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ABSTRACT Tattoos can serve as an essential source of biometric information for public security, aiding
in identifying suspects and victims. In order to automate tattoo classification, tasks like classification
require more detailed image content analysis, such as semantic segmentation. However, a dataset with
appropriate semantic segmentation annotations is currently lacking. Also, there are countless ways to
categorize tattoo classes, and many are not directly categorizable, either because they belong to a specific
artistic trait or characterize an object with previously undefined semantics. An effective way to overcome
these limitations is to build recognition systems based on open-set assumptions. Nevertheless, state-of-
the-art open set approaches are not directly applicable in tattoo semantic segmentation, mainly due to the
significant class imbalance (predominant background). To the best of our knowledge, this paper is the first
to explore semantic segmentation in closed and open-set scenarios for tattoos. In this sense, this paper
presents two key contributions: (i) a novel large-margin loss function and generalized open-set classifier
approach and (ii) an open-set tattoo semantic segmentation dataset with a publicly accessible test set,
enabling comparisons and future research in this area. The proposed approach outperforms other methods,
achieving 0.8013 of AUROC, 0.6318 of Macro F1, 0.4900 of mIoU, and notably 0.2753 of IoU for the
unknown class, demonstrating the feasibility of this approach for automatic tattoo analysis. The paper also
highlights key limitations and open research areas in this challenging field. Dataset and codes are available
at https://github.com/Brilhador/tssd2023.

INDEX TERMS Open-world, open-set, semantic segmentation, large-margin learning, tattoo classification.

I. INTRODUCTION
Tattoos are forms of human expression and are also
considered an art. In their almost unique features, tattoos go
beyond artistic expressions and can serve as essential sources
of biometric information. Consequently, it can be useful in
identifying their bearers, mainly for public security [1], [2]
because tattoos can be used to identify not only suspects but
also victims [3], [4]. In addition, the subject has raised studies
on ethical and social issues that may encompass the topic [5].
Compared to other biometrics, tattoos bring a series of

characteristics that make them very difficult to recognize.
Other biometrics usually have well-defined standards, robust
techniques, well-established methods for their treatment
and recognition, standardized data capture and storage,
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and other factors that help their reliability and robustness.
However, tattoos still need to have such characteristics and
requirements. Apart from the issues related to processing and
using general biometrics, tattoo recognition has a singular
complexity because it can be divided into several sub-
problems, each equally significant [6].

First, an image can be submitted to detect, locate, and
segment (outline or instance) the tattoo contained therein.
Subsequently, the image can be classified, de-identified,
or re-identified (image-to-image, sketch-to-image, partial,
or similar). After preprocessing an image, the best result
could be a well-segmented tattoo without any pollution or
background. Then, for all classification, de-identification,
or re-identification tasks, these images contain only the most
essential information to store and, later, process [6].

Nonetheless, tasks that consider the meaning of the content
of images, such as classification, may require a more detailed
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separation of objects in a tattoo image, called semantic
segmentation [7]. At this point, a segmented tattoo could
identify and detach each object in the tattoo, after which
each could be analyzed separately. For instance, security
and biometric recognition systems could benefit from tattoo
semantic split at the pixel-level for fine-grained feature
extraction by semantic classes, reduce false positives by
precisely delineating the boundaries of biometrics features,
and allow selective anonymization of regions of an image.
Moreover, tattoo biometrics systems may require the identi-
fication of multiple semantic classes in multiple areas of the
image, which can be performed accurately by tattoo semantic
segmentations.

Although this topic has been widely explored in studies
related to images and videos in many different areas,
semantic segmentation is still underexplored in the context
of tattoos. Several works only focus on tattoo classification
and detection [6], [8], and only a few researches deal with
segmentation [9], [10] without identifying the semantics of
the components that compose the tattoos.

One of the reasons that make semantic segmentation
difficult is related to the complexity that tattooing can have.
Asmentioned, tattoos are expressions of art, and their features
can be as varied as possible and imaginable. In this way,
objects can be positioned very closely, mixed, overlapped,
and distorted, and abstract images can also be present, among
many other hindering factors [11]. Additionally, the lack
of public and comprehensive datasets makes it even more
challenging to develop efficient methods for segmentation.
Some recent works propose public datasets, such as [12]
and [13]. However, in the case of [13], using semi-synthetic
images without employing the semantics associated with
each class makes it difficult to generalize the proposed –
characteristic also observed in [12].
Still, in this context, it is essential to emphasize the

complexity and semantic variability of tattoo classes. Tattoo
categories can vary significantly, and some are not easily cat-
egorized due to their association with specific artistic styles
or objects with undefined semantics. The tattoo recognition
scenario, especially from a public safety perspective, is also
somewhat challenging, especially given the circumstances in
which the information is obtained and analyzed. It is not
uncommon for tattoo information to be obtained partially,
and, therefore, semantic segmentation has great relevance
in the identification process, as in the following scenarios:
(i) semantic segmentation can be used to create databases
with automatic textual annotations, as it is common for a
witness or victim to remember or have visual contact with
only parts of a tattoo of a wanted person, and, in this way,
from the description, it would be possible to identify tattoos
with those parts visualized; (ii) semantic segmentation is
important in the pre-processing of images in preparation
for information recognition processes, such as for partial
re-identification of tattoos, wherein an automatic process,
the segmented parts can be recovered separately in cases of
partial image collections [6].

An effective way to overcome these limitations is to
build recognition systems based on dynamic and open-set
perception. These systems are designed to handle objects
from unknown classes commonly encountered in real-
world applications. Open-set recognition has extensively
studied the ability to recognize new classes [14]. Open-
set semantic segmentation, in turn, is an approach that
incorporates open-set perception into semantic segmentation.
The main difference with closed-set semantic segmentation
is that open-set semantic segmentation must correctly clas-
sify samples belonging to known classes while rejecting
those belonging to unknown classes. In the context of
this work, open-set semantic segmentation can be an ally
in improving databases and models for identifying and
classifying tattoo objects, allowing the improvement of
annotations and descriptions of complex tattoos. Therefore,
semantic segmentation must also be seen as a middle
process, not just as an end process in the tattoo recognition
roadmap.

Studies have explored the use of open-set semantic
segmentation in different applications [15], [16]. These
studies focus on adapting or building open-set classifiers to
make closed-set semantic segmentation models capable of
recognizing unknown classes. While the outcomes of these
studies are promising, the performance of these approaches is
limited due to the low representation of the obtained features,
resulting in an ‘‘irregular’’ logit space with low discrimi-
nation among the classes. Recent research [17], [18] has
demonstrated that incorporating metric learning techniques
can enhance open-set recognition. Metric learning aids in
obtaining more discriminative features and building a logit
space that tightly clusters known classes while maintaining a
considerable distance from unknown classes. However, it is
essential to acknowledge that applying metric learning in
the context of semantic segmentation can be impractical.
This is primarily due to the exponential complexity of the
task, as calculating pairwise distances among logit vectors of
pixels becomes computationally expensive.

Recent studies have investigated the potential of
large-margin learning to acquire more discriminative fea-
tures, yielding improved outcomes in image classification
tasks [19], [20], [21]. Hence, strategies established on
large-margin learning present promising and viable alterna-
tives for building a well-defined logit space that enhances the
separation among decision boundaries of semantic classes.

