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ABSTRACT The high penetration of Renewable Energy Sources (RES) and Electric Vehicles (EVs) into
the grid introduces new challenges for Distribution Systems (DSs). The uncertainties related to these
assets necessitate the development of real-time methodologies to optimize the operation of Low Voltage
(LV) and Medium Voltage (MV) DSs. This paper aims to fill the gap in the literature by proposing a
holistic real-time DS optimization model that considers the coupling of MV and LV DSs. Specifically, the
methodology adopts a bottom-up three-layer approach. At the first layer an optimal EV Smart Charging
Scheduling (SCS) methodology is applied for power losses minimization at the LV DSs, considering the
characteristics of individual households (maximum rated power of the electrical installation, Photovoltaic
generation, and load and EV charging demand). The second layer introduces a residential controller that
fully exploits the flexibility of EVs, minimizing the impact of forecasting errors while satisfying limitations
regarding households’ overloading protection. The third layer involves a real-time Network Reconfiguration
(NR) methodology, considering real-time power transactions between MV and LV DSs, and determining
the optimal topology through a cost-worth analysis of power loss reduction and switch operation costs.
The overall design of the proposed methodology ensures broader adoption, repeatability, adaptability, and
scalability across diverse DSs, including various types of LVDSs (residential, commercial, etc.) and different
MV DS configurations. The proposed methodology can reduce DS power losses by up to 34.41% compared
to the base scenario, which involves the operation of the DS without employing either EV SCS or NR.

INDEX TERMS Distribution system, electric vehicle charging, vehicle-to-grid, forecast uncertainty, real-
time energy management.

NOMENCLATURE
Abbreviations

EU European Union.
MV Medium Voltage.
LV Low Voltage.
DS Distribution System.
DR Demand Response.
DSO Distribution System Operator.

The associate editor coordinating the review of this manuscript and
approving it for publication was Behnam Mohammadi-Ivatloo.

EV Electric Vehicle.
LSTM Long Short-Term Memory.
MAE Mean Absolute Error.
MARNE Mean Absolute Ranged Normalized Error.
NLP Non-Linear Problem.
NRMSE Normalized Root Mean Square Error.
NA Not Applicable.
MPC Model Predictive Control.
NR Network Reconfiguration.
PF Power Flow.
PV Photovoltaic.
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SoC State of Charge.
SCS Smart Charging Scheduling.
RES Renewable Energy Sources.

Sets

i, j / m, n Sets of buses for LV / MV network.
l Set of the system’s lines.
k Set of EVs/households connected at each bus.

Parameters

gm,n, ri,j, xm,n Conductance, resistance and reac-
tance of line connected from bus i/m
to bus j/n.

N Number of buses at MV DS.
PPV ,pred
t,i,k , Pload,pred

t,i,k Predicted PV power and load
demand of k th household connected
to bus i at time t .

PPV ,real
t,i,k , Pload,real

t,i,k Real PV power and active power
demand of k th household connected
to bus i at time t .

Qload,real
t,i,k Real reactive power demand of k th

household connected to bus i at
time t .

pfi,k Power factor of k th household con-
nected to bus i.

Pnomi,k Nominal power of k th house con-
nected to bus i.

Pev,adjt,i,k Adjusted power of k th EV connected
to bus i at time t .

ηch, ηdis Charging and discharging efficiency
of EVs.

Capi,k , SoC
max
i,k Battery capacity and maximum SoC

of k th EV connected to bus i at time
t .

T depi,k Departure time of k th EV connected
to bus i.

Cen, Cs Energy and switching action cost.
sinitl Binary parameter to define the initial

state of the MV DS, i.e., is equal to
1 if the line is in service.

Real Variables

Pt,i,j, Qt,i,j Real and reactive power flow at LV DS
from bus i to bus j at time t .

Vt,i Voltage magnitude at time t at bus i.
dm Argument of voltage at bus m.
PMVm,n Power flow at MV DS from busm to bus n.
Pevt,i,k , E

ev
t,i,k Charging/Discharging power and energy of

k th EV connected to bus i at
time t .

PLVm Total power generation/demand of LV DS
connected to bus m of the MV DS.

Pgen,MVm Power generated at bus m of MV
DS.

Non-Negative Variables

Pev,cht,i,k ,Pev,dist,i,k ,
SoCt,i,k Charging power, discharging power and

SoC of k th EV connected to bus i at time
t .

Ploss Power losses at MV DS.

Binary Variables

al Binary variable that is equal to 1 if the state of the
line changes between two iterations.

sbinl Binary variable that is equal to 1 if the line is on
service after the reconfiguration.

sm,n Binary variable that is equal to 1 if buses m and n
are connected.

I. INTRODUCTION
In response to the instability observed in energy prices, the
European Commission announced Regulation 2022/1854 [1],
which requires the Member States to take actions to reduce
power consumption during peak hours by at least 5%. This
mandatory peak reduction aligns with the EU’s efforts to
enhance the efficient operation of DSs, with a particular focus
on reducing power losses [2]. A report published by the
Council of European Energy Regulators [3] highlights that
power losses represent a substantial portion of the overall
energy. According to the 2nd CEER Report on Power Losses,
published by the Council of European Union Regulators in
2020, distribution losses in the majority of member state
countries constitute more than 2% of the annual injected
energy [3]. As highlighted in the report of distribution tariff
methodologies in Europe [4], the cost of the energy losses
can be directly transferred to the consumers as a distribution
tariff, or it can be included in the bidding energy price in the
energy markets. Therefore, the reduction of power losses can
directly contribute to alleviating energy prices.

