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ABSTRACT Ensuring reliability and resilience in radial distribution systems (RDS) is essential for
consistent electricity delivery and rapid recovery from disruptions, particularly with the rise of electric
vehicles (EVs). This study investigates the impact of EV charging stations (EVCS) on RDS perfor-
mance, focusing on reliability, resilience, power loss, and voltage stability. We conducted two key studies:
(i) enhancing reliability with distributed generation (DG) and EVCS in grid-to-vehicle mode, and
(ii) enhancing resilience with DG and EVCS in vehicle-to-grid mode. Using the spotted hyena optimizer
algorithm (SHOA), we formulated objective functions to improve RDS performance, comparing results
with the cuckoo search algorithm (CSA). Testing on the IEEE 69 bus system demonstrated that SHOA
significantly improves reliability and resilience, offering a robust solution for optimizing RDS amidst
evolving energy demands.

INDEX TERMS Spotted hyena optimizer algorithm, distributed generation, electric vehicle charging station,
radial distribution system.

I. INTRODUCTION
The global surge in electric vehicle (EV) adoption has
highlighted the need for electric vehicle charging stations
(EVCSs) to support clean transportation. While EVCS pro-
liferation brings benefits, it poses challenges to the radial
distribution system (RDS) [1]. This research assesses the
effects of EVCS on power loss, voltage stability, and the
reliability of RDS. The imperative to reduce greenhouse gas
emissions and enhance energy independence drives the shift
to electric mobility, leading to exponential EVCS deployment
and increased grid load [2]. EVCS integration raises con-
cerns about power losses in the RDS due to high EV charg-
ing currents, impacting system efficiency. Understanding
these losses is crucial for sustainable charging infrastructure
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design. Additionally, EVCS operation can affect RDS voltage
stability, potentially causing fluctuations and drops during
peak demand. Stable voltage is essential for electricity supply
quality for both EVs and non-EV customers [3].

Reliability is impacted by EVCS integration, with added
load straining distribution equipment in densely populated
areas, raising failure rates. Maintaining the dependability of
RDS is essential for ensuring a continuous power supply
to all customers. As EVCS deployment grows, methodi-
cally addressing these challenges is essential for seamless
EV integration, requiring innovative technology to enhance
power distribution, voltage stability, and overall RDS reli-
ability [4], [5]. Distributed generation (DG) strategically
placed in high EVCS demand or voltage unstable areas helps
balance load distribution, reducing power losses. DG units
with voltage regulation stabilize supply to EVCS. Smart
grid tech and dynamic allocation algorithms optimize DG
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placement, enhancing reliability. Integrating energy storage
smooths power demand fluctuations, crucial for addressing
EV charging spikes. DG deployment optimizes RDS perfor-
mance amid growing EVCS presence [6].
Resilience is a critical measure of a power system’s ability

to recover from significant disruptions like accidents, delib-
erate attacks, or natural disasters. Such events can cause
multiple line faults, some taking hours or days to fix. Elec-
tric utilities strive to maintain service to as much load as
possible while minimizing the costs of load shedding, a key
resilience metric. Enhancing resilience encompasses three
primary strategies. Firstly, strengthening distribution poles
along essential lines mitigates the risk of breakage during
severe weather events. Secondly, building additional nor-
mally open tie lines enables system operators to restore
power to isolated feeders by reconfiguring the network dur-
ing faults. Thirdly, increasing distributed energy resources
(DERs) deployment, forming microgrids (MGs) within the
faulted RDS buses, significantly boosts system resilience [7],
[8], [9].

II. LITERATURE REVIEW
The deployment of EVCSwithin power distribution networks
is a critical area of research due to its impact on grid sta-
bility, reliability, and resilience. This literature review exam-
ines the multifaceted aspects of EVCS allocation, integrating
reliability and resilience studies to provide a comprehensive
overview of current methodologies, challenges, and advance-
ments in the field.

A. LITERATURE REVIEW ON EVCS ALLOCATION
Research on EVCS allocation focuses on optimizing the loca-
tion and sizing of EVCSs to ensure efficient utilization of
the power grid while meeting the growing demand for elec-
tric vehicle charging. Studies explore various optimization
algorithms, such as particle swarm optimization (PSO) and
genetic algorithms (GA), to address factors like power loss
minimization, voltage stability, and cost-effectiveness.

The research focused on a hybrid preference-based EVCS
location problem, considering multiple optimization pref-
erences of distribution network operators, charge station
owners, and electric vehicle users. The problem was for-
mulated by an uncertain mixed-integer programming model,
introducing significant computational complexity through the
use of Type-2 fuzzy variables [10]. A system comprising
a solar photovoltaic (PV) array, battery energy storage sys-
tem (BESS), diesel generator set, and grid-based EVCS for
continuous charging in islanded, grid-connected, and DG
set-connected modes was presented. The assumption of ideal
conditions for seamless switching and consistent DG perfor-
mance may not have accounted for real-world fluctuations
and complexities [11].

SCOPE is a revolutionary multi-objective framework that
combines optimization goals such as decreasing real power
loss, lowering bus voltage fluctuation, maximizing system
voltage stability, lowering system operating expenses, and

reducing CO2 emissions. However, it relied on simulated
driving patterns and V2G capabilities over a 24-hour hori-
zon, potentially not accurately capturing real-world EV usage
variability [12]. The hybrid genetic algorithm and parti-
cle swarm optimization (GA-PSO) were presented for the
optimal allocation of plug-in EVCS (PEVCS) in the RDS
with DG in high volumes and appropriately put on selected
network buses. The hybrid GA-PSO algorithm may have
involved significant computational complexity and longer
processing times [13].
The slime mould algorithm (SMA) and other optimization

methods were utilized to determine the best positioning and
scaling of RDG/DSTATCOM/EVCS/BESS within the RDS,
as demonstrated on IEEE 33-bus and 69-bus systems. The
reliance on stochastic processes and unpredictable motions
may have resulted in irregular convergence behavior and
prolonged processing times, with incorrect placement and
sizing potentially affecting RDS performance [14].

The modeling of EVCSs affected by EV owner behavior
in a power distribution network was studied, as well as the
appropriate location and size of EVCSs to decrease their
negative effects on the network, including as network losses
and voltage variations in the presence of uncertain loads.
The probabilistic model was studied using the Monte Carlo
simulation (MCS) approach. Future research could have ana-
lyzed the impacts of correlation between different sources of
uncertainties and the possibility of sudden overloading of the
system [15].
The developed PSO algorithm was proposed for the opti-

mal placement of EVCS in the RDS. The performance of
PSO may have been influenced by factors such as parameter
settings and problem formulation, potentially affecting the
accuracy and efficiency of the results [16]. The integration of
DG and DSTATCOM using BESA for minimizing the impact
of EVCS in distribution systems considering load uncertainty
and load variation was proposed, though the load variation
was not considered for EVCS [17]. A hybrid method to effec-
tively manage energy in EVCS and distribution systems was
proposed, consolidating shell game optimization (SGO) and
recalling-enhanced recurrent neural network (SGO-RERNN)
techniques. The comparison with existing systems may have
been limited by differences in implementation details and
evaluation criteria, potentially impacting the generalizability
of the findings [18]. Using BESA for power loss mitiga-
tion and net savings showed improvements in power loss
reduction and VSI enhancement in the distribution system,
although BESA may have only been suitable for certain
optimization problems, particularly those with well-defined
fitness functions and continuous search spaces [19].

