Through automated
methods, such as decision tree classifiers, the certainty of
lesion areas can be enhanced, promoting early detection
and effective treatment. Nonetheless, image segmentation
technology still encounters numerous challenges when pro-
cessing DWI images and lesion segmentation, including
image quality, algorithm complexity, and dependence on pro-
fessional knowledge. To overcome these limitations, semi-
supervised fuzzy clustering methods have been proposed
and have shown significant potential, especially in handling
complex images with noise and uncertainty. By introduc-
ing an interclass balance factor, the Interclass Balance
Factor-based Membership Fusion Semi-supervised Fuzzy
Clustering Algorithm (ICBF-MFSFCM) proposed in this
study further improves the accuracy and efficiency of brain
stroke DWI image segmentation, effectively addressing the
issue of class imbalance. Through a series of experiments,
the advantages of this algorithm in enhancing segmentation
precision and robustness were verified, showcasing its poten-
tial application in the early diagnosis and treatment of brain
stroke. The introduction of the interclass balance factor is
not only an innovative attempt to address the issue of class
imbalance in semi-supervised learning but also provides a
new perspective to understand and handle the class dynamics
within datasets. The practical application and validation of
this approach will further demonstrate its value in enhancing
model performance and fairness. The introduction of the
interclass balance factor in the ICBF-MFSFCM algorithm
addresses the common issue of class imbalance in medical
datasets. This feature is particularly beneficial for medical
conditions where the affected area is relatively small com-
pared to the surrounding healthy tissue, such as in early-stage
cancer detection or small lesion identification in liver disease.

However, the ICBF-MFSFCM algorithm still has some
limitations. The introduction of hyperparameters η and σ

makes the algorithmmore flexible, providing it with the capa-
bility to adapt to different datasets and application scenarios.
Nevertheless, this also brings the challenge of parameter
selection. Although the grid search and genetic algorithm

used in this paper can find relatively optimal parameter
combinations to some extent, both methods increase the com-
putational cost. This is especially true when dealing with
large-scale datasets, where the parameter optimization pro-
cess can become extremely time-consuming, thus limiting the
efficiency and feasibility of the algorithm in practical appli-
cations. Future work will focus on finding ways to transform
σ into an effective adaptive parameter.
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