Despite the effort of EU to enhance the efficiency of DSs,
the insight of EU towards the decarbonization of energy [5]
and transport sectors has altered the load profile of DSs.
Hence, DSs are currently facing significant challenges.
On the one hand, the lack of synchronization between the
demand of EVs and the generation of RES affects the power
quality of the system. On the other hand, these new assets are
characterized by high uncertainty. The dependence of RES
on meteorological conditions and the uncertainty associated
with EV charging profiles result in high deviations between
forecasts and actual generation/demand values, impeding the
day-ahead scheduling of DSs’ operation.

To address these challenges and achieve the objectives of
the EU, there has been significant attention towards the devel-
opment of EV SCS [6] and the application of NR schemes.
Implementing these schemes could lead to deferral invest-
ments and enhanced efficiency and reliability for DSs [7].
However, their successful implementation requires consider-
ation of several factors. Firstly, uncertainties related to RES
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generation, load demand, and EV charging profiles (time of
arrival, SoC, time of departure) should be managed in real
or near-real time. This approach enhances the robustness of
SCS by mitigating the impact of forecasting errors. Addition-
ally, according to the latest ‘‘Global EV outlook’’ published
by the International Energy Agency (IEA), most charging
demand is currently met by residential chargers. Therefore,
the limitations of residential charging infrastructure, such as
overload protection and maximum charging power, must be
addressed concurrently with operational constraints of DS.
Finally, the coupling ofMV and LVDSs should be considered
to optimize the performance of DS by leveraging both the
flexibility provided by the EVs and the benefits of NR.

A. LITERATURE REVIEW
The charging scheduling methodologies proposed in the liter-
ature focus on various objective functions. Some studies have
proposedmulti-objective optimizationmethods. For instance,
the authors in [8] aimed to minimize both electricity con-
sumption cost and battery degradation cost, while the authors
in [9] proposed a method to minimize charging cost and cost
of power losses. Other studies directly addressed the concerns
of DSOs related to the DS operational characteristics. For
example, the authors in [10] proposed a voltage control strat-
egy, and [11] focused on transformer loading. Furthermore,
[12] addressed the minimization of power losses. However,
recent papers have shifted focus towardsminimizing charging
costs [13], [14]. The authors in [15] and [16] proposed an EV
SCS method using TOU scheme, while the authors in [17]
and [18] examined the impact of dynamic energy pricing in
charging scheduling.

Aside from the objective function, the proposed method-
ologies differ in terms of the DS voltage level and the
charging infrastructure they refer to. Most papers focused on
the impact of SCS on MV DS considering the existence of
charging stations. The authors in [19] examined the effect
of coordinating charging stations in specific buses of the
IEEE 33-bus system. The same DS was also examined in
papers [20], [21], and [22]. Apart from charging stations
connected to MV DS, residential charging infrastructure in
LV DS was also considered. For example, the authors in [8]
examined peak shaving through charging scheduling in a LV
DS in Sydney, while the authors in [23] investigated voltage
stability and power losses in a LV DS in Greece. A different
approach was presented in [24] where the authors focused on
the effect of SCS in a microgrid.

The aforementioned papers primarily focused on day-
ahead applications, which require predictions of various
factors. For charging cost minimization problems, these pre-
dictions typically involve factors such as time-of-arrival,
time-of-departure, SoC of EVs, aggregated load forecasts,
and predictions of RES power generation, as discussed in [11]
and [15]. However, in more complex scenarios where charg-
ing scheduling directly addresses DS power quality, such as
voltage control and power losses reduction, individual load

forecasts for each node of the system should also be consid-
ered [12]. In such cases, the uncertainty of load forecasting
may increase due to end-user stochasticity, particularly in
residential load contexts. For the latter it is crucial to note
that forecasting errors may lead to violations of the limita-
tions of residential charging infrastructure, i.e., overloading
protection issues.

To address these uncertainties, methodologies for real or
near-real time SCS have been proposed in [20], [21], [24],
[25], [26], and [27]. In [20], a real-time model was proposed
to minimize the carbon emissions, while [25] focused on
minimizing customer’s cost and maximizing the use of EV
battery. Additionally, [26] aimed to minimize the difference
between real-time load demand or generation and the com-
mitment value. Moreover, [27] introduced a real-time control
charging strategy at a charging hub tominimize the EV charg-
ing cost. In [24], the authors focused on developing a demand-
response-based energy management method that included
EVs in the optimization problem. The model’s objective was
the minimization of CO2 emissions, generation cost and bat-
tery degradation. A different approach was proposed in [21]
combining both day-ahead and real-time SCS using a bi-layer
approach. The day-ahead scheduling aimed to maximize the
load margin index, while the real-time scheduling aimed to
minimize the cost of EV aggregation.

In these papers the authors applied the SCS methodologies
either on MV or LV DSs, without considering the benefits of
NR. Few methodologies in the literature have combined both
NR and EV SCS. However, existing methodologies mainly
focus on the day-ahead scheduling [12], [22], [28], [29] and
their effectiveness is questioned in real-applications. There-
fore, real-time methodologies combining both EV SCS and
NR are essential to be developed. This integration is essential
because power transactions between coupled LV-MV DSs
are required to determine the optimal system topology under
NR scheme. Otherwise, any deviation between forecasted and
real values could significantly impact the optimal topology of
the system.