B. LITERATURE REVIEW ON EVCS WITH RELIABILITY
STUDY
Incorporating reliability studies into EVCS planning involves
assessing the impact of EVCS on the overall reliability of
the power distribution network. This includes evaluating the
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likelihood of system failures, downtime, and the robustness
of the grid in accommodating additional loads from EVCS.
Research in this area often utilizes probabilistic models and
reliability indices to quantify and enhance the reliability of
RDS integrated with EVCS.

A novel strategy for obtaining the optimal location of
EVCS/EVBSSs in the RDS was proposed, investigating their
impact on various network parameters. However, the study
assumed perfect integration of renewable DGs with battery
energy storage, which may not always be achievable in
practice [20]. A hybrid technique, combining golden jackal
optimization (GJO) and random forest algorithms (RFA),
named the GJO–RFA technique, was presented to address
EV allocation and assignment problems. Assumptions made
regarding the number of charging ports and FCS capacitymay
not fully capture real-world deployment complexities [21].
Research aimed at modeling and optimizing hydrogen-fuel-
cell-based distributed generation (HFC-DG) to minimize the
effects of EVCSs in RDS. However, ideal conditions were
assumed, neglecting practical challenges such as equipment
failures and regulatory constraints [22].
An AI approach, hybrid GWO-PSO, was proposed to

investigate suitable nodes for EVCS and DGs in a bal-
anced distribution system considering reliability. Limitations
include the stochastic approach employed to model EV load
and the focus on conventional DGs instead of renewable-
based ones [23]. The impact of PEV charging and discharging
on reliability was analyzed for two areas, showing improve-
ments in EENS and SAIDI with PEV and DGs. However, the
study did not consider the integration of transportation and
RDS as a test system [24]. Investigations into the effect of
EVCS loads on network parameters were conducted on the
IEEE 33-bus test system. Results indicated that the system
could withstand placement of fast charging stations at strong
buses, but placement at weak buses hampered system opera-
tion [25].

The GABC algorithm was implemented to minimize total
active power loss through DG and shunt capacitor placement
simultaneously, effectively reducing total annual cost and
improving voltage profile. However, the study’s generaliz-
ability may be limited by its focus on specific optimization
techniques [26]. A multi-year expansion planning strategy
for distribution networks was presented to enable increasing
penetrations of plug-in electric vehicles, with an emphasis on
the temporal aspects of charging loads and their reliability
implications. However, potential uncertainties and complex-
ities associated with PEV integration and RDS planning may
not be fully captured [27].

C. LITERATURE REVIEW ON EVCS WITH RESILIENCE
STUDY
Resilience studies related to EVCS focus on the ability of
the power distribution network to withstand and recover from
extreme events, such as natural disasters and cyberattacks.
This includes developing strategies for resilient planning
and operation of EVCS, such as the integration of DERs

and mobile energy resources (MERs). Studies often employ
advanced optimization frameworks and scenario-based anal-
yses to enhance the resilience of distribution networks with
EVCS.

A decision-making framework was proposed to enhance
seismic resilience by modifying importance measures and
applying fault tree analysis. However, reliance on assump-
tions and simplifications in modeling seismic hazards and
system vulnerabilities may limit its scalability and general-
izability [28]. Resilience analysis focused on moderate and
severe damage under varying weather conditions, evaluating
microgrid performance with different levels of DERs and
demand. While demonstrating potential to enhance distri-
bution grid resilience, ongoing technological advancements
and increased prosumer engagement may further contribute
to a cleaner, more resilient energy future [29]. A proposed
framework for resilience enhancement in pre-attack and post-
detection stages utilized optimal placement of DERs and
power network reconfiguration. Limitations include assump-
tions about specific cyberattack scenarios, potentially over-
looking a full spectrum of potential threats [30].

A probabilistic framework was proposed for assessing
ice storm resilience in power distribution systems, evaluat-
ing fragility modeling and resilience enhancement strategies.
Generalizability beyond the specific context of the Oklahoma
power distribution network may be a concern [31]. An invest-
ment method, utilizing sectionalizing switches and DERs,
was proposed for resilience enhancement. Further research
is needed to validate its robustness and applicability across
diverse distribution system scenarios [32]. A methodology
integrating microgrids, DERs, and line hardening was pro-
posed to improve resilience in extreme operating situations.
Investigation of DERs’ ability to maintain the distribution
system over extended periods and incorporating additional
resilience metrics are suggested for future research [33].

An integrated simulation framework was proposed to
model PDS resilience against extremewinds, considering tree
fragility and system restoration. Future work could refine
tree failure modeling and consider dynamic effects in PDS
component failure estimation [34]. A multistage, dynamic,
and resilient RDS expansion planning framework was pre-
sented, relying on specific assumptions regarding hurricane
occurrence and vulnerability. This may not fully capture the
variability and complexity of real-world extreme weather
events across different regions [35]. An optimal framework
for resilience-oriented design in distribution networks was
proposed, minimizing investment and repair costs. However,
reliance on specific assumptions and simplifications in prob-
lem conversion may limit its applicability to real-world sce-
narios [36]. Challenges and advantages of networked MGs to
improve power distribution system resilience were discussed,
with a focus on managing DERs. Limitations include the lack
of consideration for hybrid renewable energy systems [37].

A two-stage resilient restoration model utilizing EVs
and MERs was proposed for distribution systems. How-
ever, accurate pre-disaster placement of charging and repair
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stations may not fully account for unpredictable damage
from extreme weather events [8]. The proposed method
for profit sharing between distribution networks and the
private sector during extreme weather conditions considers
uncertainties like weather-induced outages and EV condi-
tions. However, its effectiveness may be limited by pre-
dicting weather-induced outages and EV initial conditions
accurately [9].

D. LITERATURE REVIEW ON RELIABILITY AND
RESILIENCE STUDY
The combined study of reliability and resilience in power
distribution systems, without specific focus on EVCS, pro-
vides insights into the overall robustness of the grid. Research
in this area typically includes probabilistic resilience assess-
ment models, generalized fragility models for system compo-
nents, and strategies to improve both reliability and resilience.
Challenges such as data dependency, computational com-
plexity, and evolving operational requirements are commonly
addressed to ensure practical applicability in real-world
scenarios.

An article discussed the combined reliability and resilience
study in power systemswithout EVCS. The authors presented
a probabilistic resilience assessment model and a general-
ized fragility model for distribution system components to
improve reliability and resilience [38]. However, reliance
on historical data and detailed component characteristics
may limit applicability in scenarios with incomplete infor-
mation. Focusing on past events and current system sta-
tus for resiliency evaluation might not fully address the
dynamic nature of distribution system operations and plan-
ning needs. Thus, practical implementation could face chal-
lenges in real-world settings with limited data availability
and evolving operational requirements. Despite its com-
prehensive approach, challenges associated with compu-
tational complexity and algorithm selection affected the
feasibility and scalability of this framework in real-world
applications.

In the literature spanning studies [10] through [38], sev-
eral challenges arise in applying optimization techniques to
distribution network planning and management, particularly
concerning the allocation of DG and EVCS, resilience, and
reliability. Scalability issues with optimization algorithms are
prominent, especially for large-scale distribution networks
and complex optimization objectives. Additionally, recurring
challenges include computational complexity, convergence
issues, and sensitivity to initial conditions. Several studies
also highlight complexities in parameter tuning and dilemmas
in algorithm selection. These challenges underscore the intri-
cacy of optimizing distribution networks and emphasize the
importance of careful consideration during implementation.
Addressing these challenges is vital for enhancing the robust-
ness and efficacy of optimization processes in distribution
network planning and management.