Motivated by these results, our study explores the dis-
criminative capabilities of large-margin learning to produce
more distinctive features for tattoo semantic segmentation.
This approach effectively increases the spatial separation
among decision boundaries to different semantic classes,
forcing the build of ideal logit space as illustrated in
Figure 1b. Furthermore, this expanded separation among
decision boundaries will set the stage for accommodating
unknown classes in the future, enhancing the effectiveness
of tattoo semantic segmentation within an open-set scenario.
Visual comparisons depicting the differences in logit space
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FIGURE 1. Closed set and open set in dense labeling scenarios. The label space represents the pixel-level predictions, and logit space refers to
a subset of pixel samples in a 2D manifold separated by labels and decision boundaries for each class. a) Closed set without the presence of
unknown classes. b) Closed set with the presence of unknown classes. These unknown classes result in misclassification, being segmented as
known classes. c) Open set segmentation with ‘‘irregular’’ logit space. The term ‘‘irregular’’ suggests undefined or overlapping decision
boundaries among classes. d) Open set segmentation with ‘‘ideal’’ logit space. The term ‘‘ideal’’ refers to well-defined decision regions between
the classes and enough space (Open space) between them to include new classes [14], [18].

resulting from the presence of unknown classes can be
observed in Figure 1.
Given the limitations presented so far and the fact that,

to the extent of our knowledge, open-set classification has
not been used in the context of tattoo recognition and is
an open research gap, this work aims to propose a new
large-margin-based loss function adapted to the context of
open set semantic segmentation in tattoos. This novel loss
function seeks to overeat the closed set segmentation results
and enable and increase the open set segmentation results
compared to other state-of-the-art semantic segmentation
loss functions. Furthermore, we propose using a publicly
available test dataset, with an annotation aimed at semantic
segmentation in an open-set context, whose high complexity
will serve as a benchmark for comparing methods in this area.
The main contributions of this paper are then summarized as
follows:

• Test set publicly available for the dataset, allowing
comparisons and future work in the open-set and closed-
set scenarios;

• Novel class semantic augmentation method to expand
the tattoo samples;

• Novel large-margin loss function for open-set tattoo
semantic segmentation to build more discriminative
features and handle the class imbalance;

• A generalized open-set classifier approach based on
open principal component scoring with incremental
learning called G-OpenIPCS;

• Detailed and in-depth comparison with different state-
of-the-art loss functions and open-set semantic segmen-
tation methods;

• Statement of the main challenges for the open-set tattoo
semantic segmentation.

This paper is organized as follows. Section II presents
related works, mainly including related datasets, tattoo
segmentation, and open-set semantic segmentation. Our
proposed methods, particularly the novel tattoo semantic
segmentation dataset, novel tattoo semantic augmentation
method, and the novel loss function and open set classifier,
are detailed in Section III. The experiment setup is discussed
in Section IV, with results, discussions, and comparisons with
state-of-the-art approaches presented in Section V. Finally,
Section VI shows the conclusions, with the open challenges
in open-set tattoo semantic segmentation discussed in
Section VII.

II. RELATED WORKS
In order to present a general overview of the state-of-the-
art in the context of tattoo segmentation, we divided the
related works into three parts where this paper presents main
contributions: datasets, tattoo segmentation, and open set
semantic segmentation. The following subsections detail each
of these works, pointing out the innovative aspects of this
work on each front.

A. AVAILABLE DATASETS
Regarding the datasets, we chose to organize in the Table 1
a summary of the main characteristics of the most common
datasets in tattoo detection, classification, and segmentation
problems. These criteria include the number of samples,
public availability, and type of annotation (classification,
detection of objects with bounding box – BB, or segmen-
tation). Regarding the annotation focused on segmentation,
we also included whether it contains semantic segmentation.

In the case of [12], despite the relatively large number
of samples and an annotation focused on tattoo detection,
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TABLE 1. Tattoo datasets.

the dataset is private, which makes comparisons, establishing
benchmarks, and analyzing new methods for the dataset
difficult. On the other hand, the dataset proposed in [23] is
publicly available and annotated only with BB, i.e., it is not
possible to use it in the context of segmentation. The datasets
proposed in [22] and [24], in turn, are focused exclusively on
classification and provide only one label for each image or
image patch, restricting their use to multi-class classification
problems, without the location of the tattoo in the image.

Hrkać et al. [9] were the first to address tattoo seg-
mentation. The proposed method aimed to de-identify soft
biometric identifiers (tattoos) by discriminating tattoo and
non-tattoo image patches with a deep neural network. In this
sense, the proposed dataset presents a pixel-level annotation
of the presence or absence of a tattoo in the image. However,
the authors did not individualize the tattoo classes in the
proposed annotation. The same is observed in the dataset
presented in [13]. Furthermore, the authors presented a
proposal using semi-synthetic images. This characteristic
can sometimes lead to an image far from a real tattoo,
compromising the segmentation approach.

Our dataset, in turn, presents some original and inno-
vative features that can complement currently available
datasets: (i) Inclusion of a semantic segmentation annotation;
(ii) Several classes of tattoos in the same image, increasing
complexity; (iii) Quite varied sizes of tattoos and classes of
tattoos in the same image; and (iv) Tattoos in different regions
of the body, maintaining the variability that exists in real
situations. As will be detailed later, only the test set is made
publicly available since most of the images available in these
scenarios contain public use restrictions. However, we believe
that as it is the first dataset with semantic annotation in
segmentation, it will allow the comparison and evaluation of
different approaches to this problem, which is significantly
challenging.

B. TATTOO SEGMENTATION
Tattoo segmentation methods were presented in many
studies, but their results were suppressed, maybe because
segmentation was not the main focus. Furthermore, as many
of them were carried out a long time ago, the research did not
address deep learning methods, for example, and the methods
cannot be directly compared with the approach adopted here.

In such cases, authors have performed their researches
using methods based on: (i) Content-Base Image Retrieval

TABLE 2. Tattoo segmentation models.

(CBIR) and Edge Direction Coherence Vector (EDCV)
[25]; (ii) 3 × 3 Sobel filter [26], Active Contour CBIR
(ACCBIR), and Vector Field Convolution (VFC) [1];
(iii) a complex system combining bottom-up and top-
down priorities that transfer tattoo segmentation to detection
split-merge skin detection, followed by figure-ground tattoo
segmentation [27]; (iv) LoG (Laplacian of Gaussian) and
Sobel kernel filters called quasi-connected components
(QCC), using the GrabCut algorithm to produce the final
segmented tattoo image [28]; (v) a negative image method
with HSV (hue, saturation, and value, or lighting) model [29];
(vi) identification of pixels of skin in regions close to
the tattoos and a graph-cut model based on skin color
and a visual bump map [30], and (vii) a k-means cluster
used in LAB color space to detect the skin area with a
morphology processing used to smooth the clear graphic
of the tattoo image segment [10]. The main limitation
of these hand-crafted-based methods is that the feature
extractor may have adequate performance for some classes
and datasets but significantly lower performance for others,
with compromised generalization. This is accentuated for
datasets with greater variability in tattoo images.

As far as our research has reached, only two studies
have used deep learning methods for the problem of tattoo
segmentation.

Based on the study on CNNs, [9] used the structure of a
ConvNet network to train small pieces of images to learn to
identify which ones have or do not have pieces of tattoos.
After training the network, a sliding window was passed
through the image to be tested, and each segment of the
sliding window was tested as a piece with a tattoo or not,
marking the positive pieces. Parts with possible tattoos would
be segmented piece by piece at the end of the slide.

Hrkać et al. [31] proposed a continuation of work
presented in [9], this time testing three different networks
for tattoo segmentation: (i) an architecture consisting only of
multiple fully connected layers, without convolutional layers;
(ii) an architecture inspired by the AlexNet network; and
(iii) an architecture inspired by the VGGNet network. On the
other hand, state-of-the-art segmentation models based on
Vision Transformer (ViT) were evaluated in [13]; however,
the main idea of that work was the unsupervised tattoo
generator that allowed the creation of many semi-synthetic
images with tattooed subjects. Hence, as shown in Table 2,
related approaches used still needed to follow a semantic
segmentation methodology and did not use an open-set
semantic segmentation view, which is the focus of our current
study and detailed as follows.
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C. OPEN-SET SEMANTIC SEGMENTATION
The success of the fully convolutional network (FCN)
in closed-set semantic segmentation [32] has led to the
successful implementation of various neural network models
for closed-set semantic segmentation on different applica-
tions [7]. However, these methods are unsuitable for open-set
scenarios, which are common in real-world computer vision.
This is because the closed-set perception fails when unknown
classes from training are found in the test phase [33]. Due to
that, several proposals have been developed for the open-set
context in different applications, mainly autonomous driving,
remote sensing, and data collection [34].
For open-set semantic segmentation, the loss function

selection to guide the optimization process is an important
aspect of the achieved results [35]. In general, studies limit
themselves to using the successful and widely employed
cross-entropy loss (CE) [15], [16], [33], [36], [37], [38],
[39], [40]. This loss function measures the disparity between
the predicted values and the ground truth, guiding the
model’s learning process based on labeled data. Hence, the
studies focus on adapting or building open-set classifiers
to make closed-set semantic segmentation models capa-
ble of recognizing unknown classes, even in label noise
scenarios [41].

