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ABSTRACT Monocular 3D object tracking is a challenging task because monocular image lacks depth
information necessary for 3D scene understanding. Modern methods typically rely on deep learning to
reconstruct 3D information from learned prior, which demands strenuous effort on acquiring ground-truth
annotated data and does not generalize for various camera settings. We present a method to continuously
track 3D location and orientation of the target object from a monocular image sequence from 2D instance
segmentation methods. We reconstruct the structure and trajectory of the objects using factor graph
optimization incorporating reprojection error of keypoint tracks, kinematic motion model and bounding box
constraints. We propose a combined ellipsoid-cuboid object representation and bounding box constraint to
model the object dimension. We evaluate our algorithm in simulation dataset generated using CARLA, and
the result indicates that the method is robust to 2D bounding box error and the proposed object representation
yields more accurate pose and size estimation compared to solely using either representation.

INDEX TERMS Graph optimization, monocular vision, 3D object tracking.

I. INTRODUCTION
Capability to understand surrounding environments is an
essential requirement for autonomous vehicles and mobile
robots. Specifically, detecting and tracking dynamic objects
in 3D world is crucial for safe autonomous navigation,
since it has a direct impact on downstream tasks such
as collision avoidance and simultaneous localization and
mapping (SLAM).

LiDAR is a popular sensor choice when it comes to 3D
object tracking [1], [2], [3], since it offers highly accurate
3D point cloud data of the measurements of the surrounding
environment. However, the cost, size, and weight of LiDAR
sensors are recognized as expensive, and processing 3D point
clouds data demands significant computing power. Camera is
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an alternative choice, which offers low cost and light weight
solution that is widely applicable to variety of platforms.
Stereo camera enables obtaining 3D information by disparity
estimation, but the accuracy of depth information degrades
as the target is far away compared to its baseline. RGBD
camera is another sensor which provides depth measurement.
However, reliability of depth measurement degrades under
strong light source such as sunlight, hence it is inadequate for
outdoor applications. Given this context, utilizing appearance
cue to reconstruct 3D information is crucial despite the
availability of depth measurements, which renders studying
monocular 3D object tracking valuable for the progress of
image-based methods.

To handle the absence of depth measurement which is
crucial for reconstructing 3D geometry of objects, majority of
the monocular image-based tracking approaches utilize deep
learning methods. However, deep learning-based 3D object
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FIGURE 1. Illustrative images of objects’ ground-truth 3D bounding
box(colored green) and corresponding 3D ellipsoid(colored red)
overlapped with 2D detection bounding box(colored blue). Image plane
projection of these object representations does not fit the 2D bounding
box most of the time. We model the 2D bounding box as weighted sum of
the two 3D representations and estimate the weight parameters for each
frame along with pose parameters.

tracking has few limitations that prevent it from widespread
application. First, meticulous data processing procedure is
required to generate accurate labels for training neural
network. For example, ground-truth labels for Kitti3D [4]
is obtained by processing 3D LiDAR pointclouds using
special tools and projecting back to image plane with accurate
extrinsic calibration between LiDAR and camera. Second, the
performance of the 3D detector is known to be susceptible
to domain gap between training and test data, such as
different camera intrinsic/extrinsincs and placement on the
platform [5], [6].

Considering aforementioned concerns, we present a
monocular 3D object tracking framework solely relying on
2D instance segmentation. Not relying on neural network
requires alternativemethod to recover 3D information. To this
end, we adopt multiple view geometry technique [7] which
is widely practiced in monocular visual odometry or SLAM
methods. In particular, we track keypoints in region of
interest(RoI) across multiple images, and jointly estimate
their 3D coordinates and object poses by solving nonlinear
least squares problem.

Still, sole reliance on keypoint tracks is insufficient for
accurate estimation of scale and shape of the object, and
requires us to handle the following ambiguities.

1) shape ambiguity : only part of objects’ 3D geometry
which is visible from the camera can be reconstructed.

2) pose ambiguity : The reconstructed points’ 3D coordi-
nates are invariant to SE(3) transformation, whichmakes
the object pose ambiguous.

3) scale ambiguity : Absolute scale of the reconstructed
shape and trajectory cannot be estimated without
appropriate prior.

To handle shape and pose ambiguity, it is necessary to
have an appropriate object representation and constraint to
restrict the search space for size and pose of the object.

Multiple types of object representation have been applied,
from 3D cuboid [8], [9], semantic keypoints [10], [11], shape
prior [12], [13] and 3D ellipsoid [14], [15], [16]. From these
schemes, 3D cuboid and ellipsoid both fully encodes the
size(width, height and longitude) and pose of the object
with minimal number of parameters. Also, previous works
have demonstrated that their 3D parameters can be recovered
from 2D bounding boxes, both for 3D cuboid [9], [17], and
Ellipsoid [14], [15]. This characteristic is especially desirable
since we choose to not rely on deep neural network for 3D
pose and shape estimation.