E. LITERATURE REVIEW ON SHOA
The SHOA offers promising solutions to the challenges
encountered in optimizing distribution networks. With its
scalability, robust convergence properties, insensitivity to ini-
tial conditions, and simplicity in parameter tuning, SHOA
addresses key hurdles such as computational complexity,
convergence issues, sensitivity to initial conditions, and
algorithm selection dilemmas. By leveraging SHOA’s capa-
bilities, practitioners can enhance the efficiency and reliabil-
ity of optimization processes in distribution network plan-
ning and management, contributing to the overall resilience
and reliability of distribution systems. Extensive explo-
ration of the literature underscores the SHOA as a lead-
ing meta-heuristic method for optimizing various allocation
problems in distribution networks. Across various studies,
SHOA consistently demonstrates remarkable effectiveness
and superiority over other techniques [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50]. In [39], SHOA’s
ability is evident in solving complex design problems, yield-
ing near-optimal solutions for tasks like optical buffer and
airfoil design. Similarly, [40] showcases SHOA’s superior-
ity over established algorithms like PSO, ABC, ICA, and
GWO, affirming its robustness and capability in handling
complex optimization tasks, such as matching complicated
images. Moreover, [41] illustrates SHOA’s efficiency and
cost-effectiveness in economic dispatch, achieving better
convergence speed and lower computational cost compared
to CSA and BBO. Practical applications in [42] demonstrate
SHOA’s effectiveness in wind energy resource allocation for
loss reduction and voltage profile enhancement, further solid-
ifying its credibility.

SHOA’s versatility shines in tasks ranging from resolv-
ing the traveling salesman problem [43] to optimizing
PID parameters in AVR systems [44] and determining
optimal power flow in microgrids with renewable energy
resources [45]. Additionally, SHOA’s effectiveness in DG
allocation with network reconfiguration was highlighted
in [46], where it outperformed PSO and DE methods. This
further emphasizes SHOA’s practical applicability and supe-
riority over conventional optimization techniques in real-
world scenarios.

Moreover, SHOA’s adaptability is showcased in [47],
where it effectively enforces a two-stage controller, acquiring
controller gains and parameters. Additionally, SHOA excels
in tasks like determining the optimal size and location of
capacitors [48] and resolving complicated nonlinear physical
world tasks [49].
Recent studies consistently emphasize SHOA’s high opti-

mization power and convergence rate compared to con-
ventional meta-heuristic algorithms [50], positioning it as
the preferred method for optimization problems in distribu-
tion networks. Its ability to address critical aspects such as
resilience, reliability, and optimal resource allocation under-
scores its indispensability in achieving optimization objec-
tives. Through its advanced optimization capabilities, SHOA
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TABLE 1. Summary of literature on EVCS allocation with reliability and resilience studies.
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TABLE 1. (Continued.) Summary of literature on EVCS allocation with reliability and resilience studies.

FIGURE 1. The layout of the proposed technique.

overcomes challenges related to scalability, computational
complexity, convergence issues, and sensitivity to initial con-
ditions, thereby facilitating the improvement of reliability
and resilience in distribution systems. By leveraging SHOA’s
strengths, practitioners can enhance the robustness and effi-
ciency of optimization processes, ultimately contributing to
the resilience and reliability of distribution networks.

Table 1 summarizes the methodologies and main findings
of studies investigating EVCSwithin the context of reliability
and resilience in distribution systems. The examination of
previous literatures [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], and
[38] reveals several gaps in understanding resilience and
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reliability enhancement through DG and EVCS allocation in
RDS.

• Previous literature tends to focus on either reliability
or resilience enhancement individually in RDS, result-
ing in a lack of comprehensive approaches that address
both aspects simultaneously. Very few studies have con-
sidered the combination of reliability and resilience
enhancement in the RDS, highlighting a critical research
gap in understanding how these aspects interact and
influence overall system performance.

• Existing studies predominantly rely on conventional
optimization methods for DG and EVCS allocation in
RDS, neglecting the potential benefits of advanced opti-
mization techniques. Exploring advanced optimization
techniques could enhance the efficiency and effective-
ness of allocation strategies.

• There is a gap in the comprehensive assessment of the
impact of integrating DG and EVCS on RDS reliability
and resilience. Thorough impact assessments are needed
to understand the implications of these components on
key performance metrics such as voltage stability and
power losses.

• The absence of comparative analysis hinders the iden-
tification of optimal allocation strategies for enhancing
RDS reliability and resilience. Comparative studies are
essential to evaluate the effectiveness of different allo-
cation approaches.

• The literature lacks innovative resilience measurement
methods tailored to the unique characteristics of RDS.
Developing novel resilience measurement methods
could provide more accurate assessments of resilience
performance.

• Comprehensive resilience measurement techniques that
encompass factors like timing schemes for micro-
grid recovery and post-disaster recovery strategies are
lacking.

• Research on post-disaster recovery strategies specifi-
cally designed for RDS resilience enhancement is lim-
ited. Effective post-disaster recovery strategies tailored
to RDS challenges are crucial for improving overall
system resilience.

• Challenges such as scalability, computational complex-
ity, convergence issues, sensitivity to initial conditions,
parameter tuning complexities, and algorithm selec-
tion dilemmas in optimization techniques for distri-
bution network planning and management need to be
addressed. Improving the efficiency and robustness of
optimization processes is essential for enhancing RDS
performance.

This work stands out by not only addressing the resilience
and reliability challenges in the RDS but also by tackling
the limitations observed in existing literature. Through this
comprehensive approach, the study offers the followingmajor
contributions:

• This study makes a significant advancement by
simultaneously addressing reliability and resilience

enhancement in RDS, a critical aspect often overlooked
in previous research. Few studies have explored this
problem, highlighting the novelty and impact of our
contribution.

• New methodologies utilizing the SHOA are presented
for determining the optimal size and location of DG and
EVCS. These methods offer robust solutions to improve
the reliability and resilience of RDS.

• While most articles focused on EVCS in G2V mode,
our work extends this by including EVCS operating in
V2G mode alongside DG units in the RDS. This novel
approach explores bidirectional energy flow between
EVs and the grid, enhancing network versatility and
resilience.

• A comprehensive examination of the impact of EVCS
loads and DG on both consumer and energy-oriented
reliability indices provides valuable insights into system
performance.

• Analyzing the impact of EVCS loads on voltage stability
and power in the RDS sheds light on the issues of
incorporating them into the network.

• A comparative investigation of the proposed SHOAwith
the CSA regarding the effects of EV charging loads on
various distribution networkmetrics, such as voltage sta-
bility, reliability, and power losses, offers a comprehen-
sive understanding of the implications of EV integration.

• Introduction of a new resilience measurement method
combined with a timing scheme for MG recovery offers
a robust framework for enhancing resilience perfor-
mance within the distribution network.

• Enablement of the development of post-disaster recov-
ery strategies aimed at enhancing resilience performance
within the RDS further enhances the overall resilience of
the system.

• Addressing the absence of comprehensive resilience
measurement techniques, which should include consid-
erations such as timing schemes for microgrid recovery
and post-disaster recovery strategies.

• Multiple faults have been considered in the RDS dur-
ing resilience analysis, indicating a robust approach to
resilience assessment.

This comprehensive research endeavor aims to thoroughly
examine and quantify the impact of EVCSs on the reliabil-
ity and resilience of the RDS. The study seeks to demon-
strate that effective minimization of EVCS influence on
the system can be achieved through optimal allocation of
DG. Its outcomes are expected to enrich our understand-
ing of strategically designing, operating, and upgrading the
RDS to accommodate the growing demand for EV charg-
ing while maintaining a stable and reliable power supply,
as assessed by the SHOA technique. Acknowledging the
crucial importance of understanding the effects of EVCS on
power loss, voltage stability, reliability, and resilience, this
research is of great significance to utilities, policymakers,
and stakeholders involved in the planning, management, and
expansion of charging infrastructure. The proposed method
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is systematically examined through two distinct case studies,
focusing on enhancing reliability and resilience in the RDS
through EVCS and DG utilization.