In this sense, metric learning has recently gained signif-
icant attention in addressing the open-set problem. Metric
learning is an approach based on learning a distance
metric that reinforces similarity between objects in the
latent space. It has been studied in various fields, such as
image classification [14], semantic segmentation [42], [43],
and zero-shot segmentation [44]. According to [42], the
metric learning strategy aims to direct the feature extraction
process to obtain a well-controlled latent space, maximizing
inter-class spacing and minimizing intra-class spacing based
on a distance metric. Thus, the unknown samples are repelled
into open space, as can be seen in Figure 4.
Similarly, the large-margin-based loss (LM) func-

tions [19], [20], [21] maximize the margins between classes
by imposing a regularization on the logit vectors of pixels
to induce an increased separation between the boundary
regions of the semantic classes. This strategy improves
the generalization of models and provides open space
between classes that can be valuable in the context of
open-set semantic segmentation, allowing unknown samples
to be projected into these open spaces. Furthermore, the
large-margin loss adopts a more efficient training strategy
than other metric learning approaches, such as those
involving cubic costs for computing pairwise distances
between the logit vectors of pixels [45].
Recent studies [40], [46] have made improved open-set

semantic segmentation for autonomous driving applications
by employing negative auxiliary data. Unlike these stud-
ies, our approach uses no auxiliary data to enhance the
performance of open-set semantic segmentation. Table 3
summarizes the approaches used for open-set semantic
segmentation.

TABLE 3. Open-set semantic segmentation approaches.

In the context of tattoo semantic segmentation, as stated
in the previous Section, to the extent of our knowledge,
no works focus on the open set context—the most closely
related works are [23] and [47]. Reference [23] built a
tattoo search approach that can learn tattoo detection and
compact representation jointly in a single CNN via multi-task
learning is presented. However, the compactness proposed
by the authors is more focused on the compressive yet
discriminative feature learning for large-scale visual search
and instance retrieval applications, i.e., the efficiency of the
search procedure. Open-set classification is not presented,
and discussions of the proposed multi-task procedure are
not encouraged for other applications. While [47] pre-
sented a classification method based on the Extreme Value
Theory for tattoo classification. However, the focus of
the proposed approach was the mid-level representations
as a tool to adjust the trade-off between accuracy and
efficiency. Hence, the results are mainly dedicated to
real-world computer vision systems, where high accuracy
is maintained even on commodity hardware with a low
computational budget. Details regarding open-set are also not
addressed.

To the best of our knowledge, this is the first work to
explore tattoo semantic segmentation in closed and open-
set scenarios, establishing benchmarks for both conditions
using our publicly available test set. Our approach introduces
the large-margin loss function as an efficient learning
strategy to build a well-defined logit space and handle
class imbalance, using contemporary network architecture
based on transformers and presenting the generalist approach
to integrating a robust open-set classifier for semantic
segmentation tasks.

III. PROPOSED METHODS
This section outlines the proposed methods. Firstly, in
Section III-A, a novel-built TSSD2023 dataset is presented.
Then, Section III-B introduces a novel tattoo semantic
augmentation to expand tattoo samples of the TSSD2023
dataset. Subsequently, in Section III-C, a novel large-
margin loss function is proposed to handle class imbal-
ance and enhance the discriminative of the classes in the
TSSD2023 dataset. Lastly, in Section III-D, a generalized
approach for OpenIPCS is proposed for open-set semantic
segmentation.
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A. TATTOO SEMANTIC SEGMENTATION DATASET
Identifying the various things that make up a tattoo can be
defined as a semantic segmentation task. This process allows
machines to comprehend the meaning behind a tattoo better.
Its usefulness is particularly evident in security systems,
where it assists in identifying and monitoring individuals
through surveillance systems, for instance, locating a person
based on a brief tattoo description. However, as previously
presented, current tattoo datasets are limited to image
classification [22], [24], object detection [12], [23], or tattoo
segmentation [9], [13], which only separate the tattoo
from the background and fail to provide a comprehensive
understanding of the significance of the tattoos.

In this manner, we created the Tattoo Semantic Segmen-
tation Dataset (TSSD2023), respecting the copyrights of
image owners to the greatest extent possible. To build this
dataset, web scraping was conducted on Flickr.1 Numerous
terms related to tattoos were used as search queries on the
platform. Then, a visual inspection was performed by humans
to confirm whether the images obtained contained tattoos
and whether their content was suitable for sharing. Finally,
the licenses users attribute to these images when sharing
them on the platform were considered to define the training,
validation, and test sets.

As a result, the test dataset exclusively comprises images
for which sharing permissions had been granted. In contrast,
the training and validation datasets consist only of images
for which sharing was unauthorized. This division strategy
was adopted due to the limited availability of images with
public sharing licenses. Thus, the test sets will be publicly
available for comparison and development of future work.
However, the training and validation sets will be kept
private to ensure that none of the authors’ copyrights are
infringed.

Figure 2 shows 33 classes2 for Known Known Class
(KKC) tattoos and 23 classes for Unknown Unknown Class
(UUC) tattoos selected for annotation in TSSD2023.3 The
motivation for choosing this split for KKC and UUC classes
was mainly based on the number of images available for
each semantic class. Classes with reduced representation in
the universe of available tattoos and, consequently, public
samples were selected exclusively to compose the UUCs due
to the impossibility of successfully training the segmentation
models on these classes. Furthermore, the proposed division
guarantees that the test semantic classes defined as UUC

1A photo and video hosting platform established in 2004. Available
in: https://flickr.com/

2The dataset also includes annotations for the ‘stem/branch’ and ‘rope’
classes, which were omitted from the analysis due to the limited number of
annotations.

3The closed-set approach assumes that the training and testing pixels
belong to the same label space (defined as KKCs), meaning that the train and
test sets contain the same classes. However, this assumption does not hold
in real-world scenarios, especially in earth observation applications. During
the prediction phase, the model may face pixels from classes not seen during
the training phase (UUCs). We direct the reader to [14] for a deeper reading
about these definitions.

TABLE 4. Samples of the images and annotations of the TSSD2023
dataset.

are not found on the training and validation sets. Hence,
we consider the proposed division sufficient to evaluate the
open-set methods proposed in this work. Once the data were
divided, UUCs were chosen to form part of the test set for
open-set evaluation. This approach enabled the representation
of similar and dissimilar semantic classes compared to KKCs,
allowing for evaluation in straightforward and complex
scenarios.

Each KKC class was meticulously labeled with unique
identifiers to enable the model to distinguish each object
semantically. In contrast, all UUC tattoos were assigned the
same ‘‘unknown’’ class label. Notably, all KKC classes are
represented in the training and validation sets and the test set.
However, UUC tattoos are exclusively found in the test open-
set. A human inspection process was also conducted to ensure
these open-set recognition conditions [14].

Table 4 presents four possible tattoo composition situations
found in TSSD2023: (i) Single tattoo: only one tattoo class
is present in the image; (ii) Multiple tattoos: multiple tattoo
classes can be found in a single image; (iii) Multiple tattoos
(with overlap): similar to the previous scenario, but the tattoos
are overlapped with each other. Due to this overlap, this
scenario is more challenging than the previous one [33]; and
(iv) Tattoos (unlabeled) as background: Tattoos (unlabeled)
as background: Specific tattoo classes were categorized as
background classes due to two primary reasons. First, this
decision was necessary because, at times, it was impossible
to determine their specific semantic tattoo class. Second,
due to a limited number of available samples, assigning
individual semantic labels to these classes was not feasible.
These situations provide a comprehensive representation of
tattoo compositions within the dataset.

In conclusion, TSSD2023 contains 2,106 tattoo images
without specific image resolution standards that have been
annotated at the pixel level. These images are divided into the
following subsets: 1,404 for training, 387 for validation, and
254 for the closed-set test. Additionally, 61 images with UUC
tattoos are included to form the test open-set with 315 images.
Figure 3 illustrates the distribution of pixel percentages for
each class within TSSD2023, demonstrating that the dataset
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FIGURE 2. TSSD2023 Classes. KKCs tattoos correspond to the 33 labeled classes, while the UUCs tattoos are represented by the 23 classes defined as
‘‘unknown’’ (black label). These classes can be viewed within a conceptual taxonomy, facilitating an understanding of the domain coverage provided
by the dataset.