B. SCOPE OF WORK AND CONTRIBUTIONS
The literature review is summarized in Table 1. Despite the
progress made, several gaps can be identified:

• Real-time methodologies considering the coupling
between MV and LV DS and integrating both NR and
SCS have not been examined yet.

• Previous research primarily focused on charging sta-
tions, with limited consideration of technical constraints
of residential charging infrastructure, i.e., overloading
protection in households [8], [12], [16], [23].

• Uncertainties related to RES power generation and load
demand forecasts were often overlooked, resulting in
inefficiencies in large-scale systems.

• Power loss minimization in real-time applications has
also been neglected, despite its potential to reduce elec-
tricity costs and provide valuable insights to DSOs
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TABLE 1. Literature review.

for incentivizing EV participation in charging control
schemes.

This paper addresses these gaps and proposes a cou-
pled MV-LV optimization model for real-time power loss
minimization. The proposed model comprises three layers.
The first layer focuses on EV SCS at residential charging
infrastructure, aiming to minimize power losses in LV DS.

The SCS methodology employes model predictive control
considering not only uncertainties of EVs, i.e., time-of-
arrival and SoC but also forecasting errors of RES gener-
ation and load demand. Forecasts of RES generation and
household demand are updated every 15 minutes using a
LSTM model. Also, the EV SCS considers the limitations
of household overloading protection. At the second layer,
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a residential controller adjusts the charging power of each EV
in real-time. This adjustment considers deviations between
real measurements and predicted values of load demand
and RES generation, as well as the constraints posed by
household overloading protection. Finally, the third layer
involves a real-time NR reconfiguration at MV DS, consid-
ering real-time power transactions between MV and LV DSs.
The main objective is to define the optimal topology of the
MV DS through a cost-benefit assessment that weighs the
profit of reducing power losses against the switching costs
associated with NR.

In this context the contributions of this work aim to:
• Fill the gap in the literature regarding a holistic real-time
DS optimization model that considers the coupling of
MV and LV DSs. The proposed methodology employs
a bottom-up approach that optimizes the DS consider-
ing: a) the needs of individual residences (load demand,
PV generation and EV charging demand), b) the techni-
cal characteristics of LV and c) the technical character-
istics of MV DS.

• Propose a residential controller that fully-exploits the
flexibility of EVs. The controller deals with forecasting
errors related to RES generation, while ensuring com-
pliance with household overloading protection limits.

• To serve as a basis for future research into designing
price incentives to encourage EV owners to participate
in Smart Charging System (SCS) schemes.

• Ensure the methodology’s broader adoption, repeatabil-
ity, adaptability, and scalability across diverse DSs. This
includes various types of LV DSs (residential, commer-
cial, etc.) and different configurations of MV DSs.

II. METHODOLOGY
A. FORECASTING MODEL
Several PV and load demand forecasting models have been
proposed in the literature, dealing with different forecasting
horizons, i.e., very short-term, short-term and long term.
However, as the forecasting horizon increases, deep learning
methods outperforms many well-known machine learning
and statistical methods [30]. Therefore, in this paper, the
LSTM model is selected to generate forecasts for both RES
generation and load demand of each household for the next
day, with a 15-min resolution. The selection of the LSTM
model is based on its ability to capture dependencies among
the input variables and retain crucial information from previ-
ous time-steps to predict the next ones. For the development
of the LSTM the sliding window method is utilized, which
is crucial in energy management applications that involve
load and RES generation predictions, as it updates the pre-
dictions and alleviates the forecasting error by capturing load
demand and generation patterns [31].

B. 1ST LAYER: EV SMART CHARGING SCEDULING AT LV DS
The EV SCS model is formulated as an NLP problem and is
applied to LV DS aiming to minimize power losses, as pre-
sented in (1). For the PF analysis, the linear DistFlow is

employed, as expressed in (2) – (4). The linear DistFlow is
the most appropriate choice for real time applications in LV
DSs due to its computational efficiency and the relatively low
deviation compared to generic NLPACPF [32]. Additionally,
the voltage thresholds of each bus at time t should be within
the acceptable limits, as defined in (5).

minOFLV =

∑T

t=0

∑B

i=0

∑B

i=0

(
ri,j ·

(
P2t,i,j + Q2

t,i,j

))
(1)

Pt,i,j =

∑B

b=0
Pt,j,b

+

∑K

k=0

(
Pload,pred
t,j,k − PPV ,pred

t,j,k + Pevt,j,k
)

(2)

Qt,i,j =

∑B

p=0
Qt,j,p + Qload,real

t,i,k (3)

Vt,i = Vt,j − 2 ·
(
ri,j · Pt,i,j − xi,j · Qt,i,j

)
(4)

Vmin
≤ Vt,i ≤ Vmax (5)

The constraints of the EVs are presented in (6) – (14).
Specifically, (6) models the overloading protection of the
household. According to this, the total household load
demand and charging power of the EVs cannot exceed
the rated capacity of the installation. Therefore, the charg-
ing/discharging power of the EV is defined considering the
PV power generation and the load demand. In (7) the energy
capacity of the k th EV connected at bus i at time t (Eevt,i,k )
is estimated regarding the variables Pev,cht,i,k and Pev,dist,i,k defined
in (8). These variables are both positive and are used to define
the charging and discharging power, respectively. Addition-
ally, (9) is used to ensure that Pev,cht,i,k and Pev,dist,i,k do not
take positive values concurrently. Moreover, constraints (10)
and (11) define the estimation of the SoC and the constraints
regarding its limits. The proposed SCS methodology has
been developed considering the preferences of EV owners
regarding the time-of-departure and the SoC at the time of
their departure. Yet the latter depends on the limitations of
the electrical installation. These are expressed in (12) which
ensures that the EV battery will reach the maximum SoC by
the time of departure (t = T depi,k ).