Most of these approaches apply the tight 2D bounding
box model to constrain the object’s parameters: the 2D
detection bounding box tightly bounds the image plane
projection of either 3D bounding box or ellipsoid. However,
we observe that both of the assumption leads to erroneous
estimation of shape parameters. An illustration of tight 2D
bounding box model failing to properly model the shape
of the object is illustrated in Figure 1. When 2D bounding
box model is applied to the 3D ellipsoid the object size is
overestimated, while when applied to 3D bounding box the
size is underestimated.

Based on these observations, we choose to combine 3D
cuboid and ellipsoid, and devise a method to constrain the
shape of the object with 2D bounding boxes. We assume that
a 2D detection bounding boxes’ edge can be expressed as
weighted average of corresponding edges of 2D bounding
boxes each tightly enclosing the image plane projection of
the ellipsoid and the 3D bounding box. We jointly estimate
the weight parameter for each edge alongside point tracks,
size and trajectory of the object.

To tackle the scale ambiguity, We assume that the motion
of dynamic objects is restricted to a known supporting
plane, e.g. a ground plane. This assumption is commonly
accepted in both deep learning-based approaches [18], [19],
and approaches that do not use deep learning for 3D
reconstruction [17], [20]. We demonstrate that incorporating
supporting plane assumption with our object representation
leads to an accurate scale recovery of object trajectory.

Properly initializing the object pose solely based on
geometric information is another challenging task. Never-
theless, it can have a significant impact on the performance
of pose estimation after initialization. Previous methods
has tackled this problem by utilizing multiple tangential
planes from surface reconstruction [21] or appearance-based
heuristics [17], [22]. In this paper, we propose a two-view
initialization scheme for object pose and shape parameters by
assuming a simple motion model which is widely applicable
to many dynamic objects.

In summary, our contributions are as follows. We propose
a monocular 3D object tracking method based on solving
nonlinear optimization over sliding window of frames,
incorporating multiple-view geometry techniques, planar
motion assumption and bounding box constraints. To initially
estimate the object pose and shape parameters, we devise a
two-view initialization method which utilizes 2D bounding

109282 VOLUME 12, 2024



G. C. Kim et al.: Optimization-Based Monocular 3D Object Tracking

box constraints on 3D geometric representations and simple
motion model. Through experiments on simulation dataset,
we show that the suggested tight 2D bounding box constraint
on combined ellipsoid-cuboid representation leads to more
accurate recovery of object size and pose parameters
compared to either of the two representation used separately.

II. RELATED WORKS
A. MONOCULAR 3D OBJECT TRACKING
3D object tracking has been studied for various sensor
settings, including LiDAR [2], [3], stereo camera [23] and
monocular camera [24], [25]. In this section, we primarily
focus on monocular 3D object tracking literature. The most
prominent approach in 3D object tracking is the tracking-by-
detection paradigm, where first a detector is employed to each
frame, and association between object track and detection is
established by utilizing multiple cues. Joint 3D detection and
tracking [24] train a neural network to estimate 3D bounding
box from 2D bounding boxes and association is performed
utilizing depth ordering strategy. Quasi-dense tracking [25]
leverages 3D trajectory prediction based on motion model
and quasi-dense similarity learning for association. 3DOT [1]
employs a 3D bounding box detector and associates the tracks
based on 3D Kalman filter with simple motion model.

These methods rely on deep learning to estimate the object
pose and shape parameters required for 3D tracking. Unlike
their 2D counterparts, deep-learning-based 3D object detec-
tion methods have the following drawbacks which hinder
its straightforward employment in practice. One problem is
the difficulty in acquiring the ground-truth annotation. Since
RGB image does not contain depth information, acquiring
3D object detection ground-truth involves careful processing
of additional sensor data which straightforwardly yields
depth measurements such as LiDAR [4], [26]. To relax this
requirement, self-supervised learning methods have been
invested [27], [28], although these methods still require
LiDAR or depth measurement for training. In addition, it is
reported that performance of the deep learning-based 3D
object detectors is affected by discrepancy between sensor
settings in the training dataset and during deployment [5],
[6]. In this work, we step aside from relying on deep
learning methods and instead utilize multiple view geometry
to estimate 3D attributes of the target objects.

B. 3D OBJECT REPRESENTATIONS
Various object representations have been employed to
estimate and track the position and orientation of objects
in the scene. Methods utilizing object shape priors [29],
[30] train a neural network to infer category-specific object
shape models from images which are then utilized to
provide depth supervision required for 3D object detection.
Training an object shape prior often involves additional
training with large amount of CAD data, which requires
a significant amount of computing resources in both the
training and inference phases. Another popular choice is

the 3D cuboid [8], [9], [24], [25], in which the system
attempts to estimate the 3D bounding box of the detected
objects. One typical approach is to formulate the problem as
a direct regression of 3D bounding box parameters from 2D
image features within the object region of interest(ROI) [8],
[24]. This approach when applied for monocular 3D object
detection suffers from large search space and ambiguity, since
appearance is the only cue available for 3D object detection.