FIGURE 3. The distribution of pixels per class and set. These values are organized based on their quantities in the training set. The values of
background classes were suppressed due to discrepancies with the other classes. The reference values for the background are 79.8% in training, 79.4%
validation images, 81.4% test closed-set images, and 81.7% test open-set images.

TABLE 5. Samples of the data augmentations on only the heart class,
except the mix column that applies the data augmentations on all
semantic classes.

is notably imbalanced, particularly in the background class,
which accounts for an average of ≈ 80% of pixels across the
subsets. It is also important to highlight that the unknown
class represents approximately 3% of the pixels present in
the test open-set. Samples of images from TSSD2023 can
be observed in Table 4, showcasing tattoos presented in
diverse scenarios, sizes, styles, positions, and combinations.
These variations aim to maintain the variability of real-world
situations.

B. CLASS SEMANTIC AUGMENTATION
Motivated by the limited number of samples within
TSSD2023 compared to the extensive diversity of real-world

tattoos, this work introduces a novel data augmentation
named class semantic augmentation (CSA) to increase the
variety of tattoos contained in TSSD2023. This method
applies pixel-level transformations to distinct classes,
enabling unique augmentation for different classes within
an image, as illustrated in Table 5. In this instance, the
pixels of the heart class go through different transformations
of colorations, gray styles, and color tones, trying to
approximate the infinite possibilities of representing tattoos
in the real world from limited semantic data.

Algorithm 1 details the proposed implementation of tattoo
semantic augmentation. The algorithm takes five parameters:
the input image X , the ground truth Y , a list of pixel-level
transformations to increase the variability of semantic classes
t , a list containing the probabilities of executing each
transformation p, and a list of semantic class indices ic that
remain unchanged during data augmentation. It is important
to note that the parameters p and ic are optional. The
algorithm first identifies the indices of semantic classes
within the image. Subsequently, it iterates through each
index, applying one of the transformations specified in t .
As shown in Table 5, a heart can be represented in various
ways while other classes remain unchanged. It demonstrates
that this semantic augmentation allows specific adjustments
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Algorithm 1 Class Semantic Augmentation
Input: Image (X )
Input: Ground truth (Y )
Input: List of transforms (t)
Input: List of probability of choice (p)
Input: List of ignore classes (ic)
Output: Transformed image (X̂ )
1: seg_ids = unique(Y )
2: seg_ids = remove_ic(seg_ids, ic)
3: X̂ = copy(X )
4: Foreach: i ∈ seg_ids do
5: y = new_array_zeros(Y .shape)
6: y[Y == i] = 1
7: T = random_choice(t, p)
8: X̂ = apply_transform(T , X̂ , y)
9: end foreach

10: return X̂

for each class in the dataset, making it useful in various
application domains, such as autonomous driving [42]
and fashion images [48]. In addition, different pixel-level
transformations can be selected for more suitable application
contexts. For instance, the color of a flower may vary. At the
same time, the leaf and stem could be confined to modifying
the original color tones, preserving the real-world patterns.
On the other hand, all semantic classes in an image can be
changed without restrictions, as observed in the mix column
of Table 5 and as employed in this study. It is worth noting
that this augmentation technique is limited to pixel-level
transformations.

C. PROPOSED LOSS FUNCTION
Classical convolutional neural networks (CNNs) based
semantic segmentation networks [32] can be divided into two
parts: a feature extractor that includes several convolution
layers followed by max-pooling and activation function, and
the linear classifier f = W⊤x+ b in the last fully-connected
layer applied on the feature vector x of the penultimate
layer for obtaining the logit vector f ∈ RC of each pixel
of the input image, in which C represents the number of
classes. To solve the overfitting problem and produce more
discriminative logit vectors f in training, classifier margin
has been exploited [19], [21], [49]. Following [50], the
classification margin is the difference between the predicted
score fc∗ and target score fy, where y indicates the ground
truth class labels and c∗ = argmaxc̸=yfc. Based on the margin
fy − fc∗ , the traditional classifier margin loss function can be
expressed as follows:

Lmargin = L
(
max
c̸=y

fc − fy + ρ

)
, (1)

in which ρ is a boundary control parameter, usually ρ ≥

0. Thus, increasing the value of ρ results in a larger
classification distance between labels.

According to [20], the cross-entropy loss (LCE ) can par-
tially encourage the development of a large-margin classifier
within the CNNs. Based on this analysis, a symmetric
Kullback-Leibler (KL) divergence term LLM was introduced
as a regularization component for LCE , inducing a more
large-margin classifier in the original LCE . The combination
was termed the large-margin cross-entropy loss (LCE+LM ),
and it is the formula is presented as follows:

LCE+LM = LCE + LLM , (2)

in which LCE is defined as:

LCE = −log py(f ) = −log
exp(fy)∑C
c=1 exp(fc)

, (3)

and LLM is expressed as:

LLM =
λ

2

∑
c̸=y

{
exp(fc)∑
c′ ̸=y exp(fc′ )

−
1

C − 1

}

×log

{
exp(fc)∑
c′ ̸=y exp(fc′ )

}
, (4)

where λ is a regularization parameter. Increasing the value
of the λ enlarges the space between classes, thereby more
resistance faced by the learning objectives. The detailed
derivation has been explored in [19].
Considering the class imbalance between the background

and the foreground classes in the tattoo semantic segmenta-
tion dataset, we modify theLCE+LM replacing theLCE by the
focal loss LFCL . This choice is based on the fact that LFCL is
a variant of theLCE that preserves the discriminative capacity
of the original loss while dealing with the imbalance among
the classes [51]. Thus, our proposed large-margin focal loss
(LFCL+LM ) is described by:

LFCL+LM (ours) = LFCL + LLM , (5)

LFCL is defined as:

LFCL = α(1 − py(f ))γ × log py(f ). (6)

The LFCL applies a modulating term to the LCE to focus
learning on hard examples and down-weight the numerous
easy examples, where α control the class weights and γ

reduce the loss contribution from easy examples. Thus,
we obtain a loss that deals with imbalances between classes
while increasing the classification margin to improve the
discriminability of the trained model.

D. OPEN-SET CLASSIFIER FOR SEMANTIC SEGMENTATION
In semantic segmentation networks, the logit vector f ∈ RC

are commonly normalized using the softmax function into
a probability distribution for each class y ∈ {1, . . . ,C}

to perform the final classification of each pixel. Therefore,
the final classification of each pixel is defined as Ŷ closef =

argmax py(f ).
This learnable classifier cannot recognize UUC, making it

unsuitable for open-set recognition as it assigns all features to
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KKCs [42]. Thus, open-set classifiers must be developed to
classify KKCs while recognizing UUCs accurately. Previous
studies have investigated this development in semantic
segmentation task [16], [38], [42], [52]. Based on those
studies, one can present the general open set classifier as
follows:

Ŷ openf =

{
CUUC max(py(f )) ⩽ λout ,

Ŷ closef max(py(f )) > λout .
(7)

where CUUC denotes the UUC, and λout the cutoff threshold
to determinate the UUC pixels.

A recent study [38] presented an open-set classifier method
based on principal components analysis (PCA) on the internal
logic vectors of CNNs to provide an open-set semantic
segmentation, named Open Principal Component Scoring
with Incremental Learning (OpenIPCS). Its training approach
is efficient, which is crucial due to the exponential nature of
pixel-level classification compared to image classification.
Furthermore, the study notes that OpenIPCS outperforms
open-set semantic segmentation strategies based on probabil-
ity maps by a significant margin.

OpenIPCS was inspired by the Conditional Gaussian
Distribution Learning (CGDL) proposed in [53], which is
a Variational Autoencoder (VAE) model for conditional
Gaussian distribution estimation, capable of learning condi-
tional distributions of KKC and rejecting UUC examples.
In distinction, the OpenIPCS replaced the VAE with PCA
and uses multiple internal activation layers to adjust the
generative model with validation samples only.