Pload,pred
t,i,k − PPV ,pred

t,i,k + Pevt,i,k ≤ Pnomi,k (6)

Eevt,i,k = ηch · Pev,cht,i,k −
1

ηdis
Pev,dist,i,k (7)

Pevt,i,k = Pev,cht,i,k − Pev,dist,i,k (8)

Pev,cht,i,k · Pev,dist,i,k = 0 (9)

SoCt,i.k = SoCt−1,i.k +
Eevt,i.k
Capi.k

(10)

0.2 ≤ SoCt,i.k ≤ 1 (11)

SoCt=T depi,k ,i,k = SoCmax
i,k (12)

C. 2ND LAYER: RESIDENTIAL CONTROLLER
The residential controller operates in real-time, and it is
triggered by new measurements of PV generation and load
demand. Its primary function is to alleviate the impact of

VOLUME 12, 2024 108317



D. Kothona et al.: EVs in Distribution Networks—Optimal Scheduling and Real-Time Management

forecasting errors in LV DSs while concurrently prevent-
ing power outages caused by overloading of the electrical
installation. This is implemented by dynamically adjusting
the charging/discharging power of the EV, considering two
distinct conditions which should be satisfied concurrently
(Figure 1).

The first condition is used to deal with the PV and/or load
forecasting errors in real-time. This is extremely important
since the uncertainties related to forecasts in households
can cause actual EV power to deviate from the sched-
uled one, leading to inefficiencies in large-scale systems.
Specifically, without addressing these forecasting errors, the
real-time operation of the system would significantly devi-
ate from the scheduled plan. Therefore, by adjusting the
charging/discharging power of the EVs in real time, the total
demand of the household can be equal or close to the sched-
uled one. This also ensures that the adjustment does not
violate the constraint set at the first layer, since the scheduled
demand should be less than or equal to the nominal rated
power of the electrical installation (6). Considering these,
in the second condition if the absolute value of a forecasting
error exceeds a predefined threshold, then the power of the
EV is adjusted to mitigate the mismatch between the real and
predicted generation and/or demand, as expressed in (13).
This threshold is a user-defined parameter. The higher the
threshold, the more tolerant the controller is to forecasting
errors.

The second condition pertains to themaximum rated power
of the electrical installation of the household, preventing
power outages. Specifically, there might be cases where the
forecasting error does not exceed the predefined threshold.
In such cases the first condition is not checked. Therefore,
we should make sure that the EV charging power will be
reduced, if the total demand at time t exceeds the maximum
power (Pnomi.k ), as defined in (14).

Pev,adjt,i,k = Pevt,i.k + Pload,pred
t,i.k − PPV ,pred

t,i.k

−

(
Pload,real
t,i.k − PPV ,real

t,i.k

)
(13)

Pev,adjt,i,k = Pnomi,k − Pevt,i,k (14)

D. 3RD LAYER: NR AT LV DS
At the third layer, real-time NR is employed and formulated
as a MINLP problem. The MVDS optimization process aims
to minimize not only the cost of the power losses but also
the cost related to the switching actions through a cost-worth
assessment, as indicated in (15).

min (OFMV ) = Cen
· Ploss + Cs

·

∑L

l=1
al (15)

To estimate the power losses at theMVDS, DC power flow
is utilized, as presented in (16), (17) and (18). The DC PF has
been extensively used in unit commitment problems at the
transmission systems, due to its computational efficiency and
the low deviation compared to AC power flow. Specifically,
the results presented in [33] highlighted that the DC PF is

FIGURE 1. Residential controller.

60 times faster than AC. Additionally, the accuracy of DC PF
depends on the ratio x/r and increases when r≪x [34]. This
limitationmakes the DCPF unsuitable for LVDS application.
However, in MV DS the ratio x/r is greater than 1 which
means that the PF error could be acceptable.

Ploss = 0.5 ·

∑N

m=0

∑N

n=0

(
gm,n · (dm − dn)2

)
(16)

Pgen,MVm =

∑N

n=0
PMVm,n + PLVm (17)

PMVm,n =
1
xm,n

· sm,n · (dm − dn) (18)

In (18) the PF of the lines is estimated by considering
the binary variable sm,n, which defines the topology of the
system. To ensure that the topology of the system is valid,
two conditions must be ensured: a) the radiality of theMVDS
is maintained, and b) all buses are connected to the system.
These conditions are formulated in (19), (20) and (21).

sn,m = sm,n (19)

sm,n = sbinl , ∀(m, n) ∈ l (20)∑L

l=1
sbinl = N − 1 (21)

Finally, (22) and (23) are used to define al variable. This
is a binary variable responsible for tracking the switching
actions and is used to estimate the switching cost in (15).

al ≥ sbinl − sinitl (22)

al ≥ sinitl − sbinl (23)

E. OVERALL PROPOSED METHODOLOGY
The flowchart presented in Figure 2 outlines the proposed
methodology. At each time step t , the LSTM provides
the 24-hour predictions for PV power generation and load
demand, with a time resolution of 15-min. Based on this
temporal granularity, the LSTMprovides 96 predicted values,
i.e., 96 quarters within the day. It should be noted that the
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LSTM is applied to each individual household and is executed
each time new measurements are available, based on the slid-
ing windowmethod. The EV SCS employes model predictive
control approach [35] and utilizes predictions to define the
SCS of EVs. Therefore, the continues update of these pre-
dictions through the sliding window method is essential to
alleviate the forecasting error and increase the robustness of
the SCS.