It is generally accepted that leveraging additional con-
straints to regulate 3D object parameters is the key to
overcome this shortcoming. Assuming 2D detection bound-
ing box tightly encloses the 3D bounding box [8], [9], [17]
is an assumption that is frequently made. Other approaches
assume objects are lies on a ground plane to resolve pose
ambiguity [18], [19]. In our approach, we also assume that
the objects lie on a known ground plane, and exploits the
relationship between 2D bounding box and projection of
3D bounding box. However, we observe that the tight 2D
bounding box model often leads to erroneous estimation of
object size due to discrepancy between the actual object
boundary and its 3D bounding box.

3D ellipsoid representation is another object representation
which enables parametrization of object size and pose
with minimal number of variables. It is mainly invested in
object SLAM literature, whose objective is to construct a
lightweight object-centric map from sequence of sensor data.
Early works [14], [31] demonstrated that it is feasible to
fully specify a 3D ellipsoid given 2D bounding boxes from
two views under the tight 2D bounding box assumption.
In practice, lack of observations from distinct enough
viewpoints result in degeneracy in the estimated quadric
parameters. Several following researches have suggested
methods to mitigate this issue and robustly estimate the ellip-
soid parameters. Cao et al. [21] utilized a supporting plane
and surface reconstruction to enforce multiple tangential
plane constraints. EAO-SLAM [22] employed line segment
detection and alignment method for robust estimation of
object orientation.

In this work, we make use of both geometric represen-
tations to model the size and pose of an object. We figure
out that tight 2D bounding box model for 3D bounding box
yields an underestimation of the object size, while for 3D
ellipsoid it leads to an overestimation of the object dimension.
We combine both representation for more accurate size
estimation.

C. OPTIMIZATION FOR 3D OBJECT TRACKING
Accuracy of initial estimate of object pose and size is often
not satisfactory. Hence existing 3D object tracking methods
take further refinement steps to improve their accuracy.
References [1], [32], and [33] employ variants of Kalman
filter to accurately track 3D objects’ state. While filtering
achieves low computational cost by only retaining estimate
of the most recent frame, it lacks the capability to utilize
long-term measurement history.
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On the other hand, nonlinear optimization methods incor-
porate measurements from previous frames in the expense of
higher computational cost. Studies in SLAM literature [34],
[35] have consistently shown that nonlinear optimization
methods outperform filtering methods in terms of estimation
accuracy. Multiple researches have explored the application
of nonlinear optimization for solving 3D object pose tracking
problem. Reference [23] solves a dynamic object bundle
adjustment problem to optimize 3D bounding box and
point cloud. Subsequent work [36] employs a per-frame
marginalization strategy and solves the optimization over a
fixed-size sliding window, reducing repeated computation.
ClusterVO [37] proposes a dual sliding window structure
which consists of multiple past keyframes and recent
frames. This structure is also utilized in the formulation of
optimization problem in our approach.

A common practice in optimization-based object pose
tracking is to restrict object poses to follow a certain
motion model. SAMP [13] utilizes a motion model and
ground plane prior to optimize the shape distance function
representation of the target vehicle over the history of depth
measurements. CubeSLAM [17] also assumes that the objects
are constrained to move on a common ground plane. Our
method also incorporates both the ground plane prior and
motionmodel into the optimization problem to estimate target
object’s pose and size.

III. PROBLEM DESCRIPTION
In this article, we use the nomenclature presented in Table 1.
We also note that if a vector or a transformation is stated
without a specific coordinate frame, by default its reference
coordinate frame is the ground-centered coordinate frame {g},
whose z axis is parallel to the normal of the ground plane
and zero is located on an arbitrary point on the ground plane.
We assume that the target objects lie on a ground plane which
parameters are known. We also presume that the camera
transform cTg are known for each frame.
We formulate the problem ofmonocular 3D object tracking

as follows. We assume that 2D instance segmentation of
a single target of interest is given in the first frame.
For input image at time k , 2D object detection result
{D(1)(k),D(2)(k), · · · ,D(Nk )(k)} is provided by an off-the
shelf instance-segmentation method, where each detection
D(i)(k) is associated with a 2D bounding box β(i)(k) and a
segmentation mask M (i)(k). Out of these, we determine the
appropriate object detection for the tracked object. After-
wards, utilizing the associated detection result, we estimate
the object center position to(k) = [xo(k), yo(k), zo(k)]T,
orientation (Ro(k)) and size (r = [rx , ry, rz]T) of the
object. Since we consider the object pose to be restricted
by the ground plane, the number of variables that need to
be estimated per frame is reduced from 6 to 3: We can set
the z axis translation to be equivalent to the z axis radius
of the object rz, thus only regard the yaw angle ψo(k) for
orientation. We also mention that the object’s speed so(k)
and angular velocity ωo(k) are estimated in the process as a

TABLE 1. Notation used in this article.

byproduct, but it is not the primary focus. We define 2D state
variables Xo(k) := {gxo(k), ψo(k), so(k), ωo(k)} to denote
the variables which are estimated per frame.