Reference [54] showed that logit vectors get closer to
the label space as CNN layers deepen. Thus, in addition
to the last layer f , OpenIPCS considers the enabling
aspects of the previous layers f , f 1, . . . , f L , in which L
denotes the total number of the CNNs layers. This approach
combines low-level and high-level semantic information, thus
enhancing the discrimination capability of the model.

Then, for each pixel, a corresponding feature vector
f̂train is built by concatenating the network’s internal
logit vectors f , f 1, . . . , f L . Such a concatenation produces
high-dimensional and redundant features due to the hundreds
or thousands of activation channels present in the CNN and
the FCN layers [55], [56].
As described by [57], PCA can serve a dual purpose.

Apart from its primary role in reducing dimensionality, it can
also act as a probability density estimator with Gaussian
priors. These features allow OpenIPCs to use PCA as a
generative model (G) for UUC recognition while solving the
high-dimensionality problem of feature vectors.

This G is incrementally adjusted using only the validation
images. This process consists of adjusting the PCA with a
batch of samples from the validation set. The classification
step using the G consists of projecting the feature vector f̂test
of the test images in the latent space obtained by adjusting
the PCA on the validation images and performing the
inverse process to obtaining the f̂ Gtest . The difference between
the original feature vector f̂test and the f̂ Gtest is calculated.

Consequently, pixels of KKCs have low difference values,
while pixels belonging to the UUCs have high difference
values. Thus, in accordance with [38], open-set recognition
from OpenIPCS can be achieved as follows:

Ŷ openipcsf =

{
CUUC abs(f̂test − f̂ Gtest ) > λout ,

Ŷ closef abs(f̂test − f̂ Gtest ) ⩽ λout .
(8)

The λout do not represent equal statistical entities with the
Equation 7. Thus, as in [38], the λout value was defined from
preset values of True Positive Rate (TPR).

As outlined in [54], the deeper layers are closer to the
label space. Based on this analysis, this work proposes a
generalized version of OpenIPCS (G-OpenIPCS) that focuses
only on the last and penultimate layers of CNNs. These
layers contain more substantial semantic information, which
proves highly valuable for training OpenIPCS. Consequently,
it becomes possible to disregard the other network layers
within the CNNs. This aspect simplifies our approach and
is easy to incorporate into different network architectures,
unlike the original OpenIPCS building exclusively on the
FCN decoder.

IV. EXPERIMENTS SETUP
Due to the open-set recognition process being still dependent
on models built in a closed-set [33], [38], our experiments are
divided into three parts. First, in Section IV-A, we compare
our proposed loss function, described in Section III-C, with
other significant loss functions widely used in semantic seg-
mentation or recently introduced to improve discriminability
in deep neural networks. Subsequently, in Section IV-B,
we employ the proposed G-OpenIPCS approach detailed in
Section III-D to evaluate the performance of models trained
with the loss functions from the previous experiment in
an open-set tattoo semantic segmentation scenario. Finally,
we compare the performance of our open-set semantic
segmentation approach with other state-of-the-art open-
set semantic segmentation methods. Figure 4 provides an
overview of the proposed method. Each stage of Figure 4 is
detailed as follows.

A. CLOSED-SET SEMANTIC SEGMENTATION
1) DATASETS
A total of 2,045 images from TSSD2023 were used to train
and evaluate the closed-set models. These images follow the
following division: 1,404 for training, 387 for validation, and
254 for closed set testing, as described in Section III-A.

2) PRE-PROCESSING AND DATA AUGMENTATIONS
This step involves a sequence of transformations to train and
improve the semantic segmentation network, motivated by
the limited dataset of training images available in TSSD2023
around the high diversity of tattoos that virtually have no
limits in the real world. This process involves the following
steps: a) Implement a resizing operation, which can be
either random or center crop, or resize to get an image
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FIGURE 4. Overview of the proposed methods. Closed-set segmentations are obtained from models trained by different loss functions. The proposed
Large-Margin Focal Loss expands the decision boundaries between classes to improve class discrimination while dealing with the problem of
imbalance between classes. Increasing the spacing between classes allows unknown samples to be projected into open space. The open-set
segmentation process is highlighted within the green block. The proposed G-OpenIPCS recognizes UUC pixels, leaning on discrepancies between
feature vectors. This approach uses only the last two layers of the segmentation model. The penultimate layer equals 768 channels for SegFormer and
512 channels for Swin+UPNet.

with a resolution of 224 × 224; b) Next, there is a 50%
probability of applying one of the geometric transformations
to the image, including horizontal and vertical flipping,
shifting, scaling, or rotation. These transformations have a
scale and shift limit of 0.2, and rotation is limited to a
maximum of positive or negative 45 degrees; c) Executing
the tattoo semantic augmentation method proposed by this
work, as described in more detail below. This augmentation
involves RGB shifting, conversion to grayscale, and the
application of random tone curve transformations. Each of
these transformations has a 25% probability of being applied
to each class within an image; d) Subsequently, there is a 50%
chance of applying certain global modifications to the image.
These modifications can consist of random adjustments to
brightness and contrast with a limit of 0.3, Gaussian blur
with a 5-neighbor mask, or fancy PCA transformation; e)
Next, coarse dropout transformation [58] with a maximum
of 8 plots per image with the maximum resolution of 32 ×

32 is applied; f) Next, the images are normalized using
the mean and standard deviation values obtained from the
ImageNet [59]; g) Finally, there is a 50% probability of
applying the CutMix transformation [60] at the batch level to
blend the images. All of these transformations were applied
or developed with the on of the Albumentations library.4

3) IMPLEMENTATION DETAILS
Due to recent advances presented by the semantic seg-
mentation networks based on transformers [61], [62], [63],
this work uses the SegFormer [63], which consists of a
hierarchical Transformer encoder with lightweight multilayer

4https://albumentations.ai/

perceptron (MLP) decoders. The model was pre-trained on
the ImageNet dataset [59] and was acquired through the
Hugging Face library.5 During closed-set training, a batch
size of 16 images on an RTX 3090 with 500 epochs was
utilized, employing a patience factor of 10 epochs. The
Nadam optimizer [64] was used, with an initial learning rate
set at 0.0001 and a weight decay coefficient of 0.00001.

4) BASELINE LOSS FUNCTIONS
In order to investigate the performance of large-margin focal
loss (LLMFCL) in both closed-set and open-set semantic
segmentation, we conducted a comparative study with five
other loss functions: i) cross-entropy loss (LCE ) – it was
selected because it is widely used and a standard choice for
semantic segmentation; ii) focal loss (LFCL) [51] – this is a
commonly used variation of cross-entropy that is effective in
addressing class imbalance; iii) Distance-based cross-entropy
loss (LDCE ) [65] and iv) Distance-based cross-entropy loss
combined with Variance Loss (LDCE+VL) [42] were selected
as they have been proposed to enhance the results of open-set
recognition by increasing the inter-class distance and decreas-
ing the intra-class distance to produce more discriminative
features; v) label-distribution-aware margin loss (LLDAM )
[66] was chosen as a key loss for long-tailed recognition.
It increases the margin for tail classes and decreases for
main classes based on class frequency; vi) dice similarity
coefficient loss (LDSC++) [67] recently introduced loss that
combines the robustness of theLDSC to class imbalance while
penalizing overconfident predictions, hence improving the
performance of semantic segmentation on out-of-distribution

5https://huggingface.co/
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TABLE 6. Parameters per each loss function utilized for the model
training.

data; vii) large-margin cross-entropy loss (LLMCE ) [20] was
chosen because it has recently been proposed to improve
the results of closed-set classifiers by increasing the space
between the decision boundaries of each class. Moreover,
we utilized the LLMCE as a foundation to develop our
proposed loss function for the open-set tattoo semantic
segmentation on a scenario that presents various challenges,
such as high intra-class variability, class imbalance, and
small tattoos, while enhanced discriminative capabilities
in closed-set and open-set semantic segmentation. Table 6
presents the loss function parameters used for model
training.