FIGURE 2. Flowchart of the proposed methodology.

Afterwards, the EV SCS is applied at each LV DS, consid-
ering the forecasted values of load demand and PV generation
of each household. The SCS methodology is triggered at
time t so to be updated by two conditions: a) the charg-
ing/discharging power of the EV(s) has been adjusted at
time t-1 by the residential controller, and/or b) new EVs are
plugged-in at time t . The concept here is that every deviation

from the initial scheduling caused either by the residential
controller or by a new EVs’ arrival, affects the optimality of
the SCS and therefore an updated optimal schedule should
be generated. In this way, the proposed SCS methodology
can efficiently deal with the forecasting errors and the uncer-
tainties of EVs, i.e., time-of-arrival and SoC. The EV SCS
methodology provides an optimal EV charging plan for the
time span [t + 1, t + 97]. At the next timestep (t + 1)
the residential controller adapts, if it is required, the charg-
ing/discharging power of the EVs. In case the latter happens,
the EV charging plan is updated, as presented in Case A
within Figure 3. If no adjustments are made, the charging plan
established at time t + 1 is applied, as presented in Case B
and Case C within Figure 3. Now, in case new EVs arrive at
t+1 the SCS is updated (Case B within Figure 3). Otherwise,
at t + 1 the EV SCS is not updated (Case C within Figure 3).

It should be noted that in all cases presented in Figure 3 the
NR is applied in real-time. In many papers NR methodolo-
gies are developed for day-ahead applications. This requires
day-ahead predictions of load demand and generation power
as well as predictions related to EVs’ SoC, time of arrival and
time-of-departure. Yet, these predictions increase the uncer-
tainty of the DS and reduce the robustness of NR. Therefore,
the proposed real-time NR deals with these issues and defines
the optimal topology of the MV DS by considering the real
power transaction between the LV DSs and the MV DS.

The proposedmethodology has several advantages. Firstly,
the continuous update of the predictions improves the fore-
casting accuracy and enhances the robustness of the EV SCS
methodology. Additionally, the proposed EV SCS methodol-
ogy can effectively deal with the uncertainties related to the
EVs’. Moreover, the residential controller adjusts the charg-
ing/discharging power of EVs and deals with the forecasting
errors in real-time and alleviates their impact to the DS.
Finally, the real-time NR of the MV DS complements the
analysis and ensures the efficient operation of the overall DS,
by considering the real-time power transactions between MV
DS and LV DSs.

III. CASE STUDY
In this section the case study of the proposed methodology is
presented. The simulation period is from 12:00 PM to 06:00
AM the next day, with a timestep of 15 minutes.

A. LV DS UNDER STUDY
The LV DS utilized in this paper consists of 108 buses,
as presented in [12]. We assume that a household with a
residential charger is connected to each bus. The daily load
demand and PV power generation profiles of each household
have been obtained from dataset [36]. This dataset includes
half-hour active power demand and PV generation data from
300 households for a period of two years (01/07/2010 –
30/06/2012). Since DistFlow requires the reactive power as
well, we calculate the reactive power, as presented in (24),
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FIGURE 3. An example of two sequential executions of the proposed
methodology.

considering that the power factor of the households is 0.97.

Qload,pred
t,j,k = tan(cos−1(pfi,k ) · Pload,pred

t,j,k (24)

Based on the location of each residence, hourly historical
meteorological data (solar irradiation and temperature) are
obtained from NASA POWER database [37]. Considering
that the proposed methodology is applied to 15-min intervals,
interpolation method is used to resample the time series and
change the frequency of the data to 15-min.

B. LSTM FORECASTING MODELS
The LSTM forecasting models predict the PV generation and
load demand of each household for the next 24 hours with a
timestep of 15 minutes. The meteorological parameters used
in the forecasting models have been obtained from POWER
Data Access Viewer database considering the location of the
households [37]. The data have been obtained with a record-
ing frequency of 60-min. Therefore, interpolation method is
employed to adjust the frequency to intervals of 15-min.

For the PV generation forecasts, 96 previous time steps of
PV generation, solar irradiation, and temperature are used as
inputs. Additionally, the load demand predictions are derived
using as inputs the 96 previous values of the load demand,
the ambient temperature, and the day of the week index.
The selection of these variables is based on the results of a
correlation analysis.

For each household the datasets of PV generation and
load demand are divided into a 70% training set and a 30%
test set. For the models’ training MAE is selected as objec-
tive function, while Adam optimizer is used to optimize the
weights of the predictor. Table 2 presents the parameters of
the models, which are selected after trial-and-error process.
Additionally, Figure 4 presents two indicative convergence
plots for the training of a PV power and a load demandmodel.

The forecasting accuracy of the models is examined in terms
of three indexes: a) MAE, b) NRMSE and c) MARNE [38].