IV. METHOD
An overview of our method is presented in Figure 2.
We maintain a sliding window of frames which consists of
Nr most recent frames (termed recent frame window Wr )
and Nk latest keyframes (termed keyframe window Wk ).
Given an input image and instance segmentation result,
we first perform tracking in 2D domain using grid-based
color histogrammatching (Sec. IV-B), followed by extraction
and tracking of keypoints [38] from the associated 2D
segmentation mask. If the tracked object’s 3D pose and shape
are not initialized, the object initialization algorithm (Sec.
IV-C) attempt to estimate the 3D size and pose parameters
from two view reconstruction result. Otherwise, object pose
is first optimized with motion only optimization (Sec. IV-D).
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FIGURE 2. Flowchart of the proposed system. We represent the target object’s shape as combined ellipsoid-cuboid form (Sec IV-A). Given a
sequence of monocular images with known camera pose and instance segmentation, the object association module tracks the object in
image space using appearance cues (Sec IV-B). If a previous estimate of the object’s state is available, we perform motion-only
optimization (Sec IV-D). Otherwise, we initialize the variables utilizing ground plane and motion constraints (Sec IV-C). Finally, all variables
are optimized within the sliding window optimization framework (Sec IV-E).

Afterwards, a sliding window optimization is performed to
jointly refine the structure variables (3D position of keypoint
tracks and size of the object) and the state variables (pose and
velocity of the object) at each frame in the sliding window.
In the following subsections, we explain each module of the
proposed method in detail.

A. COMBINED ELLIPSOID-CUBOID OBJECT
REPRESENTATION
We begin with an explanation of the combined ellipsoid-
cuboid object representation and the tight 2D bounding box
model utilized to estimate the target object’s size and pose.
The 3D cuboid representation refers to the object’s 3D
bounding box. Since we only consider the objects lying on
a known ground plane, the 3D bounding box can be fully
defined using six free variables as mentioned in III. We can
also consider the 3D ellipsoid with the same position and
orientation, and radius equal to the half of each axis length.

The tight 2D bounding box model for each 3D represen-
tation assumes that the 2D bounding box tightly encloses
image plane projection of the 3D representation. For 3D
cuboid, four edges of the 2D bounding box βcub(k) =

[βcubl (k), βcubt (k), βcubr (k), βcubb (k)] can be acquired by rea-
soning over the image plane projection of the 8 corners of the
cuboid {c1, c2, · · · c8}.

βcubl (k) = argmin
u

proj(Po(k), ci)

βcubt (k) = argmin
v

proj(Po(k), ci)

βcubr (k) = argmax
u

proj(Po(k), ci)

βcubb (k) = argmax
v

proj(Po(k), ci), i = 1, · · · , 8 (1)

Meanwhile, the image plane projection of the ellipsoid
forms a 2D ellipse. The dual conic matrix of 2D ellipse C∗

o
and the dual quadric matrix of 3D ellipsoidQ∗

o are associated
by the projection matrix P:

C∗
o(k) = Pa(k)aQ∗

o(k)Pa(k)T (2)

where the subscript {a} can be an arbitrary coordinate
frame. Mathematical details about the dual conic and
dual quadric representation can be referred to [7]. For an
ellipse, the maximum/minimum of u, v coordinate values
which define the 2D bounding box edges βell(k) =

[βelll (k), βellt (k), βellr (k), βellb (k)] can be evaluated in an ana-
lytic form [14].

Instead of regarding a single representation for the 2D
bounding box constraint, we model each edge of the 2D
detection bounding box to be weighted average of the
corresponding edge of βell and βcub.

βi(k) = λiβ
ell
i (k) + (1 − λi)βcubi (k), i = l, t, r, b (3)

The proposed 2D bounding box constraint is visualized in
Figure 3. Alongside the object size and poses in the sliding
window, we jointly estimate the values of optimal weight
parameters that minimize the error between the model and
the observation.

B. OBJECT ASSOCIATION
Given an input image at time k and 2D detection results
{D(1)(k),D(2)(k), · · · ,D(Nk )(k)}, the object association mod-
ule aims to find the detection result D∗(k) with the highest
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FIGURE 3. Visualization of the proposed 2D bounding box constraint for
combined ellipsoid-cuboid representation. We jointly estimate the size of
the object alongside the edge-wise weight λ = [λl , λt , λr , λb] for recent
observations in the sliding window.

association score for the tracked object. Here, we only take
account for the detection results with class label equal to
the tracked object. The association score comprises of two
measures: Appearance similarity and Spatial affinity.