5) METRICS
In order to assess the results of closed-set semantic seg-
mentation, followed by open-set segmentation, we employed
the following metrics. Firstly, we used the Area Under the
ROCCurve (AUROC) because it has been recently utilized to
assess open-set semantic segmentation [38], [42]. This metric
aids in measuring the model’s ability to distinguish between
classes, particularly with respect to UUC. Secondly, the
macro-averaged F1-Score (Macro F1), recommended in pre-
vious works for open-class classification [68], [69]. It helps
evaluate the model’s precision and recall of the segmented
pixels. Lastly, the Mean Intersection over Union (mIoU) is
a standard metric for semantic segmentation evaluation that
provides an overview of the model’s performance across all
classes, including both KKCs and UUC.

B. OPEN-SET SEMANTIC SEGMENTATION
1) DATASETS
G-OpenIPCS was trained using just the 387 validation
images. The test open-set with 315 images was used to
evaluate the proposed method, as detailed in Section III-A.

2) IMPLEMENTATION DETAILS
For each model trained using the evaluated loss functions
in closed-set semantic segmentation, a G-OpenIPCS model
was trained to perform semantic segmentation in an open-
set scenario. As depicted in Figure 4, our approach utilizes
the last two connected layers of the segmentation network
to construct feature vectors for each pixel. In the case of
SegFormer, this feature vector is equal to the number of

KKCs plus the logit vector of the inner layer, with a length
of 768. Subsequently, we defined 64 principal components
for the adjustment in G-OpenIPCS. It is worth noting that the
feature vector size and the number of principal components
may vary depending on the semantic segmentation model
and the application domain. Once G-OpenIPCS is trained,
it becomes possible to recognize UUCs by considering the
discrepancy between the raw feature vector and the projected
feature vector, as outlined in Equation 8.

3) BASELINE
Initially, a comparative analysis of the open-set semantic seg-
mentation results was conducted using G-OpenIPCS trained
for each evaluated loss function. This step serves to validate
the performance of the proposed loss function in the open-
set scenario. Subsequently, our approach was compared with
other significant open-set segmentation methods proposed
in the state-of-the-art literature. These methods include
OpenIPCS [38], Anomalous Probability Map (APM) [42],
Maximum Unnormalized Logit (MaxLogit) [39], and Max-
imum Softmax Probability (MSP) [43]. For these methods,
training followed the same configurations as described in
Section IV-A, except that only geometric transformations
were applied. All networks were pre-trained on the ImageNet
dataset [59]. Specifically, for DRN50+PSPNet [42] and
RN101+PSPNet [39], images were resized to dimensions of
250, 300, 350, 400, and 450, with a down-sampling factor
of 8 for DRN50. Additionally, we implemented SoftMax-
Thresholding (SoftMax-T) [38] and OpenMax [36] as the
baselines for our implementation. As this is the first study
on tattoo semantic segmentation and without other tattoo
semantic datasets, we only compare our approach with state-
of-the-art methods that do not use auxiliary data to supply
their open-set recognition models. Finally, to demonstrate
the generalization of our approach with baselines, we repli-
cated the experiments, replacing the SegFormer with the
Swin+UperNet model [70].

4) CUTOFF THRESHOLDS
All the methods compared in Section V-C require a cutoff
threshold to distinguish between KKC and UUC pixels.
To realistically undertake an open-set recognition task, these
limits are defined empirically based on the available KKCs
during the validation data following the conditions of the
original papers. No information about the UUCs is used to
select the cutoff thresholds for the open-set classifiers. For
the proposed G-OpenIPCS, the preset values of the cutoff
thresholds (λout ) are determined based on TPR quantiles,
as outlined in [38].

5) METRICS
To evaluate the semantic segmentation results in an open
set, we kept the AUROC, Macro F1, and mIoU used in
the experiment in a closed set, described in Section IV-A.
Additionally, we highlight the results involving UUCs.
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TABLE 7. Comparison of the closed-set segmentation results achieved per each loss function. Bold values indicate the best overall results, including all
loss functions. The results were obtained using SegFormer.

V. RESULTS AND DISCUSSIONS
This section presents the results and discussions obtained
from our experiments. The purpose is to validate the
impact of the proposed Large-Margin Focal Loss on closed
and open-set tattoo semantic segmentation, in addition to
demonstrating the effectiveness of the proposedG-OpenIPCS
for open-set semantic segmentation. Initially, in Section V-A,
we present the results of the loss functions evaluated in
this work in a closed set scenario. Next, in Section V-B,
we evaluate the performance of models trained using the
proposed G-OpenIPCS method. Finally, in Section V-C,
we compare our proposed approach with other state-of-the-
art techniques.

A. CLOSED-SET SEMANTIC SEGMENTATION
This section focuses on evaluating the performance impact of
the proposed LLMFCL in a closed-set semantic segmentation
scenario. To demonstrate this, several loss functions from
the literature were compared, as described in Section IV-A.
Table 7 presents the overall results for all evaluated loss
functions in terms of AUROC, Macro F1, and mIoU.
When evaluating the performance of loss functions, LLMFCL
outperforms all other metrics in terms of Macro F1 and
maintains consistent results across AUROC and mIoU. This
makes LLMFCL a suitable choice for closed-set semantic
segmentation. However, LLDAM and LLMCE exhibit an
outperform over LLMFCL in terms of AUROC and mIoU,
respectively. Additionally, LFCL stood out by producing
results that closely resemble those of LLMFCL and LLMFCL ,
despite not incorporating a large margin in its formulation.
This emphasizes its capability to address class imbalance
encountered in TSSD2023.

On the other hand, LCE , LDSC++, and particularly LDCE
and LDCE+VL exhibit lower effectiveness compared to the
other loss functions. Among these less favorable outcomes,
LDCE+VL yielded the poorest results. This could indicate
that the significant variability present in TSSD2023 posed
challenges for the metric learning process. Thus, functions
based on large-margin, such as proposedLLMFCL andLLMCE ,
were demonstrated to be more effective for closed-set
semantic tattoo segmentations.

Table 8 presents the closed-set segmentation results
categorized by class obtained from proposed LLMFCL .

TABLE 8. Closed-set segmentation results separated by classes obtained
from the SegFormer trained using the proposed LLMFCL. The results were
sorted in descending order of mIoU↑ values. The top-5 best classes are
highlighted in green , while the top-5 worst classes are highlighted in

red .

It emphasizes the top 5 best and top 5 worst results,
excluding the background class. The top-5 best have high IoU
values, indicating that the model’s segmentation performance
for these categories is particularly accurate. Additionally,
they exhibit relatively high AUROC and Macro F1 scores.
Notably, the classes within the top 5 best results do not
necessarily constitute the majority of pixel quantity in
TSSD2023, as illustrated in Figure 3. This suggests that the
excellent performance comes from other aspects, such as the
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TABLE 9. Visual result samples of open-set semantic segmentation for each loss function. UUCs are depicted as black pixels. The respective colors for
other semantic classes can be found in Figure 2. The UUC has been highlighted in yellow , while the top-5 best classes are highlighted in green , and

the top-5 worst classes are highlighted in red . The results were obtained using SegFormer and proposed G-OpenIPCS.

semantic dissimilarity of this set of tattoos to other classes,
and mainly due to the recurrence of these tattoos being tat-
tooed individually, without overlapping with other semantic
classes, as can be briefly observed in Table 9. In contrast,
the top 5 worst classes can be categorized as complementary
tattoos, meaning they are rarely encountered in isolation but
are typically accompanied by other predominantly dominant
tattoos in terms of pixel quantity. For instance, a crown is
almost always found with another element, such as a human

or animal face. Leaves often complement flowers and stems,
and water is nearly always associated with aquatic creatures
like fishes, sharks, and octopuses.

In outline, LLMFCL showed considerable impact in the
closed-set semantic segmentation, presenting the best results
overall. However, aspects can still be considered to improve
performance in closed-set segmentation. In addition to
dealing with class imbalance, it is still necessary to deal with
the overlap between semantic classes, improving the accuracy
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TABLE 10. Comparison of the open-set segmentation results achieved per each loss function. All results are obtained on SegFormer and the proposed
G-OpenIPCS method. Bold values indicate the best overall results, including all loss functions.

of segmentations, especially in complementary tattoo classes.
This will be detailed in Section VII.