Figure 1 illustrates the proposed technique for optimizing
a system involving data networks, DG, and EVCS, with a
focus on enhancing reliability and resilience. The technique
begins with the initialization of the data network, followed
by a distribution load flow analysis to establish base case
values. Subsequently, optimal locations for DG and EVCS are
determined separately for two distinct studies, likely based on
different criteria. The ideal sizes of DG and EVCS are then
determined using SHOA, a specific optimization approach.
The technique outputs the best sites and capacities for DG and
EVCS. Further analysis using SHOA assesses the system’s
reliability and resilience, identifying areas for enhancement.
Finally, the optimum values for objective functions I & II,
representing the optimization criteria, are presented. While
Figure 1 provides an overview of the technique, additional
description in the research would enhance understanding by
providing more detailed explanations of each step and its
implementation.

To validate the efficiency of the planned SHOA, a compar-
ison is made with the cuckoo search algorithm (CSA) in both
case studies. The findings highlight the superior capability
of SHOA in identifying optimal locations within the IEEE
69-RDS, resulting in enhanced reliability and resilience com-
pared to CSA. Further, this research significantly contributes
to advancing strategies for integrating EVCSs into distribu-
tion systems while safe guarding the reliability and resilience
of the overall power supply network.

III. PROBLEM FORMULATION
The distribution load flow (DLF) approach, as outlined in [51]
and [52], is utilized to determine the actual and reactive power
losses, as well as the voltage at specific branches within a
RDS. Figure 2 illustrates a streamlined the one-line diagram
of RDS with DG and EVCS, providing an overview of its
layout and components.

FIGURE 2. One-line diagram of RDS with DG and EVCS.

The voltage at node ‘h+1’ is given by the following
expression:

Uh+1 = Uh − ib(rh,h+1 + jxh,h+1) (1)

Here, Uh and Uh+1 denote the bus voltage at buses ‘h’ and
‘h+1’ respectively. The term (rh,h+1 + jxh,h+1) denotes the

impedance of the line linking branches ‘h’ and ‘h+1’.

ib = [bibc] [ih] (2)

where ib signifies the current flowing through the branch.
The current injected at node ‘h’ is calculated as:

ih =
(Ph + jQh)∗

Uh
(3)

The variables Ph, which represents the real power load at bus
‘h’; Qh, indicating the reactive power load at bus ‘h’; and ih,
denoting the current injected at node ‘h’.

The real power loss in the line between nodes ‘h’ and ‘h+1’
is expressed as:

Ploss (h, h+ 1) =

(
P2h,h+1 + Q2

h,h+1

|Uh|2

)
∗rh,h+1 (4)

Similarly, the reactive power loss in the line between nodes
‘h’ and ‘h+1’ is given by:

Qloss (h, h+ 1) =

(
P2h,h+1 + Q2

h,h+1

|Uh|2

)
∗xh,h+1 (5)

The system loss after EVCS assignment is determined
through load flow analysis. To obtain the total real power loss
of the system, the losses across all branches are summed:

PTotalloss =

N∑
h=1

Ploss (h, h+ 1) (6)

In a RDS, the voltage stability index (VSI) is a metric used to
assess the system’s ability to maintain voltage levels within
acceptable limits under varying operating conditions. It pro-
vides insights into the system’s voltage stability, indicating
how close the system is to voltage collapse or instability [53].
The VSI is typically calculated for individual nodes or

buses within the distribution system. It is often expressed as
a dimensionless quantity ranging from 0 to 1, where a VSI
value closer to 1 indicates better voltage stability and a lower
risk of voltage collapse, while a value closer to 0 indicates
poorer stability and a higher risk of voltage collapse. The
formula for calculating the VSI at node ‘h’ in a RDS is given
by:

VSI (h) = {|Uh|4 − 4
∣∣Ph,h+1 ∗ xh,h+1 − Qh,h+1 ∗ rh,h+1

∣∣2
− 4[Ph,h+1 ∗ rh,h+1 − Qh,h+1 ∗ xh,h+1] |Uh|2

(7)

A. DEVELOPMENT OF RELIABILITY MATRICES
Reliability indices serve as quantitative metrics to evaluate
the performance and reliability of a power distribution sys-
tem. These metrics offer valuable insights into the system’s
capability to consistently deliver electricity and fulfill cus-
tomer needs. Among the commonly used reliability indices
in power distribution systems are the system average inter-
ruption duration index (SAIDI), system average interruption
frequency index (SAIFI), and customer average interruption
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duration index (CAIDI) [24], [25]. These critical reliability
indices, namely SAIDI, SAIFI, and CAIDI, are expressed
mathematically as follows:

SAIFI =

∑Nl
i Fr(h)Nc(h)∑Nl

i Nc(h)
(8)

SAIDI =

∑Nl
i Op(h)Nc(h)∑Nl

i Nc(i)
(9)

CAIDI =

∑Nl
h Op(h)Nc(h)∑Nl
h Fr(h)Nc(h)

(10)

Here, Op(h) represents the outage period of bus ‘h’, Fr(h) is
the failure rate of bus ‘h’, Nl is the number of load points,
Nc(h) is the total number of customers.

1) OBJECTIVE FUNCTION-I
The various reliability indices for the objective function is
given in the below equation (11):

Rreliability = σ1

(
SAIFIafterloss

SAIFIbeforeloss

)
+ σ2

(
SAIDIafterloss

SAIDIbeforeloss

)

+ σ3

(
CAIDIafterloss

CAIDIbeforeloss

)
(11)

The variables SAIFIbeforeloss and SAIFIafterloss represent the SAIFI
values before and after the implementation of charging sta-
tions, respectively. Similar conventions apply to SAIDI and
CAIDI. In equation (11), the weights assigned to SAIFI,
SAIDI, and CAIDI are denoted as σ1, σ2 and σ3, respectively.
These weights are usually distributed uniformly across all
values.

The initial objective function (OF1) in the proposed
approach, relying on the reliability index, can be articulated
as follows:

OF1 = Minimize
[
Rreliability

]
(12)

Improving the system’s reliability involves minimizing the
OF1 as described in equation (12).

B. DEVELOPMENT OF RESILIENCE MATRICES FOR COST
EVALUATION
1) ENERGY NOT SUPPLIED ASSESSMENT
To gauge the extent of energy not supplied (ENS) dur-
ing adverse weather conditions, we utilize the following
expression:

ENS =

∑24

τ=1
(τ ∗ Pl) (13)

Here, ENS quantifies the number of nodes experiencing
energy unavailability amidst challenging weather events.

2) REVENUE GENERATION ANALYSIS
The equation representing the revenue generated by RDS
operators through energy sales is as follows:

Rg =

[∑24

τ=1
(τ ∗ Pt)

]
∗ ε (14)

Rg = ENS ∗ ε (15)

where ε denotes the cost of energy and Pt represents the total
load of the system at time τ .

3) REVENUE LOSS CALCULATION
The computation of revenue loss incurred by the distribution
network operator can be expressed as follows:

Rl = Rg −

[(∑τf

τ=1
τ ∗ Pt

)
∗ ε
]

(16)

Here, Rl represents the cost attributed to outages, while τf
signifies the duration of faults.