To evaluate appearance similarity score, we employ a
method based on color histogram matching similar to the
one proposed in Karunasekera et al. [39]. Figure 4 represents
the evaluation process appearance similarity. In detail, the
image is transformed into HSV color space, and for each
2D detection result the corresponding region of interest is
uniformly divided into Ng × Ng grids. Histograms with Nb
bins for each pair of hue (H) and saturation (S) values
are calculated on each grid. Then the appearance similarity
between two detection results D1 and D2 is defined as:

app(D1,D2) =

∑
n vis(D

1
n) · vis(D2

n) · corr(H1
n ,H

2
n )∑

n vis(D1
n) · vis(D2

n)
(4)

where H i
n and vis(D

i
n) denote the histogram value of nth grid

for detection Di and visibility score for the grid respectively.
Here, the visibility score is simply computed as the ratio
of pixels which belong to the instance segmentation mask
M i. We evaluate the similarity of each 2D detection D(i)(k)
against all 2D detection results associated with the tracked
object within the recent frame window. The final appearance
similarity score is selected as the maximum among the
computed similarity values.

Spatial affinity score evaluates how closely the predicted
object’s 2D bounding box matches the detection bounding
box. We choose to evaluate the Intersection over Union (IoU)
against the predicted 2D bounding box to measure the spatial
affinity. For 2D bounding box prediction, two cases should
be taken into account.

Case 1 is when the object size and pose estimation for the
last frame are available. In this case, we predict the pose of
the object at the next frame by assuming constant velocity
and angular velocity from the last two frames. We use the
weight parameter associated to the latest frame, and take the
weighted average of 2D bounding boxes of the projected 3D
ellipsoid and cuboid to output the predicted bounding box.

FIGURE 4. Simplified illustration of the appearance similarity
measurement scheme.

Case 2 is when the object track does not contain 3D
information yet. This occurs due to our framework requiring
at least two frames for object’s pose and size estimation.
We roughly predict the 2D bounding box as follows: We
unproject 2 bottom corners of the bounding box from the last
frame so they lie on the ground plane. The two top corners
are also unprojected to 3D assuming that they respectively lie
on the line vertical to the plane and crossing bottom corner.
We reproject the 3D points onto current frame, and take the
extrema of u, v coordinates to obtain the 2D bounding box.

The final association score is expressed as a weighted
sum of the appearance similarity score and the spatial
affinity score. Regarding the unreliability of spatial affinity
evaluation in case 2, we apply a slightly smaller weight for
spatial affinity score in this case.

C. OBJECT INITIALIZATION USING ELLIPSOID
REPRESENTATION
In this subsection, we explain the object initialization module
in detail. Given first few frames and 2D detections associated
with the object {D∗(1),D∗(2), · · · ,D∗(L)}, the initialization
module attempts to estimate the dimension r and state history
of the object {X(1),X(2), · · · ,X(L)}. For the first (1st) and
the last (Lth) frame in the 2D track history, the relative pose
between the frames with respect to the camera frame can
be recovered by epipolar geometry. specifically, the epipolar
matrix acquired by two view geometry method [7] is related
to the object-to-camera transform at each frame as follows.

EL1 = [tL1]×RL1

TL1 = {RL1, stL1} := cTo(L)oTc(1)

= cTg(L)gTo(L)oTg(1)gTc(1) (5)

where s is a scale variable that arises from scale ambiguity.
Since rotation is scale-invariant, we can compute the
orientation difference between the two frames.

gRc(L)RL1cRg(1) = gRo(L)oRg(1)

= Rotz(ψo(L) − ψo(1)) (6)

Let us define 1ψ := ψo(L) − ψo(1). We would like to
identify the values of ψo(1) and ψo(L) for given translation
gx(1) and gx(L) by utilizing a simple motion model which

109286 VOLUME 12, 2024



G. C. Kim et al.: Optimization-Based Monocular 3D Object Tracking

FIGURE 5. Visualization of the two view Translation sampling strategy.
(Left) : We uniformly sample along the ray crossing the center of the first
frame’s 2D bounding box β(1). (right) Corresponding translation at frame
L (denoted as gt(i )(L)) is determined by r (i )

z and the center of the 2D
bounding box β(L).

couples the object’s orientation with displacement between
the frames. Specifically, we apply the kinematic bicycle
model of the following form.

