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ABSTRACT Product variety has a complex impact on bothmarket share and complexity cost, so determining
an optimal variety is a difficult task for a manufacturing company. This paper proposes a variety optimization
model that reflects the relationships among market, design, and production units considering the increasing
tendencies of market share (concavity) and complexity cost (convexity). Optimization model for finding an
optimal variety consists of two main parts: a demand model and a complexity cost model. A demand model
is constructed with the nested logit model showing the concavely increasing tendency of variety impact on
market share, and a complexity cost model is developed by adopting the zero-based costing approach in
which complexity cost is measured by incremental cost depending on the addition of variants. In the case
study, we applied a front chassis module family of an automobile to the optimizationmodel by analyzing data
from the Korean and European markets. The results show that the greater the similarity level, the perceived
similarity of a company’s products, the better it is to provide less variety. Also, the more flexible a company’s
production facilities are, the more diverse the products it can produce.

INDEX TERMS Product family design, product variety, combinatorial optimization, nested logit model,
complexity cost.

I. INTRODUCTION
Global manufacturing companies produce a variety of prod-
ucts in order to cover broad market segments and diverse
customer needs. Product family design is an effective strat-
egy providing a wide range of products while achieving
cost saving from commonality effect [2]. A product fam-
ily creates product variants by combining modules under
modular product architecture [3]. Fig. 1 shows two exam-
ples of representative product families: automobiles and
smartphones. Automobiles are structured into body, chassis,
engine, and transmission modules, which can be combined
as needed. Similarly, smartphones consist of modules such
as display, camera, processor, battery, etc. In 2018, Hyundai-
Kia Automotive Group launched a total of 48models from six
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automobile platforms, offering over 150 model variants only
in the US market. Similarly, Samsung Electronics Company
provides a wide range of smartphone series with sub-models,
such as Galaxy S, A, and Z series, in order to cover diverse
customers and global regions. In this stream, designing a right
range of variants has become an important task for manu-
facturing companies that produce product families including
automobiles, smartphones, computers, home appliances, etc.,
all of which are based on the modular product architectures.

Finding an optimal variety is one of the most important
challenges for managers who plan product families, because
it is not only related to design domain, but also market
and production domains [4]. Developing too much variety
generates unsold products in the market and manufacturing
complexity in the production. Fig. 2 conceptually describes a
relationship of product variety with market revenue and pro-
duction cost. Wan et al. [5] showed that a marginal impact of
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FIGURE 1. Product family design examples.

FIGURE 2. Revenue and cost from variety.

product variety on revenue decreases as the number of variety
increases. In production domain, on the other hand, many
researchers, such as MacDuffie et al. [6] and Mather [7],
figured out that production cost generated from manufactur-
ing complexity increases exponentially. Thus, as described in
the graph in Fig. 2, we arrive at a conclusion that there is an
optimal variety at the point where the gap between revenue
and cost is greatest.

This paper aims to develop an optimization model that
reflects the increasing tendencies of market share (concavity)
and complexity cost (convexity) for finding an optimal level
of variety. The model will assist manufacturing companies
and managers in product family design by supporting bal-
anced decisions that simultaneously reflect the impacts of
variety on sales and complexity cost. A demand model is
constructed based on the nested logit model that shows the
concavely increasing tendency of market share due to variety.

The nested logit model takes into account the similarity of
product variants in the same family, reflecting the concavely
increasing tendency of the impact of variety on market share.
A complexity cost model is developed using the zero-based
costing approach. The zero-based costing approach has been
generally used to measure complexity cost with the concept
of the incremental cost generated by the addition of a variant,
containing the convexly increasing tendency of complexity
cost.

Variety design of a product family takes place in the
early stages of product development, specifically during the
system-level design phase. This phase establishes a funda-
mental framework for creating various derivative products
based on a product family architecture. In this phase, com-
panies and managers should carefully decide both product
variety and architecture design. The variety design pro-
cess is divided into three phases depending on the level of
decision-making: architecture design, configuration design,
and instantiation design [8]. In the architecture design phase,
diverse design methodologies, such as design for manu-
facturing and assembly, modularization, or quality function
deployment (QFD), can be applied to encourage coordination
across multiple domains. In our previous works [9], [10],
we introduced an architecture design methodology, named
variation architecture, for planning product variety. Building
upon the previously defined architecture, this paper focuses
on the latter two phases of configuration and instantiation
design under the assumption that the product family archi-
tecture is already constructed.