4) RESILIENCE INDEX DETERMINATION
To assess the resilience index (Rindex) of a system in the after-
math of a catastrophic incident, we employ a method outlined
in equation (18). This involves computing the inverse of the
system’s loss in performance (1Pl). This approach facilitates
a conceptual gauge of resilience, with values spanning from
0 to infinity. A resilience index of infinity denotes flawless
resilience, signifying no decline in performance subsequent
to an extreme occurrence. Conversely, a resilience index of
0 indicates deficient resilience, implying an incapacity to
endure or immediate collapse following a severe event.

1Pl =
Pt − Pa
Pa

(17)

Rindex =
1

∇Pl
(18)

In this equation,Pt represents the total load in the system after
the event, while Pa denotes the active load.

5) OBJECTIVE FUNCTION-II
The second objective function is to enhance the resilience
index of the RDS.

OF2 = Maximize
(∑Tc

c=1
Rindex(c)

)
(19)

C. CONSTRAINTS OF THE RDS
The optimal distribution of EVCS in the RDS is subject to the
following constraints:

1) LIMITS OF POWER GENERATION
The limits of power generation, also known as equality con-
straints, can be mathematically expressed as follows:

PTotalloss +

∑
PD(h) +

∑
PEVCS(h) =

∑
PRDS +

∑
PDG(h)

(20)

The power demand at bus ‘h’ is represented asPD, whilePRDS
denotes the power generated by the RDS, and PEVCS signifies
the power taken by the EVCS.
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2) LIMITS OF BUS VOLTAGE
Ensuring that the bus voltage remains within acceptable
ranges at each bus is essential, as defined by:

Uh,min ≤ |Uh| ≤ Uh,max (21)

The voltage at each bus is constrained by minimum and
maximum limits, denoted as Uh,min and Uh,max respectively.

3) LIMITS OF REAL POWER
DGs must supply real power at each optimized bus within the
defined minimum and maximum constraints.

PminDG(h) ≤ PDG(h) ≤ PmaxDG(h) (22)

Here, the lower real power limits Pmin
DG indicate the minimum

thresholds for the compensated bus ‘h’, while the upper real
power limits Pmax

DG denote the maximum thresholds for the
compensated bus ‘h’.

IV. SPOTTED HYENA OPTIMIZER ALGORITHM
A. OVERVIEW OF SHOA
Spotted hyenas, named for their fur markings, share social
traits with humans. They’re large carnivores found in African
and Asian forests, grasslands, and plains, living up to 12 years
in the wild and 25 in captivity. There are four species—
spotted, striped, brown, and Aardwolf—each with unique
traits. Spotted hyenas, known for their intelligence and
social skills, live in clans where females dominate. They
emit laughter-like sounds to communicate food discoveries
and use social cues to navigate relationships. The SHOA
mimics their hunting and social behaviors in mathematical
models [54].

1) ENCIRCLING PREY
Spotted hyenas can adjust their locations based on the bait,
determining the optimal response. The mathematical model
for this phenomenon is presented below.

XHP =

∣∣∣β ∗ αP (m) − αH (m)

∣∣∣ (23)

αH (m+ 1) = αP (m) − γ ∗ XHP (24)

In the equation, XHP represents the distance between the prey
and the spotted hyena, αH denotes the position vector of the
hyena, and αP signifies the position vector of the prey. The
variable ‘h’ represents the current iteration, while β and γ

are coefficient vectors. This relationship can be expressed as
follows:

β = 2αR1 (25)

γ = 2n ∗ αR2 − n (26)

n = 5 − (iter ∗

(
5

itermax

)
) (27)

In this scenario, the variable ‘iter’ spans from 0 to the maxi-
mum iteration count denoted as itermax . In this context, αR1
and αR2 represent random vectors within the range of [0,1],
and ‘n′ can be linearly decreased from 5 to 0.

FIGURE 3. Implementation of SHOA for the proposed work.

2) HUNTING
The hunting strategy implemented in the proposed SHOA
unfolds as follows:

XHP =

∣∣∣β ∗ αPfinest (m) − αHfinest (m))
∣∣∣ (28)

αPfinest (m) = αPfinest (m) − γ ∗ XHP (29)

YH = αHfinest + αHfinest+1 + . . . . . . .. . . . .αHfinest+NH

(30)

where αP
finest represents the best position of the spotted hyena,

and αH
finest is the best position of the prey. Meanwhile, the

variable NH denotes the total number of spotted hyenas and
is determined as follows:

NH
= ϵN (αPfinest , α

P
finest+1, α

P
finest+1, . . . . . . . . . . . . (α

P
finest+G)

(31)
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In this scenario, G denotes a random vector ranging
from 1 to 0.5,N signifies the total count of responses, encom-
passing all potential candidate responses, and ϵN represents
the collection of NH optimal responses.

3) ATTACKING PREY (EXPLOITATION)
Given the aforementioned relationships, the mathematical
expression for attacking the prey can be formulated as
follows:

αH (S + 1) = ϵN /NH (32)

The updated position of αH (S + 1) retains the best position
and adjusts the position of the other agents relative to the best
search agent’s position.

4) SEARCH FOR PREY (EXPLORATION)
Equation (24) indicates that the variable E must be adjusted
to be either greater or smaller than 1 to yield the correct
solution. Another crucial element of the SHOA is vector β,
which facilitates exploration. Vector β comprises random
values that assign random weights to the prey, as described
in Eq. (25). To emphasize the algorithm’s random nature,
let’s suppose that vector β > 1 is prioritized over β < 1 to
highlight the distance effect.

B. IMPLEMENTATION OF SHOA FOR THE PROPOSED
WORK
To implement SHOA for the proposed problem-solving,
adhere to the following steps:
1. Initialize parameters: Begin by setting up parameters

such as population size, maximum number of iterations,
and constraints for DG and EVCS placement within the
RDS.

2. Generate initial population: Create an initial popu-
lation of potential solutions randomly, ensuring they
adhere to the defined placement limits.

3. Evaluate solutions: Assess each solution’s reliability
and resilience using objective functions tailored to the
problem, considering factors like system stability and
ability to handle disruptions.

4. Record best solution: Keep track of the best solution
found in the current iteration, representing the optimal
placement of DG and EVCS based on the evaluated
objective functions.

5. Implement SHOA: Utilize the SHOA to generate a new
set of potential solutions. This involves a combination
of optimization techniques to explore the search space
effectively.

6. Ensure feasibility: Check the newly generated solu-
tions against the predefined limits for DG and EVCS
placement, adjusting them if needed to maintain
feasibility.

7. Update solutions: Recalculate reliability and resilience
values for the new solutions. Replace the previous best
solution if an improvement is observed, and continue
iterating to find better solutions.

8. Iterate: Repeat steps 5 to 7 until the maximum number
of iterations is reached or convergence is achieved.

9. Finalize and print results: Once the optimization pro-
cess concludes, print the final results including the opti-
mal placements of DG and EVCS within the RDS,
along with their corresponding reliability and resilience
values.

This description outlines a structured approach to implement-
ing SHOA for the proposed work, with the aim of enhancing
understanding. It breaks down the steps depicted in Figure 3
to provide clarity and facilitate comprehension of the process
of the proposed approach. Through this flowchart, the imple-
mentation of SHOA becomes more accessible, ensuring that
each step is clearly defined and understood.