ψo(L) = ψo(1) +1ψ

gxo(L) = gxo(1) +

[
cosφL,1
sinφL,1

]
1d (7)

where φL,1 = (ψo(1) + ψo(L))/2 and 1d denotes the size
of displacement between two frames. If gx(1) and gx(L) are
given, we can calculate φL,1, and the values of ψo(1), ψo(L)
are obtained consequently.

We generate Ns samples of translation pair {gt(1), gt(L)}.
Here, we assume that the center of the 3D bounding box
lies on the ray crossing the center of 2D detection bounding
box. We take Ns translation samples, evenly spaced along
the ray and ranging in distance from dmin to dmax. The
maximum distance along the ray is constrained the ground
plane. We set the minimum height for the object center to
lie above the ground plane to limit the search space. For
each sample gt(i)(1), corresponding height of the object center
r (i)z is determined, and accordingly the translation at frame
L is derived from the 2D bounding box center and its z
axis coordinate value. The sampling strategy is visualized in
Figure 5.

Now since the values of gxi(1), gx(i)(L) and rz are available,
ψ i
o(1) and ψ

i
o(L) are also derived from the motion model.

Now we estimate the best values of rx , ry for each sample.
Here, we utilize the 3D ellipsoid model to initially estimate
rx and ry.We assume that the 2D bounding box is tangential to
the image plane projection of the 3D ellipsoid. An equivalent
statment of this assumption is that 3D ellipsoid is tangential
to the plane defined by the camera center and unprojected
line of each 2D bounding box edges. The dual-quadric
representation allows us to formulate this constraint as a
single equation:

πT
i Q

∗
oπ

T
i = 0, i = l, t, b, r (8)

where π i is the plane parameter of the plane corresponding
to 2D bounding box edge βi. In the case of 3D ellipsoid, the
dual-quadric matrix Q∗

o can be expressed as follows:

Q∗
o =

[
RoDoRT

o − totTo −to
−tTo −1

]
.

D = Diag([r2x , r
2
y , r

2
z ]) (9)

When the ground plane assumption is applied, the expres-
sion in equation (9) can be further simplified. Substituting
this simplified equation to equation (8) yields equation (10).

πT
i

C 00
0T r2z 0
0T 0 −1

 π i = πT
i Sπ i,

S :=

[
totTo to
tTo 0

]
(10)

Let π i := [ni, ai] = [αi, βi, γi, ai]. Equation (10) can be
reduced to the following equation:

[
α2i 2αiβi β2i

] C11
C12
C22

 = −γ 2
i r

2
z + (ai + nTi t)

2

i = l, t, b, r (11)

where Cij denotes the entry in (i, j) of the matrix C. Since
each entry in C is a linear combination of r2x , r

2
y for a fixed

ψ . Having 2 bounding boxes at time 1 and L offers 8 linear
equations. We additionally apply a simple prior ηx , ηy on the
ratio of rx , ry and rz.[

1/r2z 0
0 1/r2z

] [
r2x
r2y

]
=

[
η2x
η2y

]
(12)

We obtain rx and ry for each sample {gxi(1), gx(i)(L)}
by solving the linear system. We measure each sample’s
suitability with sum of two measures. The first is L1-norm
of the residual of the linear system given by equation (11)
and (12). The second is the compliance of the sampled
translationwith the epipolar constraint written at equation (5).
Rearranging equation (5) yields the following constraint,

soRc(L)tL1 = otg(1) − otg(L) − V (13)

where V is a variable that is independent of the object’s
position. We evaluate the orientation difference between the
left and right hand sides of the equation. The sample with
the lowest value for the weighted sum of these two metrics is
selected.

We further refine the two view estimation using non-
linear optimization to obtain the final initialization result.
We incorporate reprojection error of the point tracks, motion
model and bounding box model to formulate the nonlinear
optimization problem.

{Xo(1),Xo(L),S} =

∑
k=1,L

[ρbox(||ebox(k)||26box )

+

∑
i

ρproj(||eproj(k, i)||26proj ]

+ ρmot (||emot (1,L)||2) (14)

where ρ(·) represents the Huber norm with distinct thresholds
for individual loss terms. The bounding box error ebox and the
motion model error emot are defined in equation (15). Since
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the weight parameters are yet to be estimated, we presume
equal weights of 0.5 for both cuboid and ellipsoid.

ebox(Xo(k), r; β(k)) =
1
2
(βelli (X, r) + βcubi (X, r)) − βi(k)

emot (Xo(j),Xok) =
(ψo(k) + ψo(j))

2

− arctan( g
yo(k) − gyo(j)

gxo(k) − gxo(j)
) (15)

D. MOTION-ONLY OPTIMIZATION AND
KEYFRAME SELECTION
Now suppose that the 3D size and pose of the object for
the latest frames are available. Given the input image at
time k and the selected 2D detection D∗(k), motion-only
optimization is performed to provide an initial estimation of
the current object state Xo(k) = {gxo(k), ψo(k), so(k), ω(k)}.
First, we perform state prediction by applying the kinematic
bicycle model (7) on the last state estimate X̂o(k − 1).
Afterwards, 2D position gxo(k) and the orientation ψo(k)
is further optimized by solving a nonlinear optimization
problem. Specifically, we compute the 2D state which
minimizes the reprojection error of point tracks and the
bounding box error.