B. OPEN-SET SEMANTIC SEGMENTATION
This section evaluates the impact on the performance of the
proposedLLMFCL in an open-set scenario. Table 10 compares
the open-set segmentation results obtained using various loss
functions, all evaluated using the proposed G-OpenIPCS
method. Among the loss functions, LLMFCL achieves the
highest AUROC score of 0.8013, Macro F1 with 0.6318,
and also outperforms the mIoU score with 0.4900. These
results indicate thatLLMFCL is themost effective loss function
in terms of overall performance. Considering only UUC,
although LCE has the best performance in terms of AUROC
(UUC). LLMFCL remains competitive in this metric while
providing superior performance in terms of the F1-Score
(UUC) and mIoU (UUC).

Table 11 presents an evaluation of class-level performance
from open-set semantic segmentation results from proposed
LLMFCL . The top-5 best practically remained the same as
the closed-set results, which is natural given the dependence
of the closed-set model of the proposed approach on open-
set recognition. However, the ‘star’ class was an exception,
replacing the ‘snake’ class among the top 5 in terms of
IoU. This is probably due to the low similarity of the ‘star’
class to the other semantic classes in TSSD2023, which
practically maintained the performance obtained in the closed
set. Classes that show more significant similarity to other
classes, regardless of whether a KKC or a UUC, become
more challenging for open-set segmentation, as they generate
considerable uncertainty for the segmentation model.

This case of declining performance owing to class
similarity is also evident among the top 5 worst classes.
Classes such as ‘leaf’, ‘water’, ‘knife’, and ‘fire’ remained
in this category, underscoring their significant reliance on
the closed-set model. However, there was an exception
in the ‘wolf’ class, which, despite its poor performance
in the closed set, experienced a deterioration after open-
set segmentation. This decline is attributed to its semantic
similarity with other KKC animals, such as ‘dog’ and ‘fox’,
and its resemblance to UUCs, particularly in bear tattoos.
This provides misclassifications, as depicted in Figure 2.

TABLE 11. Open-set segmentation results are separated by classes
obtained from the SegFormer trained using the proposed LLMFCL. All
results are obtained on the proposed G-OpenIPCS method. The results
were sorted in descending order of mIoU↑ values. The UUC has been
highlighted in yellow , while the top-5 best classes are highlighted in

green , and the top-5 worst classes are highlighted in red .

Furthermore, KKCs can face challenges due to the high
semantic variability exhibited within tattoos of the same
class, arising from the infinite possibilities for representing an
object through tattoos. For illustration, consider the represen-
tation of a ‘cat’ in various styles, such as cartoonish, realistic,
stick-figure, geometric, and so on. It becomes exceedingly
challenging to group all these diverse representations to
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TABLE 12. Comparison between the proposed approach and state-of-the-art open-set semantic segmentation techniques. Bold values indicate the best
overall results, including all methods.

ensure no shape is mistakenly isolated as an outlier and
segmented as part of the unknown-unknown class (UUC).
We endeavored to construct a robust data augmentation
pipeline to address this limitation, as we believe it offers a
potential solution (detailed in Section VII).

Regarding the UUC, the results obtained using LLMFCL
remain somewhat limited but show great promise. Notably,
the UUC exhibited superior results in terms of IoU and
F1-Score when compared to the top 5worst classes. However,
in terms of AUROC, 12 KKCs are surpassed.

In conclusion, utilizing the proposed LLMFCL in conjunc-
tion with the G-OpenIPCS achieves the best overall results in
open-set segmentation tasks. Its robust segmentation perfor-
mance, capable of effectively distinguishing between UUCs
and KKCs, makes it a promising choice for challenging
scenarios with high semantic variability between classes.
However, it is essential to note that there are still tough
situations and areas where further improvements are needed
in the context of open-set segmentation for TSSD2023.

C. COMPARISON WITH OTHERS OPEN-SET SEMANTIC
SEGMENTATION METHODS
Table 12 comprehensively compares different state-of-the-
art open-set semantic segmentation methods, including the
proposed approach, and two more baselines: SoftMax-T
and OpenMax. The proposed approach using LLMFCL and
G-OpenIPCS stands out as the best-performing method.
It achieves the highest AUROC, Macro F1, mIoU, and IoU
(UUC) values, indicating its superiority in open-set tattoo
semantic segmentation. The scores obtained for AUROC of
0.8013,Macro F1 of 0.6318, mIoU of 0.4900, and IoU (UUC)
of 0.2753 are significant compared to other approaches in
the literature. However, the performance difference is less
to the baselines, except for the values obtained from IoU to
UUC. This indicates that the proposed approach produces
more accurate and visually coherent segmentation results.

In comparison to the original OpenIPCS, it is essential to
emphasize the strengths that make our approach superior. The

original OpenIPCS relies on an FCN decoder that combines
multiple layers from various levels of the network to construct
the feature vector. In contrast, our G-OpenIPCS approach
follows amore straightforward and intuitive path, considering
that the critical features for class discrimination are primarily
situated in the latter layers of the segmentation network.
This approach leads to improved results and avoids the
potential scrambling of high-level and low-level information
that can occur when using multiple layers, as in the original
OpenIPCS.

Due to this more streamlined design choice, our
approach integrates with other modern segmentation
architectures, such as transform-based structures. For
instance, we employed the SegFormer and Swin+UperNet
networks, outperforming FCN-based models in open-set
tattoo semantic segmentation. Notably, the combination using
the SegFormer outperforms other methods by a significant
margin. This underscores that our design choice directly
enhances performance, especially considering the high
reliance on features in open-set segmentation models [42].

Moreover, it is worth noting that the original OpenIPCS is
built upon LCE . While this loss function consistently delivers
results in closed-set semantic segmentation, the challenge of
open-set segmentation demands segmentation models with a
heightened discriminative capacity, which is precisely what
our proposed LLMFCL aims to enhance.

D. ABLATION STUDIES OF THE DATA AUGMENTATION
COMPONENTS
We performed an ablation study to examine the impact of
various data augmentation techniques on our approach to
open-set recognition for tattoo semantic segmentation. These
techniques were divided into four categories, as explained
in Section IV-A: geometric, image adjustments, dropout,
and our proposed CSA method. We also included a
no-augmentation experiment as a baseline for comparison.

The results in Table 13 indicate that our approach
performs better when all data augmentation methods are
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TABLE 13. Evaluation of the effect of data augmentation components. The results were obtained using proposed LLMFCL, SegFormer, and proposed
G-OPenIPCS.

combined. Among these methods, image adjustments con-
sistently showed performance gains in mIoU and IoU
for UUC. The other approaches, including geometric and
proposed CSA, improved the values of IoU for UUC,
while the dropout method improved the mIoU. Notably, the
proposed CSA significantly improved performance when
combined with the other three methods. In summary, our
approach is appropriate for effective open-set tattoo semantic
segmentation.

E. EVALUATION OF THE PERFORMANCE IN THE
CLOSED-SET TATTOO SEGMENTATION SCENARIO
Semantic segmentation focuses on recognizing specific
classes of tattoos, such as cats, dogs, stars, and others. Tattoo
segmentation only aims to isolate the tattoo region from the
background. This distinction is beneficial in situations that
do not require detailed semantic information about tattoos.
However, it may be interesting that our approach also behaves
adequately in closed-set tattoo segmentation scenarios. Thus,
we evaluated the performance of our proposed approach
in a closed tattoo segmentation scenario using the DeMSI
dataset [9], where tattoos were manually annotated without
any semantic differentiation. In addition to measuring the
IoU for tattoos, we also evaluate the False Positive Rate
(FPR), which indicates the proportion of background pixels
incorrectly classified as tattoos, and the False Negative
Rate (FNR), which means the proportion of tattoo pixels
incorrectly classified as background.

The quantitative results are presented in Table 14.
We observed a degradation in the performance of the
proposed approach when directly applying the model trained
on TSSD2023 and converting the multiclass output to a
binary output. This degradation is primarily reflected in
the FNR values, indicating that many tattoo pixels were
misclassified as background. We attribute this behavior to
the labeling design used in TSSD2023. The primary factor is
the detailed annotations in TSSD2023, designed to accurately
classify the pixel classes, as seen in Table 4. For example, the
shark’s mouth was separated from the shadow of the tattoo.
In contrast, DeMSI does not provide refined annotations
for tattoos, leading to multiple background pixels being

TABLE 14. Evaluation of the performance on the DeMSI dataset in the
closed-set tattoo segmentation scenario. The results were obtained using
the proposed LLMFCL and SegFormer.