V. CASE STUDY RESULTS AND DISCUSSION
In the realm of distribution systems, both reliability and
resilience enhancement play crucial roles in ensuring the
smooth and uninterrupted delivery of electricity to con-
sumers. Reliability enhancement focuses on metrics, which
measure the frequency and duration of power interruptions
experienced by consumers. Improving reliability is essential
because it directly impacts customer satisfaction, operational
efficiency, and economic productivity. A reliable distribu-
tion system ensures that consumers receive consistent and
uninterrupted electricity, thereby minimizing inconvenience,
financial losses, and potential safety hazards associated with
power outages.
On the other hand, resilience enhancement is equally

important, especially in the face of increasing challenges
posed by extreme weather events, cyber threats, and other
disruptions. Resilience refers to the ability of a distribution
system to withstand and recover from disturbances swiftly,
ensuring minimal downtime and rapid restoration of service.
Enhancing resilience involves deploying measures and tech-
nologies that can quickly detect, isolate, and mitigate disrup-
tions, as well as adapt to changing conditions to maintain
continuous operation. By bolstering resilience, distribution
systems can minimize the impact of disruptions, enhance grid
stability, and ensure reliable electricity supply even under
adverse conditions. Therefore, both reliability enhancement
and resilience enhancement are critical aspects of ensur-
ing the overall effectiveness and performance of distribution
systems, ultimately benefiting consumers, businesses, and
society as a whole.In this proposed work, two studies were
examined:

(i) Case Study-I (Reliability enhancement), and
(ii) Case Study-II (Resilience enhancement)

A. CASE STUDY-I (RELIABILITY ENHANCEMENT)
In the first case study-I, the reliability enhancement. The sim-
ulation outcomes for the 69-bus IEEE test system, focusing
on optimal EVCS placement using SHOA [54] and CSA [55],
are summarized. The studied system is a large scale RDS
with 69 buses and 68 branches, as illustrated in Figure 4.
Line and bus data are sourced from reference [56]. Set at
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FIGURE 4. Schematic diagram of IEEE 69-bus RDS.

TABLE 2. Optimal size and location of EVCS and DG.

100MVA and 12.66kV, the base values include total real
and reactive power loads of 3.80 MW and 2.69 MVAr. This
study categorizes EVCS locations, considering three EVCSs,
each with a power rating of 975 kW for average charging
ports, or potentially 1675.5 kW for the maximum number of
charging ports, aligning with the specified maximum EVCS
demand in reference [57].

The IEEE 69-bus RDS was used to analyses power loss,
voltage stability, and reliability in the EVCS (in G2V mode)
allocation problem. Table 2 presents the findings of sizing
and siting for all of the several cases tested using SHOA and
CSA, offering full insights into the functioning of the 69-bus
system.

Table 3 shows the comparison of various results of reliabil-
ity index in 69-bus RDS. From the Table 3, the comparison
between the base case and scenarios with EVCS alone (Cases
I to III) serves as a foundational benchmark for evaluating the
performance of the SHOA and the CSA. Since the locations
for EVCS are consistent across both approaches, any discrep-
ancies in the reliability indices (SAIFI, SAIDI, and CAIDI)
between SHOA and CSA in these cases can be attributed to
the optimization algorithms themselves.

Case IV introduces a more complex scenario where both
EVCSs and DGs are considered, and the allocation of DGs is
determined by the optimization algorithms. Here, variations
in reliability indices between the proposed SHOA and the
existing CSA-based methods showcase the effectiveness of

SHOA in optimizing the allocation of DGs to enhance system
reliability.

This comparative assessment offers valuable perspectives
on SHOA’s performance in optimizing DG allocation along-
side EVCSs, showcasing its potential benefits compared to
established optimization methods like CSA. By showcasing
SHOA’s impact on reliability indices across diverse system
setups, our research enhances comprehension of SHOA’s
effectiveness in improving system reliability and resilience.

1) CASE-I: BASE CASE
In the initial scenario, devoid of any supplementary EVCS or
DG installations, both SHOA and CSA methodologies yield
indistinguishable reliability metrics. The SAIFI maintains a
constant value of 2.4795, signifying the average interruptions
experienced per customer. Similarly, both the SAIDI and the
CAIDI remain consistent at 77.6787 and 31.3283, respec-
tively, representing the average duration of interruptions per
customer and per interruption.

2) CASE-II: ONE EVCS
The introduction of a solitary EVCS brings about minor
alterations in the reliability metrics across both SHOA and
CSA paradigms. SAIFI experiences a marginal uptick to
2.4827, indicating a slight increase in the average interrup-
tions per customer. Correspondingly, SAIDI exhibits a slight
elevation to 79.6953, reflecting a minor augmentation in the
average interruption duration per customer. Consequently,
CAIDI also undergoes a marginal rise to 31.8805, depicting
the average interruption duration per interruption.

3) CASE-III: TWO EVCS
By incorporating two additional EVCSs into the system,
both SHOA and CSA approaches demonstrate a notable
improvement in reliabilitymetrics. SAIFI escalates to 2.4998,
reflecting a heightened average frequency of interruptions per
customer compared to previous scenarios. Similarly, SAIDI
rises to 81.9982, indicating an extended average duration
of interruptions per customer. Consequently, CAIDI also
experiences an increase, reaching 32.6239, denoting a longer
average interruption duration per interruption.

4) CASE-III: TWO EVCS AND DG
In the scenario involving two EVCSs and DGs, there are
variations between the reliability parameters under the SHOA
and CSA metrics. Under the SHOA metric, SAIFI decreases
to 2.3931 compared to the previous scenarios, suggesting a
slightly lower average number of interruptions per customer.
However, SAIDI remains relatively stable at 78.0023, with
a slight decrease compared to the two EVCS scenario. As a
result, CAIDI decreases marginally to 31.0161. Conversely,
under the CSA metric, SAIFI increases to 2.4254, SAIDI
rises to 79.2154, and CAIDI increases to 32.4265, indicating
a slightly higher level of interruptions compared to the SHOA
metric, potentially due to different calculation methodologies
or considerations of critical system components.
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FIGURE 5. Impact of EVCS Integration on Reliability Indices.

TABLE 3. Results of reliability index in 69-bus RDS.

The inclusion of two EVCS loads significantly affects the
reliability of the 69-bus RDS. Table 3 illustrates the negative

impacts of charging loads on customer-centric reliability met-
rics. With the introduction of EVCS, metrics like SAIFI,
SAIDI, and CAIDI show noticeable increases compared to
the base case values, indicating a decrease in system relia-
bility. Additionally, the integration of DGs contributes to the
enhancement of reliability index values. Figure 5 (a-c) visu-
ally represents these effects on various reliability indicators
within the 69-bus RDS. Moreover, the integration of DGs
plays a pivotal role in sustaining the reliability of the power
network by injecting energy and mitigating power losses.

5) ANALYSIS ON SYSTEM POWER LOSS, VOLTAGE AND
STABILITY
The proposed methodology not only improves reliability but
also effectively addresses power loss, voltage, and stabil-
ity concerns within the power distribution system. Table 5
presents a comparative assessment of system power loss,
voltage stability, and bus voltage under various scenarios,
employing both the SHOA and CSA metrics. This compar-
ison sheds light on the effects of EVCS and DGs on power
distribution system performance.

Initially, the 69-bus system registers power losses of
225 kW and 102.19 kVAr, which escalate with the introduc-
tion of EVCS. For instance, strategically placing one EVCS at
the 7th bus increases real power loss to 292.56 kW, while fur-
ther installations lead to a power loss of 301.39 kW. In deal-
ing with the increasing presence of EVs, integrating EVCS
poses a delicate balance between supporting EV adoption
and maintaining power system stability. DGs are introduced
to mitigate EVCS effects, notably reducing power loss after
their incorporation into the system. The superiority of the
SHOA-based approach in loss reduction, particularly evident
in case-IV, underscores its efficacy over the existing CSA
approach.

Integration of EVCS also impacts the system’s voltage
profile, significantly affecting the VSI. Prior to EVCS inte-
gration, the VSI measures at 0.6822 p.u., decreasing as EVCS
charging loads are introduced. Optimal placement of DGs
leads to an increase in VSI, addressing stability concerns.
However, increasing EVCS numbers adversely affects both
VSI and bus voltage within the distribution system, as evi-
denced by the VSI results across all cases.