{gx∗
o(k), ψ

∗

o(k)} = argmin
x,ψ

ρbox(||ebox(X, r; β(k))||26box )

+

∑
i

ρproj(||eproj(X, r, opi;ui)||26proj )

(16)

Here, we use the weight parameter associated to the latest
frame to evaluate ebox .
After tracking is performed, we extract new keypoints, and

determine whether the current frame should be selected as
a new keyframe. Our keyframe selection strategy is similar
to that of keyframe-based SLAM systems [34], [40]. The
current frame is tested for the following conditions, and it
is selected as a new keyframe if it satisfies at least one of
them.

1) Under 70% of the keypoints in the current frame are
observed in the last keyframe.

2) More than 0.4 seconds have elapsed since latest
keyframe insertion.

3) Displacement or rotation exceeding a predefined thresh-
old (2.0 m/10◦) on the estimated object-to-camera
transformation cTo(k) = {cRo(k), cto(k)} since the last
keyframe.

If the frame is selected as a keyframe, we attempt 3D
reconstruction on the keypoint tracks which are not yet
triangulated. A 3D reconstruction opi is considered failure if
the reprojection error is larger than a certain threshold or opi is
too large compared to the object size. If more than 50% of the
3D reconstruction trials result in failure, keyframe insertion
is cancelled.

FIGURE 6. Factor Graph representation of the sliding window
optimization problem. The sliding window comprises of the recent frame
window Wr and the keyframe window Wk . We optimize the state
variables and the structure variables regarding multiple error functions
presented in the figure.

E. SLIDING WINDOW OPTIMIZATION
After the motion-only optimization, we optimize pose of the
object for the frames within the sliding window alongside
the structure variables S = {p1 · · · ,pNp} ∪ {r}. We apply
sliding window formulation similar to that of ClusterVO [37],
where the frames are managed in two tracks. The recent
frame window Wr consists of the most recent Nr frames,
which enables the tracker to maintain enough observations
to capture the recent motion pattern and track the 2D
appearance status. The keyframe window Wk maintains Nk
latest keyframes ahead of the recent frame window, which
provides multiple observations across diverse viewpoints.
This allows for more stable optimization of the structure
variables. We heuristically select Nr = 3 and Nk = 7.
The sliding window optimization involves state variables

over all frames within the window, size and the point tracks.
In addition to all the constraints introduced beforehand,
we include constant speed error econst (j, j+ 1) = so(j+ 1)−
so(j) for the recent frame window. For more stable tracking
performance, we fix the state of the object at keyframes
which are old enough. The entire optimization is configured
as a factor graph optimization problem. We implement
the optimization algorithm based on GTSAM [41] library.
Figure 6 illustrates the sliding window formulation used in
the proposed method.

Since the observed 2D boundary of an object alters by
viewpoint change, presuming uniform weight parameters for
all observation is not a reasonable approach. Meanwhile,
using separate weight parameters for each frame leads to
unstable estimation of object poses and shape due to high
degree of freedom in variable space, and makes the frame-
work susceptible to noise in object detection results. We set
the same weights for the recent frame window, since object
viewpoint does not change significantly among consecutive
observations. We designate this weight parameter as λr =

[λrl , λ
r
t , λ

r
r , λ

r
b]. For keyframes, we maintain the value of λr
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TABLE 2. Object tracking performance with different 3D object representations.

from the last time when the keyframe was part of the recent
frame window.

V. RESULTS AND DISCUSSION
In this section, we examine the performance of the proposed
method. We use our dataset generated with CARLA [42]
simulator for experiment. The dataset comprises of RGB
images of size 1280 × 400 captured from a simulated
camera equipped on a vehicle in a traffic scenario, and the
ground-truth instance segmentation mask for corresponding
RGB image. Ground-truth histories of vehicle poses over
time and the dimension of the vehicle are also accessible,
thus utilized for performance evaluation. Since our algorithm
assumes that the target object is not occluded, we evaluate
the algorithm over sequences of observations where the target
vehicle is not occluded by other objects.

A. EVALUATION METRIC
We choose 4 evaluation metrics commonly used in single
object tracking. The first two metrics are Success and
Precision metrics defined in [43]. Success (S) is defined
as average overlap between the predicted and ground-truth
bounding boxes, and precision (P) is defined as the Area
Under the Curve (AUC) with distance threshold ranging from
0m to 2m. For evaluating Intersection Over Union (IoU) for
bounding boxes, we choose to use bird-eye-view IoU since
our target objects lie on a common ground plane. The other
two are mean translation error (1t) and mean rotation error
(1ψ).