FIGURE 4. Convergence plots.

TABLE 2. Parameters of forecasting models.

In this case study the MAEs serve as the forecasting error
thresholds for the residential controllers. Specifically, the
MAE of PV power and load demand of each household have
been estimated and set as forecasting error threshold for that
specific household.

C. EV DESCRIPTION
In this case study we consider that the EVs’ penetration is
100%, i.e., an EV is connected to each household. Moreover,
19 EV models are utilized and are randomly assigned to
the buses of the LV DS. The EV models, along with their
battery capacities, are presented in [23]. Given that we are
dealing with residential chargers, the EVs’ parameters related
to the maximum charging power, the time-of-arrival and the
time-of-departure are defined accordingly. Specifically, the
maximum charging power has been set at 7.6 kW, which
coincides with the maximum rated power of the electrical
installation, i.e., household.

Additionally, the time-of-arrival of the EVs is assumed to
follow a normal distribution based on the EV travel partner
presented in [39]. Specifically, the authors in [39] presented
the daily EV charging load profiles based on demographics of
vehicle users. Depending on the age of the vehicle owners, the
arrival is from 16:00 to 18:00 for young aged people, while
the arrival time of the elderly is distributed from 11:00 AM
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to 06:00 PM. Hence, it is anticipated that the EVs arrive
between 12:00 and 00:00, following a normal distribution.
Moreover in [39] it is highlighted that the first trip is con-
centrated at around 7:00 AM during the workday. Thus, the
time-of-departure in this case study is set at 06:00 AM of
the next day. The time-of-departure and the final SoC are
user defined parameters and can be set according to the EV
owners’ preferences.

The charging/discharging efficiency of each EV is set to
0.95. The initial SoC of the EVs upon arrival is randomly set
between 20% and 40%, based on [40]. The authors in [40]
assumed an initial SoC of EVs uniformly distributed between
10 - 40%. Considering this as well as the technical character-
istics of the batteries, we defined the initial SoC within range
20% to 40%. Finally, it is assumed that all users want their
EVs to be fully charged by the time of departure.

D. MV DS UNDER STUDY
The 33-bus IEEE system has been utilized for the analysis of
the MV DS [12]. The first bus of the 33-bus system is the
slack bus, while the rest ones are load buses. Considering the
coupling between MV and LV DSs it is assumed that a LV
DS, described in subsection III-A, is connected to each load
bus of the MV DS. Therefore, a total of 3,456 households are
connected to the MV DS.

Although the technical characteristics of the LV DSs are
identical (length and impedance of lines), the assignment
of households and EVs to the buses varies between them.
Consequently, the total demand among the LV DSs differs.

The optimization of MV DS is based on a cost-worth
analysis assessment including the cost from power losses
reduction and the cost of the switching actions. To assess
power loss benefits, day-ahead electricity prices from the
ENTSO-E platform have been utilized. The data refer to
Greece from 01/01/2023 to 02/01/2023 [41]. Additionally, the
switching operation cost has been set equal to 0.5=C and it is
taken from [42].

E. EXAMINED SCENARIOS
To assess the effectiveness of the proposed methodology and
highlight the significance of addressing the coupling of MV
and LV DSs, four scenarios have been formulated as follows:

• Sc#A: This is the base scenario where neither NR nor
EV SCS is implemented.

• Sc#B: In this scenario, only EV SCS is applied at LV
DSs. The purpose of this scenario is to examine how the
SCS at LV DS contributes to the efficient operation and
power flow mitigation at the MV DS.

• Sc#C: In this scenario, only NR is applied at MV DS.
• Sc#D: This scenario refers to the proposed methodology
where the coupling of MV and LV DSs is considered.

IV. RESULTS
The proposed methodology is developed in a Python envi-
ronment. The first and the third layers are formulated as a
mathematical model using PYOMO, with Conopt and Bomin

solvers selected for optimizing the LV DS and MV DS,
respectively.

A. FORECASTING MODELS
The metrics of forecasting errors for PV generation and load
demand for each residence are outlined in Table 3. These
errors have been evaluated over the entire forecasting period,
i.e., 96 timesteps ahead. Based on the forecasting results,
we can conclude that the forecasting errors of PV genera-
tion are relatively lower than the load demand, while errors
fluctuate among the households. These can be explained
considering that: a) the load demand at residential level has
higher uncertainty compared to the PV generation due to
the stochastic behavior of end-users; and b) the efficiency
of the forecasting models depends on the on the quality and
relevance of the input data.

The MAEs presented in Table 3 serve as the forecasting
error thresholds for the residential controllers and trigger
the execution of SCS at the LV DS. It should be noted that
these thresholds can be modified according to the users’
preferences.

TABLE 3. MAE of forecasting models per residence.

B. LV DS ANALYSIS AND RESULTS
For the LV DS we consider both the application of the
SCS and the residential controller. The performance of the
controller is presented in Figure 5. The results refer to
a specific timestep for 10 randomly selected houses of a
LV DS. Figure 5a illustrates the real and forecasted load
of the households. The load is defined as the residual
demand or production in terms of net power for the resi-
dential installation, encompassing both PV generation and
consumption. Figure 5b presents the initial and adjusted
charging/discharging power of the EVs connected to the
households.