Figures 6 and 7 depict the distribution of power loss and
VSI profile across each bus within the 69-bus system under
different scenarios, including the presence of EVCS andDGs.
This visualization offers insights into the impact of EVCS and
DGs on system power loss and stability. Through strategic
placement of DGs and careful consideration of EVCS loca-
tions, the proposed method optimizes system performance
while supporting EV integration and enhancing system sta-
bility and reliability.

The convergence reliability of an algorithm significantly
impacts its efficiency in reaching the global optimum solu-
tion. Figure 8 presents the convergence comparison of
OF-I among different algorithms in Case-IV. With objec-
tive function values of 0.9855 for SHOA and 1.0099 for

113434 VOLUME 12, 2024



S. B. Thanikanti et al.: Optimizing RDS With DG and EV Charging: A Spotted Hyena Approach

FIGURE 6. Power loss on each bus under various cases.

FIGURE 7. VSI on each bus under various cases.

FIGURE 8. Convergence comparison of objective function-I among
different algorithms in Case-IV.

CSA, calculated through equation (11), the analysis reveals
a decrease in the reliability index, indicative of enhanced
system reliability. Remarkably, SHOA achieves convergence
to the optimal objective value in only thirteen iterations,
surpassing CSA’s sixteen iterations, thus demonstrating its
superior speed. SHOA’s distinguishing feature lies in its
exceptional convergence rate, balancing stability and rapidity

TABLE 4. Comparative results system power loss, voltage and stability.

while effectively exploring near-global solutions for optimal
reliability indexes during DG and EVCS allocation. Consis-
tently maintaining swift convergence, SHOA excels in both
speed and efficiency. Additionally, SHOA simplifies param-
eter tuning processes and provides comprehensive solutions
to algorithm selection dilemmas, making it a valuable tool
for enhancing optimization processes in distribution network
planning and management.

Table 4 compares the IEEE 69-bus system’s power loss,
VSImin, and Vmin using the SHOA and CSA across differ-
ent scenarios for Study-I. In the base case, both algorithms
yield identical results with a power loss of 225 kW, VSImin
of 0.6822 p.u, and Vmin of 0.9090 p.u. Adding one EVCS
increases the power loss to 292.56 kW and decreases VSImin
to 0.6551 p.u and Vmin to 0.8998 p.u for both algorithms.
With two EVCS, power loss further rises to 301.39 kW,
and VSImin and Vmin remain unchanged at 0.6550 p.u and
0.8998 p.u, respectively, for both SHOA and CSA. How-
ever, integrating two EVCS and DGs significantly reduces
power loss to 102.65 kW with SHOA and 107.64 kW with
CSA, improves VSImin to 0.8833 p.u (SHOA) and 0.8658 p.u
(CSA), and raises Vmin to 0.9696 p.u (SHOA) and 0.9648 p.u
(CSA). This demonstrates that SHOA provides slightly better
performance in reducing power loss and enhancing voltage
stability compared to CSA.

B. CASE STUDY-II (RESILIENCE ENHANCEMENT)
Case Study-II explores a proposed approach for establishing
microgrids within a modified version of the IEEE 69-bus
RDS. The study investigates three distinct scenarios over a
24-hour period, encompassing a 4-hour outage triggered by
a natural disaster. ENS costs are determined using a fixed
energy rate, while outage costs are computed based on a
predefined value per hour. The primary objective is to min-
imize costs while concurrently enhancing system resilience
through the strategic allocation of DG and EVCS in V2G
mode.

Microgrids are strategically positioned along the system’s
feeders to bolster resilience, with three microgrids strategi-
cally placed. Test system data, including load adjustments and
microgrid placements, are sourced and adjusted accordingly.
The aim is to assess the impact of microgrids, DG, and EVCS
on resilience during natural disasters. Assuming a simulated
storm event causing moderate system damage, a 4-hour out-
age from 12 p.m. to 4 p.m. is considered. Sizing of DG and
EVCS resources within microgrids is determined using the
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FIGURE 9. Layout of the 69-bus system under Case-I without DG/EVCS.

SHOA. Minimizing ENS and optimizing load recovery dur-
ing emergencies are crucial for enhancing system resilience,
with ENS costs calculated based on a fixed energy rate of
0.16 USD/kWh [33].

The case studies are conducted under the following
assumptions:

• All DGs within MGs continue to operate following the
event.

• Line repairs are expected to take 4 hours, scheduled from
12 p.m. to 4 p.m.

• All line repairs occur simultaneously.
• Fault locations and MG formations remain consistent
across all cases to enable comparison.

• EVCS operate in V2G mode.
• Adequate repair crews are available to address all dam-
aged lines.

• All (DGs) withinmicrogrids remain operational after the
event.

Three distinct cases are analyzed within a modified standard
IEEE 69-bus RDS. These case studies are conducted to eval-
uate the influence of DG and EVCS on bolstering system
resilience across different fault scenarios.

• Case-1: Fault without any DG/EVCS.
• Case-2: Fault with only DG.
• Case-3: Fault with DG and EVCS.

1) CASE-I: FAULT WITHOUT ANY DG/EVCS
Case-I evaluates the 69-bus test system’s performance with-
out DG and EVCS. A fault at 12 p.m. causes a 4-hour
outage affecting buses 14-27, 36-46, and 53-65, interrupting
approximately 2248.04 kW of load. This results in a high
ENS value of 8992.16 kWh and a resilience index of 0.691,
indicating system vulnerability due to the absence of backup
systems. This scenario highlights the risk of power supply
interruptions during faults. To enhance system reliability and
address these vulnerabilities, integrating DG and EVCS is
proposed. Using EVCS in V2G mode can provide power and
reduce ENS during outages. Incorporating DG and EVCS

FIGURE 10. ENS profile of the 69-bus system under Case-I without
DG/EVCS.

FIGURE 11. Layout of the 69-bus system under Case-II with only DG.

ensures a continuous power supply, minimizing disruptions
for end users. Case-I underscores the risks of relying solely on
traditional grid operations without backups, while subsequent
cases will explore the benefits of DG and EVCS integration
for improving system resilience.

2) CASE-II: FAULT WITH ONLY DG
In Case-II, a microgrid is set up in the fault-affected area of
buses 14-27, 36-46, and 53-65, with only DGs active and
EVCS inactive. DGs are strategically placed at buses 21,
40, and 60 using the SHOA. The updated IEEE 69-RDS
configuration with these DGs is shown in Figure 11. Table 5
lists the load requirements for each bus, and Table 6 details
the optimal DG locations and capacities. The DGs effectively
meet the 2248.04 kW load demand of the faulted buses
despite inactive EVCS. Figure 12 shows a reduced ENS
profile compared to Case-I. The resilience index improves to
2.493, highlighting the enhanced system resilience from DG
integration.
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TABLE 5. Load demands for individual buses within the microgrid.

TABLE 6. DG and EVCS allocation for MG.

FIGURE 12. ENS profile of the 69-bus system under Case-II with only DG.

3) CASE-III: FAULT WITH DG AND EVCS
In Case-III, the activation of both DG and EVCS contributes
to the bolstering of resilience. Illustrated in Figure 13 is
the seamless integration of DG and EVCS resources into
the 69-bus system, guaranteeing continuous power provision.
With EVs functioning in V2G mode, they serve as backup
power sources during outages. The incorporation of EVs and

FIGURE 13. Layout of the 69-bus system under Case-III with DG and EVCS.

FIGURE 14. ENS profile of the 69-bus system under Case-III with DG and
EVCS.