The process of product family design in this paper is
composed of two phases: configuration planning and vari-
ety optimization. The first phase generates a possible set
of product candidates based on the cross-domain relation-
ships among market, design, and production units. In the
second phase, product family members are selected from the
optimization model among a given set of possible product
configurations. Since a manufacturing company generally
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makes a decision on product variety after a basic outline of
product configurations is planned, this paper describes the
sequential decision process, beginning with the generation
of product candidates followed by the selection of product
family members.

The paper is organized into six sections. Section II reviews
the previous research related to product family design and
variety optimization. Section III describes the generation
process of product configurations based on a given prod-
uct family architecture. Section IV begins with developing
a demand model and a complexity cost model. Then, the
optimization model is formulated. In section V, a case study
is conducted with an automobile front chassis family. This
section covers finding optimal solutions, conducting sensi-
tivity analysis, and discussing the limitations of the model.
Lastly, section VI concludes the paper.

II. LITERATURE REVIEW
Product family design is a holistic decision-making process
frommarket to design and production domains [2]. Especially
in determining product variety, a cross-domain viewpoint is
necessary since decisions on variety are closely related to
customer satisfaction in market domain and manufacturing
complexity in production domain [11]. This section reviews
previous studies that focused on the variety optimization
problem across each of the domains in product family design.

Configurational product family design is a major stream of
research in the design field. Configurational product family
design aims to develop a modular platform from which prod-
uct family members are derived by combining modules [12].
Research in the design field has focused on obtaining prod-
uct configurations defined by design parameters. In many
studies, the number of product variety was predetermined by
the assumption that a single product was positioned to each
market segment. Fujita et al. [13] developed an optimization
model that focuses on determining the number of modules
shared across a product family given a fixed number of
products. Agard and Bassetto [14] proposed a method for
optimizing module combinations of product variants consid-
ering product quality and cost, but the number of product
variety was still fixed. Van den Broeke et al. [15] have
attempted to consider a variety decision in planning a product
portfolio, but their study offered a limited consideration of the
impact of variety on other domain concerns.

In marketing research, on the other hand, the number
of product variety has been more relaxed as a decision
variable. Ramdas and Sawhney [16] developed an optimiza-
tion model that reflects both cost and revenue interactions
within a product family. Jiao and Zhang [17] addressed
customer-engineering interactions to include variety impacts
on cost and cycle time in the portfolio planning prob-
lem, but a product configuration was only represented as
market attributes, rather than design and production units.
Kumar et al. [18] allowed the release of multiple products to
various market segments and subsequently estimated market

share of a product family using the nested logit model.
Kwong et al. [19] formulated a multi-objective optimization
problem for market share, cost, and development time to
select an appropriate number of product profiles combined
by different attribute levels. Michalek et al. [20] covered both
marketing and engineering decisions on product configura-
tions by developing the analytical target cascading (ATC)
model that implements a dynamic decision process in the
product family development. Then, Goswami et al. [21] pro-
posed a methodology to find an optimal product variety
with product configurations in a single market by utilizing
function-based cost estimation and multi-linear regression.

Previous research in the production field has consid-
ered product variety as a critical decision variable and has
tried to evaluate the amount of manufacturing complexity.
Zhu et al. [22] developed a metric to assess manufac-
turing complexity in mixed-model assembly lines, specifi-
cally addressing the complexity induced by product variety.
Wang et al. [23] proposed a multi-objective optimization
approach to balance product variety and manufacturing com-
plexity. Their model has derived various possible solutions,
each characterized by different market shares and complex-
ity levels according to the number of variety and product
configurations. In the field of supply chain management,
Fujita et al. [24] simultaneously considered the processes
of product family design and supply chain construction.
In their research, optimization models were formulated by
reflecting how a number of product variants and their config-
urations interact with a supply chain structure. Moussa and
ElMaraghy [25] proposed a holistic non-linear optimization
model for designing multi-period product platforms consid-
ering inventory cost of components having different features.

As reviewed in the previous paragraphs, product fam-
ily design has continuously been studied to reflect primary
considerations in market, design, and production domains.
Many works have tried to consider variety interactions with
market share and manufacturing complexity, however, there
were few works to identify an optimal variety in reflecting
increasing tendencies of market share and complexity cost
simultaneously. In order to fill in this gap, this study focuses
on finding an optimal variety by reflecting both tendencies of
market share and complexity cost affected by variety.

III. PLANNING OF PRODUCT CONFIGURATIONS
Variety optimization at first needs to plan product configu-
rations based on a product family architecture. This paper
adopts the concept of variation architecture proposed in our
previous work [9], [10]. This section begins with introducing
the product family architecture as defined in the previous
work and then describes the process of obtaining product
configuration candidates prior to optimizing variety.