At households #0, #2, #4, #6 and #8 the residential con-
troller does not modify the charging power of EVs. This can
be explained considering that the forecasting error does not
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exceed the predefined threshold. However, in households #1,
#3, #7 and #9 the residential controller adjusts the power to
alleviate the impact of the forecasting error. In these cases, the
controller adjusts the power to ensure that the total household
consumption in real-time, depicted as ‘‘Load with controller
adjustment’’ in Figure 5c, is equal to the total household
consumption (SCS load) used in the SCS methodology. This
alignment is crucial for maintaining the optimality of the
SCSmethodology and ensuring that real-time household con-
sumption does not deviate from the scheduled consumption.
In case the residential controller is omitted, this could result in
high deviations between the real and scheduled consumption
of households (Figure 5c).

FIGURE 5. Performance of residential controller.

Figure 6 presents the load profiles and the Peak-Average
Ratios (PAR) of one randomly selected household among
the 32 LV DSs. The PAR is defined as the ratio of the
peak demand to the average power consumption over a given
period. From Figure 6a it is obvious that the uncontrolled
charging of EV results in higher peaks and a lower PAR.
In uncontrolled charging the EVs start charging with the
maximum power, considering the limitations of the electrical

installation (Figure 6b). Until the EV is fully charged, the
total household’s consumption is equal to the maximum rated
power of the electrical installation (Figure 6a), i.e., 7.6 kW.
On the contrary, the proposed SCSmethodology can alleviate
the peaks and significantly increase the PAR, leading to a
smoother load profile.

The EV owners’ preferences regarding the departure time
and the final SoC are considered and satisfied. Figure 7
presents the SoC (Figure 7a) and the charging/discharging
power (Figure 7b) of 108 EVs for the examined period.
Additionally, Figure 7a includes information regarding the
time of arrival, with the white color indicating that the EV
is not plugged-in. Figure 7a highlights that the SoC at the
time of departure is greater than 95%. Even when the EVs
discharge (Figure 7b), they are fully charged by the time of
their departure. The results in Figure 7 are indicative and
refer to a randomly selected LV DS. However, the SoC and
charging/discharging profiles of the rest LV DSs are quite
similar.

FIGURE 6. Household load profiles: a) total load, and b) household load
and EV charging/discharging power.

The results of the SCS at the LV DSs are presented in
the following figures. Specifically, Figure 8 presents the
violin plots of the buses’ voltage per LV DS. Each vio-
lin plot includes the voltage of the 108 buses for the total
period of the analysis (72 quarters), i.e., 7.776 observations.
In the uncontrolled charging (Figure 8a) most observations
fall within 0.96 p.u. and 0.99 p.u., as presented by the
statistics of the boxplots. Moreover, the distribution of the
observations reveals a higher density around voltage values
of approximately 0.98 p.u. Yet, the uncontrolled charging of
EVs (Figure 8a) results in extreme voltage violations. There
are voltage values lower than 0.90 p.u, meaning that the LV
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DSs could not support 100% penetration of EVs without
controlled charging. On the contrary, the employment of SCS
(Figure 8b) improves the voltage profile of the buses. Across
all LV DSs the lowest voltage remains above 0.9 p.u., while
most of the voltage observations fall within 0.95 p.u. and
1.0 p.u. These conclusions are also evident in Table 4 which
includes the ranges of the minimum and maximum voltage as
well as the ranges of standard deviation among the 32 LV DS
are presented in Table 4. Regarding the standard deviation
it should be noted that it decreases slightly in case of SCS,
ranging from 0.021 to 0.024, indicating more stable voltage
levels.

FIGURE 7. LV DS: a) charging profiles and b) SoC.

The violin plots do not include any information about the
outliers, i.e., the extreme voltage dops observed during the
day. Therefore, Figure 9 is also included providing additional
information about the number of observations included in
the boxplots and the values of the lower whisker. Regarding
the former, from Figure 9 we can conclude that uncontrolled
charging leads to a higher number of outliers compared to
SCS, since the number of observations included in the box-
plots is lower. Additionally, the values of the boxplots’ lower
whiskers are higher in the case of SCS and above 0.90p.u.
in all cases. Based on Figures 8 and 9 we can conclude that
SCS effectively mitigates the risk of extreme voltage drops
and supports higher penetration of EVs.

Additionally, Figure 10 presents the power losses along-
side PAR before and after the employment of the SCS. The

FIGURE 8. Violin plots of the buses’ voltage per LV DS.

TABLE 4. Voltage and stability statistics: uncontrolled charging vs. smart
charging scheduling.

FIGURE 9. Number of observations included in the boxplots.

uncontrolled charging results in PAR values close to 0.5.
However, the employment of SCS can significantly increase
the PAR up to almost 0.8. Additionally, the SCS mitigates
the power losses among all LV DSs and can yield up to 22%,
i.e.,1.2 MWh, total power losses reduction.

C. MV DS ANALYSIS AND RESULTS
The operation of the MV DS is affected by both NR and
EV SCS. However, NR is applied only in Sc#C and Sc#D,
while in Sc#A and Sc#B the MV DS has the initial topology
and does not alternate. Table 5 provides a comprehensive
overview of the operational details of switches, for Sc#C and
Sc#D, focusing on the cost associated with power losses and
the switching actions. The decision on whether to implement

VOLUME 12, 2024 108323



D. Kothona et al.: EVs in Distribution Networks—Optimal Scheduling and Real-Time Management

FIGURE 10. Power losses and par with and without the SCS.