TABLE 15. Visual result samples of closed-set tattoo segmentation on the
DeMSI dataset. The tattoo and background pixels are depicted as black
and white, respectively. The results were obtained using the proposed
LLMFCL and SegFormer.

incorrectly annotated as part of a tattoo, as shown in Table 15.
The second factor relates to tattoo classes with insufficient
semantic samples, such as dragons, letters, and spider webs,
which were excluded in TSSD2023 and are ignored by our
approach, as seen by the text tattoo in Table 15. Due to
these differences in annotation design between DeMSI and
TSSD2023 datasets, performance degradation occurs when
directly applying our approach.

To alleviate the performance degradation caused by
annotation differences between the datasets, we fine-tuned
the SegFormer network’s last layer using the DeMSI dataset.
For the fit, was used 60% of the images for training and 40%
for testing as proposed by [13]. After this adjustment, our
approach proved effective for performing closed-set tattoo
segmentation, as evidenced by the significantly reduced
FNR values in Table 14. Visually, the improvement in
segmentation quality before and after fine-tuning can be
observed in Table 15.
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VI. CONCLUSION
This paper built a novo tattoo semantic segmentation
dataset called TSSD2023, introducing an unexplored and
challenging problem in semantic tattoo recognition. This
dataset can serve as a valuable basis for future research.

Furthermore, the paper has presented the proposed
Large-Margin Focal Loss (LLMFCL) to enhance tattoo
semantic segmentation outcomes in both closed and open-
set scenarios. In the closed-set scenario, LLMFCL performed
competitively and outperformed other evaluated loss func-
tions in terms of Macro F1, demonstrating its suitability
for closed-set semantic segmentation. An in-depth analysis
at the class level revealed that superior performance is
generally observed in classes depicted by high semantic
dissimilarity and minimal overlap with other tattoos within
an image. Conversely, the most challenging classes rarely
appear in isolation, often serving as complementary compo-
nents to other tattoos. In the open-set scenario, this paper
proposes a generalized approach for the OpenIPCS method
named G-OpenIPCS that facilitates the integration of this
open-set classifier with more modern segmentation network
architectures, such as transform-based networks. Using
G-OpenIPCS, we compared the performance of different
loss functions with the proposed LLMFCL , which showed
higher scores regarding AUROC, Macro F1, and overall
mIoU.When considering only the UUCs,LLMFCL performed
competitively in AUROC while outperforming F1-Score
and IoU. This highlights its effectiveness in the domain of
open-set tattoo semantic segmentation. A more thorough
examination revealed that classes bearing high similarity
to other classes, overlapped, and with limited samples,
it represented the significant challenges for open-set tattoo
semantic segmentation.

It is worth noting that when a semantic tattoo class has
high variability, segmentation errors can occur due to false
outliers. To address this issue, we propose a new data aug-
mentation technique named Class Semantic Augmentation
(CSA) that increases the available semantic information of
classes for better model generalization. Nevertheless, there
are opportunities for further advancements in this research
area.

When comparing our approach, which combines LLMFCL ,
SegFormer, and G-OpenIPCS, with other state-of-the-art
methods for open-set tattoo semantic segmentation, our
approach consistently attains the highest overall results.
It surpasses the performance of other state-of-the-art meth-
ods, underscoring its potential for addressing challenging
scenarios in open-set semantic tattoo segmentation.

Furthermore, our approach applicability extends beyond
the domain of tattoo segmentation, and it holds the potential
to enhance open-set semantic segmentation in various other
application domains. Finally, it is essential to note that while
our approach demonstrates promise, there remains room
for further improvements in specific areas. This includes
improving the handling of class imbalance, class overlap,

high intra-class semantic variability, and, in some cases, high
inter-class similarity, detailed as follows.

VII. CHALLENGES IN OPEN SET TATTOO SEMANTIC
SEGMENTATION
Although the approach discussed here is promising and
with results superior to state-of-the-art methods for open-set
semantic segmentation, in the context of tattoos, we can
observe numerous difficulties and open points for this line
of research. Below, we detail some of those that we consider
most relevant in the proposed context:

A. SEMANTIC SHIFT
Semantic shift is caused by classes that influence model
predictions due to their semantic similarity to other classes,
causing segmentation errors [33], [37]. This semantic shift
can be caused in three different ways in the tattoo dataset.
The first is the presence of invisible objects in the background
class that are similar to known and unknown classes. The
background class is a large grouping of objects relatively
irrelevant to the application. However, tattoos are seman-
tically very similar to illustrations projected onto different
surfaces. For example, a skull on a tattoo artist’s chair can
be easily identified as a tattoo, generating a misclassification.
Furthermore, due to the great difficulty in annotating a large
volume of tattoos for semantic segmentation, some tattoos are
‘‘ignored’’ in the labeling process and noted as belonging to
the background class, which can cause misclassifications.

The second comprises objects of known classes are similar
to each other. Some semantic classes are similar to others
within the set of known classes. For example, the ‘wolf’,
‘dog’, and ‘fox’ classes belong to the same animal family,
thus presenting similar characteristics that even humans may
find difficult to distinguish. This high similarity makes the
process of recognition by the segmentation model difficult,
which can, in some cases, generate classification errors.
Furthermore, this semantic similarity can extend to small
parts of the tattoos, which can cause small segmentation
errors. Finally, the third includes objects of unknown classes
similar to known classes. This challenge is similar to the
previous one but more demanding. The segmentation model
must be trained to produce robust decision boundaries to
separate known data from each other and separate it from
unknown data. While in the previous problem, it is only
necessary to distinguish among known classes.

A possible way to alleviate these factors’ influence is to
make a descriptive note of the tattoo using natural language.
This can help identify tattoos more effectively, avoiding
reducing the artistic feature of a tattoo to a set of labels.

B. INTRA-CLASS VARIABILITY
An open challange is also related to objects from known
classes with different characteristics from the group of objects
from the same semantic class. Because tattoos are a form
of artistic expression based on drawings, the number of
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designs that can be thought of to create a tattoo is practically
unlimited. This infinite universe of possibilities makes each
tattoo unique, with the variability of tattoos present in the
real world being practically immeasurable. When defining a
semantic class for a set of objects, we intuitively state that
these objects are similar, which is generally true. However,
concerning tattoos, it is possible that despite belonging to
the same semantic class, practically none of the patterns are
identically replicated between tattoos. In some cases, the
patterns are so different between objects of the known class
that the segmentation model segments the known tattoo as
belonging to the unknown class.

C. OBJECTS OF KNOWN AND UNKNOWN CLASSES
SEGMENTED WITH LOW PRECISION
This challenge incorporates several subproblems encountered
in closed-set segmentation and also in open-set segmentation.
In segmenting closed sets, the models suffer from the
subproblem of overlap between objects, making it difficult to
separate the boundaries between objects accurately. Another
common subproblem is small objects present in images,
generally classified as objects from other classes, such as the
background class. The open-set semantic segmentation task
inherits all these subproblems. However, in open-set segmen-
tation, we still have the challenge of accurately classifying
regions of completely unknown objects while dealing with
the subproblems derived from closed-set segmentation.

D. DATA AUGMENTATION FOR SEMANTIC SEGMENTATION
The data augmentation proposal presented here may be
promising for incorporatingmore data into tattoo datasets, the
annotation of which is costly and time-consuming. A possible
path is to combine the approach presented in [13] with the
data augmentation ideas proposed in this paper in order to
create greater variability of classes and examples, including
data in an open set, to enable the training of more complex
models and, consequently, increase final performance.

E. COMPUTATIONAL COMPLEXITY
We understand that a detailed analysis of computational
complexity must be conducted for certain applications,
mainly involving embedded systems. This analysis must
include the training and deployment of the model according
to the target device. Specific architectures for this type of
application can also be evaluated, as demonstrated in [71].
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