DGs within the microgrid brings forth numerous advantages,
encompassing energy storage, load redistribution, and the
assimilation of renewable energy sources, thereby fortifying
grid reliability and sustainability.

Fig. 14 depicts the ENS profile of the 69-bus system during
Case-III, where both DG and EVCS are operational. Despite
potential challenges, the system exhibits notable resilience,
as evidenced by an ENS value of 1924.16 kWh. This value
underscores the successful management of energy supply dis-
ruptions. Such resilience is achievable through the efficient
deployment of DG and EVCS, guaranteeing uninterrupted
power provision and minimizing the adverse effects of faults
and interruptions on consumers. Furthermore, in Case-III, the
resilience value significantly increases from 0.691 to 6.906,
underscoring the enhanced resilience achieved through the
integration of both DG and EVCS resources within the MG.
This integrated approach effectivelymitigates disruptions and
ensures continuous power supply during fault scenarios.

A thorough comparative analysis was undertaken to assess
the efficacy of established algorithms in addressing resilience
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issues, with a focus on CSA, conducted under consistent con-
ditions. Table 7 offers a comparative evaluation of resilience
metrics for the IEEE 69-bus system, comparing the perfor-
mance of SHOA and CSA across all examined scenarios. The
comparison reveals the differences in ENS, revenue genera-
tion, revenue loss, and resilience index between SHOA and
CSA methodologies for each case. Common fault area in
the RDS is chosen for both SHOA and CSA for comparison
purpose.

The comparative analysis between SHOA and CSA high-
lights SHOA’s superiority in enhancing the resilience and reli-
ability of the RDS. Across all evaluated parameters, SHOA
consistently outperforms CSA, notably in reducing ENS and
increasing the Rindex . Figure 15 illustrates the comparison
of ENS across various algorithms for the 69-bus system,
offering insights into each algorithm’s efficacy in minimizing
energy supply disruptions during fault scenarios. Similarly,
Figure 16 depicts the comparison of Rindex across different
algorithms for the 69-bus system, enabling stakeholders to
assess the effectiveness of each algorithm in maintaining
system resilience and reliability.

This indicates SHOA’s effectiveness in minimizing dis-
ruptions and ensuring continuous energy supply during fault
scenarios. For instance, in Case-III, SHOAachieves a remark-
able reduction in ENS to 1924.16 kWh, significantly out-
performing CSA’s higher ENS value of 2600.16 kWh. This
substantial difference underscores the critical role of SHOA
inmaintaining grid stability and reliability under adverse con-
ditions. Moreover, SHOA consistently yields higher Rindex
values across all cases, highlighting its ability to enhance
the system’s ability to withstand and recover from disrup-
tions. Notably, the Rindex value of 6.906 attained by SHOA
in Case-III signifies its exceptional capability in mitigating
disruptions and ensuring grid reliability, whereas CSA falls
short with a lower Rindex value of 6.123. In essence, the com-
prehensive analysis emphasizes SHOAas a superior approach
for bolstering system resilience and minimizing energy dis-
ruptions compared to CSA, underscoring its significance in
ensuring the robustness and reliability of power RDS.

Fig. 17 illustrates a comparative analysis of conver-
gence trends between SHOA and CSA concerning objective
function-II (Case-III). Objective function values of 6.906 for
SHOA and 6.123 for CSA, calculated using equation (19),
indicate improved system resilience. Significantly, SHOA
attains convergence to the optimum impartial value in just
eleven iterations, surpassing CSA’s fifteen iterations, demon-
strating its superior speed. SHOA’s unique characteristic
lies in its remarkable convergence rate, striking a balance
between stability and rapidity while efficiently exploring
near-global solutions for optimal resilience indexes during
DG and EVCS allocation. Consistently maintaining rapid
convergence, SHOA excels in both speed and efficiency.
Moreover, SHOA simplifies parameter tuning processes and
offers comprehensive solutions to algorithm selection dilem-
mas, making it a valuable asset for optimizing distribution
network planning and management.

FIGURE 15. Comparison of ENS across different algorithms for the 69-bus
system.

FIGURE 16. Comparison of resilience index across different algorithms
for the 69-bus system.

FIGURE 17. Convergence comparison of objective function-II among
different algorithms in Case-III.

Table 7 presents a comparative analysis of the resilience
metrics for the IEEE 69-bus system under the SHOA and
the CSA across three cases for Study-I. In Case-I, both
SHOA and CSA show identical results with an ENS of
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TABLE 7. Comparison of resilience metrics analysis of IEEE 69-bus
system under SHOA and CSA.

8992.16 kWh, revenue generation of $12,163.2, revenue loss
of $2432.64, and a resilience index of 0.691, indicating no
improvement with the base configuration. In Case-II, SHOA
performs better with an ENS of 4352.16 kWh compared
to CSA’s 4896.16 kWh, generating $12,905.6 in revenue
versus CSA’s $12,818.6, and showing a lower revenue loss
($1690.24 vs. $1777.28). The resilience index for SHOA
is higher at 2.493 compared to CSA’s 2.269, highlight-
ing SHOA’s superior performance in enhancing system
resilience. In Case-III, SHOA again outperformsCSAwith an
ENS of 1924.16 kWh against 2600.16 kWh, higher revenue
generation ($13,294.08 vs. $13,185.9), and lower revenue
loss ($1301.76 vs. $1409.92). The resilience index for SHOA
is significantly higher at 6.906 compared to CSA’s 6.123,
demonstrating the effectiveness of SHOA in improving sys-
tem resilience and efficiency.

VI. CONCLUSION AND FUTURE WORK
This study examined the impact of EVCS on RDS, focusing
on enhancing reliability and resilience through analysis of
the IEEE 69-bus RDS. Factors such as power loss, volt-
age stability, and bus voltage were considered. Our find-
ings highlighted the importance of proactive measures and
advanced optimization algorithms, like SHOA, for optimal
EVCS placement and improved RDS performance. Com-
parisons with CSA demonstrated the effectiveness of our
approach. The study also emphasized the need for infras-
tructure upgrades and smart charging strategies to ensure a
reliable power supply for EVs. By addressing challenges and
solutions related to EVCS integration, this research offers
valuable insights for optimizing charging infrastructure and
strengthening RDS resilience.

To further enhance the reliability and resilience of electri-
cal RDS, future work should focus on:
Renewable energy integration: Enhancing coordination

between renewable energy generation and EV charging to
maximize clean energy utilization.
Vehicle-to-everything (V2X) technology: Enhancing bidi-

rectional power flow control and scheduling algorithms to
enable efficient energy exchange between vehicles and the
grid.
Dynamic pricing and incentives: Exploring mechanisms

to effectively manage peak demand and optimize charging

patterns through dynamic pricing strategies and incentive
programs.
Grid-interactive charging: Developing standards and

infrastructure for seamless integration of grid-interactive
charging technology to support grid stability and reliability.
Collaborative planning: Ensuring effective stakeholder

coordination through collaborative planning and policy
development.
Resilience modeling: Developing techniques to evaluate

RDS resilience with EVCS and other DERs.
Resilience metrics: Standardizing metrics for quantitative

assessment and strategy comparison.
Advanced control systems: Exploring predictive ana-

lytics and autonomous control algorithms for real-time
management.
Policy frameworks: Incorporating resilience considera-

tions into regulatory guidelines and investment decisions.
Grid hardening: Implementing measures like under-

grounding power lines and strategic equipment placement to
withstand extreme weather and disturbances.

Addressing these areas can significantly enhance RDS
reliability and resilience, ensuring a more sustainable and
reliable electricity supply for communities and consumers.
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