NR or not is based on evaluating the energy cost related
to losses before NR is applied and the combined cost of
both energy losses and switching actions after NR is imple-
mented. The operation of the switches varies between the
two scenarios. When Sc#C is employed, the topology of the
network changes three time within the day, i.e., 12:00, 12:15
and 16:00. However, when EV SCS is additionally employed
(Sc#D) the switching actions are reduced. In this case the
network is modified two times, at 12:00 and 12:15.

TABLE 5. Description of switching actions.

Additionally, the lines’ loading, in terms of current, for
each scenario is presented in Figure 11. Figure 11a illustrates
that uncoordinated charging of EVs (Sc#A) can lead to sig-
nificant increment of the lines’ current. Additionally, when
only NR is applied (Sc#C), the current of the first lines of
the system during 15:00 and 19:00 may exceed 0.646 kA
(Figure 11c). On the contrary, Figure 11b and Figure 11d

show that applying SCS at the LV DSs alleviates the lines’
current. Finally, the proposed methodology (Figure 11d) can
further reduce the current of the lines compared to Sc#B
(Figure 11b).

FIGURE 11. Heatmaps of line’s current for: a) Sc#A, b) Sc#B, c) Sc#C and
d) Sc#D.

The amount and cost of power losses at MVDS and LVDS
for the examined scenarios are presented in Table 6. From
Table 6, it is evident that that the proposed methodology
(Sc#D) can significantly reduce the amount and cost of power
losses compared to Sc#A, Sc#B and Sc#C. Specifically, the
baseline scenario (Sc#A) has the highest amount and cost of
power losses in both MV and LV DSs. When EV SCS (Sc#B)
or NR (Sc#C) is applied, the total power losses of the DS are
alleviated. Additionally, power losses at SC#B are reduced
compared to Sc#C. Finally, the highest reduction is observed
when Sc#D is employed, which can lead up to a 34.41%
reduction in power losses compared to Sc#A.

TABLE 6. Amount and cost of power losses.

V. DISCUSSION AND LIMITATIONS
The results from the previous section underscore the potential
of the proposedmethodology as a comprehensive approach to
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managing distribution systems (DS) under increasing electric
vehicle (EV) penetration, particularly in real-time scenarios
aimed at reducing power losses. Through the integration of
model predictive control-based EV SCS and leveraging resi-
dential controllers effectively, significant opportunities arise
for improving the LV DS operational characteristics. The
implementation of residential controllers could significantly
enhance the flexibility of EVs, enabling real-time forecasting
error mitigation. Additionally, real-time NR could further
improve the operation of MV DS. By utilizing real-time
operational data, the NR could effectively deal with load
demand uncertainties and provide an optimal system’s topol-
ogy considering the minimization of both power losses and
switching actions cost.

The proposed methodology has limitations regarding its
complexity. In this paper, the SCS was tested in a LV DS
consisting of 108 households. The average computational
time of the methodology was 5.6 min, which is signifi-
cantly lower than the 15-min timestep set for this analy-
sis. However, increasing the parameters such as the number
of EVs and households will lead to higher complexity and
longer execution times. Additionally, the average computa-
tional time of NR in the 33-bus system is 1.7 sec. However,
in larger systems with more switches this time could be
significantly increased, preventing the real-time application
of NR.

VI. CONCLUSION
The DSs are currently facing significant challenges due to
the high volatility of energy prices and the high uncertainty
related to RES generation, load demand and EVs. This paper
deals with these issues and proposes a real-time three-layer
optimization methodology for power loss minimization con-
sidering the coupling between the MV and LV DSs. The
proposed methodology optimizes the operation of the DSs
by exploiting the flexibility of EVs and the benefits of NR.
More specifically, at the first layer an EVSCSmethodology is
proposed and applied at a residential LV DS, aiming to mini-
mize the power losses. The EVSCS is formulated considering
the day-ahead predictions of PV power generation and load
demand. To ensure the robustness of the EV SCS methodol-
ogy the sliding window method is utilized, while the EV SCS
is based on model predictive control method. At the second
layer a real-time residential controller is applied to deal with
the forecasting errors by adjusting the charging/discharging
power of EVs accordingly. At the third layer a real-time
NR methodology is employed at the MV DS based on a
cost-worth analysis aiming at minimizing the cost related to
power losses and switching actions. The proposed methodol-
ogy is compared to three scenarios. The first scenario (Sc#A),
where neither EV SCS nor NR is applied, serves as base-
line. At the second (Sc#B) and third scenarios (Sc#C) only
EV SCH and NR are applied, respectively. When Sc#B and
Sc#C are employed the total power losses can be reduced
up to 14.29% and 25.55%, respectively regarding Sc#A.
Finally, the results highlight that the proposed methodology

outperforms the rest of the scenarios since it could reduce the
power losses up to 34.41%.

In future work, we aim to explore the deployment of the
proposed method in a decentralized manner. This approach
could significantly reduce computational time and enhance
the applicability of the method across various LV DSs. Fur-
thermore, future studies will focus on investigating more effi-
cient NR methodologies to simplify the method and improve
its effectiveness. The proposed methodology provides a foun-
dation for future research to explore the formulation of incen-
tives aimed at encouraging EV user participation in EV SCS
schemes. This study has demonstrated the potential of the
methodology in reducing operational costs. Building upon
these results, future research could focus on developing EV
SCS participation schemes specifically designed to reduce
power losses, thereby motivating EV owners to participate
actively in the proposed scheme.
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