B. 3D REPRESENTATION COMPARISON
In this subsection, we demonstrate the performance of the
proposed combined ellipsoid-cuboid object representation.
To this end, we compare the proposed representation against
two baseline representations: 1) ellipsoid-only represen-
tation, which is utilized in quadric-based object SLAM

FIGURE 7. Average shape estimation error along 3 radial axis evaluated
on each 3D representation. [E only] refers to ‘‘Ellipsoid-only’’ method and
[C only] refers to ‘‘Cuboid-only’’ method.

methods [14], [21], and 2) cuboid-only representation, which
is used in Cube SLAM [17] or Stereo 3D object tracking [23].
In detail, we re-formulate the bounding box error function
(ρbox) for each 3D representation for the initialization
refinement, motion-only optimization and the slidingwindow
optimization phase.

We report results on 16 vehicle tracks for each represen-
tation in Table 2. While the best performing representation
varies depending on the specific sequence, the proposed com-
bined representation leads to the best overall performance.

Figure 8 shows snapshots of ground-truth and estimated
3D bounding box drawn on the image plane for each
representation. We can recognize that the ellipsoid-only
representation leads to overestimation of object size, while
the cuboid-only representation leads to underestimation of
object size. The bargraph in Figure 7 displays the average
size estimation error for radius along each axis of object
canonical frame. The size estimation error for each axis
is defined as e(r) = (r̂ − r)/r where r, r̂ stand for the
ground-truth and estimated axial radius respectively. The
results support our observation about object size estimation
bias for each representation, and validate that our combined
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FIGURE 8. Snapshots of the ground-truth and estimated 3D bounding boxes (colored in magenta) for methods using each 3D representation. The
reprojected bounding boxes of the combined representation most closely resemble the ground-truth, while ellipsoid-only and cuboid-only methods
result in over/underestimated object size.

FIGURE 9. Performance evaluation against varying degree of noise
level(Nb = 0, 2, 4, 6, 8px)).

representation leads to the smallest average size estimation
error. Since the size and pose of the objects are coupled
by bounding box constraints in the proposed framework,
size estimation error negatively affects the object trajectory
estimation performance.

C. ROBUSTNESS TO 2D DETECTION ERROR
In this section, we test the robustness of the algorithm against
varying degree of 2D detection noise. We assume that the
class label is not misidentified, since state-of-the-art 2D

object detection methods rarely misclassify detected object.
Those rare incidents only happen if the appearance of the
object is ambiguous or when the object is substantially
occluded, which are not the cases we are interested in.
Instead, we perturb the 2D bounding box by adding noise
to 4 bounding box coordinates (βl, βt , βr , βb). We sample
noise from Gaussian distribution nb,i ∼ N (0,Nb), i =

l, t, r, b, and examine the method for different values of
Nb (2, 4, 6, 8(px)).
For each 2D bounding box noise level, we run the

simulation 5 times for every object observation sequence, and
compute the average of each evaluation metric over the whole
dataset. The graph shown in Figure 9 displays the result. The
performance of the proposed method does not significantly
degrade for Nb = 0, 2, 4px. As the noise grows larger,
the performance is severely degraded. The reliance on 2D
bounding box accuracy is a shortcoming which is commonly
identified on two stage approaches for 3D object detection
and tracking. However, we believe that modern 2D instance
segmentation methods rarely exhibit such large error, and the
result shows an acceptable level of robustness of the proposed
method.

VI. CONCLUSION
In this paper, we propose an optimization-based 3D object
tracking framework for monocular camera based on combin-
ing ellipsoid and cuboid object representation. The proposed
method utilizes a 2D instance segmentationmethod to acquire

109290 VOLUME 12, 2024



G. C. Kim et al.: Optimization-Based Monocular 3D Object Tracking

object region of interest from RGB image, and does not
require additional neural network training.

To address scale ambiguity inherent in monocular vision,
we limit the degree of freedom of the object pose assuming a
known support plane for target objects. We additionally apply
kinematic motion model to disambiguate the orientation of
the object. The object size and trajectory are jointly optimized
by minimizing the keypoint reprojection error, motion model
error and the proposed bounding box error for the combined
3D representation.

One critical limitation of the proposed framework is that
the method is not able to track object when the object is
partially occluded, since the bounding box error formulation
presumes that the object is fully observable except for
inevitable self-occlusion. However, results show that when
the object is fully visible, the proposed method is able to
keep track of the object and accurately estimate its 3D
trajectory. The simulation results reveal that the proposed 3D
representation combining ellipsoid and cuboid leads to more
accurate estimation of object size and trajectory compared to
when using each representation separately. Also, the method
is shown to be robust to moderate degree of error in 2D
bounding box detection.
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