A. PRODUCT FAMILY ARCHITECTURE
Product family design is a multi-domain problem that cov-
ers market, design, and production domains. A product

108812 VOLUME 12, 2024



K. Oh, Y. S. Hong: Optimizing Product Variety for Balancing Market Share and Complexity Cost

FIGURE 3. Product family architecture (a) Generic relationship and (b) Product configuration.

family architecture is composed of domain elements and
their cross-domain relationships. Fig. 3 describes an example
of a product family architecture in which domain elements
are connected to each other and a product configuration is
defined as variants of domain elements.

In market domain, a product family architecture represents
a product as a set of attributes. An attribute is a customer
desired property of a product, e.g., engine type, transmission
type, and wheel size of an automobile. Attributes also include
market-dependent characteristics such as drive type and
weather type. In design domain, a product family architecture
views a product as a combination of modules. A module is a
physical chunk that materializes market attributes into com-
positions of a product. For example, an automobile consists
of a body, chassis, engine, and transmission module, and
product variants are created by combining those modules.

Lower-level parts, such as cross member, steering gear, and
drive shaft, can also be considered as modules. In production
domain, a product is produced by a series of production
processes conducted in a set of facilities. A facility is a system
where production processes are taken place. Facilities of an
automobile include assembly lines and suppliers. In a facility,
some processes are shared by module variants, and others are
not.

A product family architecture contains cross-domain rela-
tionships between domain elements, and product variety is
restricted by their relationship types. In Fig. 3(a), drive type
and engine type attributes are related to both a cross member
and a steering gear, having complex relationships. The num-
ber of module variants increases rapidly as these attributes
are more differentiated, generating various attribute levels.
On the other hand, the transmission type attribute has a
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FIGURE 4. Structure of model variables and parameters.

one-to-one relationship with a drive shaft module. In this
case, the number of module variants increases linearly as
the number of attribute levels increases. This one-to-one type
is more efficient in differentiating attributes than the n-to-m
type is. In practice, however, most of the cases are the n-to-m
relationship type.

There are also several relationship types between modules
and facilities. In Fig. 3(a), a cross member module is assigned
to assembly line A, having one-to-one type. This relationship
type is advantageous for producing various module variants,
given that a facility has high capability to produce multiple
module variants without loss of productivity. In practice,
a manufacturing company contracts with a mega supplier to
have those one-to-one or n-to-one relationship types. On the
other hand, if a facility has low capability to produce multiple
module variants, a company needs to contract with multiple
suppliers for a single module, e.g., a drive shaft in the figure.
In this n-to-m (or one-to-m) relationship type, a company
should work with several small suppliers to improve compat-
ibility and assemblability between module variants produced
by different suppliers. Thus, product variety is restricted with
these complex relationship types.

B. PRODUCT CONFIGURATION
After establishing a product family architecture, candidates
of product configurations are created under the architecture.
The variety optimization problem uses a product family archi-
tecture to prepare candidates for product family members.
A product variant is defined as a configuration of attributes,
modules, and facilities. A configuration of a product variant
is described as follows:

P = [As,Ms,Rs] (1)

where As,Ms, and Rs are a set of attributes, modules, and pro-
duction processes, respectively. This definition includes all
views of the three domains for a product variant. Fig. 3(b) is
an example of a product configuration. A product configura-
tion is realized by selecting variants of domain elements, i.e.,
attribute levels, module variants, and production processes.

At the bottom of the figure, the realized product configuration
i is represented as variants of elements.

When a company creates product configurations, there
are an infeasible combination space due to marketing and
technical constraints. Combination rules between variants
can be applied to reduce a combination space of product
configurations. A combination rule is a constraint on the com-
binability between variants within and across the domains.
An example of the rule is that if an automobile includes a
2,400 cm3 engine, then it only comes with 17-inch wheels.
The same logic is applied to other domain elements. After
setting combination rules within and across the domains,
candidates of product configurations can be obtained. All
potential candidates can be listed by equation (1). The details
of the list will be described in the case study.

IV. VARIETY OPTIMIZATION MODEL
A. OPTIMIZATION MODEL
This subsection formulates a multi-objective combinato-
rial optimization model for selecting product variants to
be released while balancing market share and complexity
cost. Before formulating, candidates of product variants are
derived from the configuration planning phase. Based on
the relationships between domain elements and combination
rules between variants, the following information about the
configuration of candidate i is given for the optimization
model:

xikl, yimn, zist ∈ {0, 1} ∀i, k, l,m, s, t

δmns ∈ {0, 1} ∀m, n, s (2)

xikl , yimn, and zist are binary variables indicating whether
candidate i is configured by attribute level akl , module variant
mmn, and production process rst respectively, and δmns rep-
resents the assignment relationship between module variant
mmn and facility s. This variable is used in the optimization
model for counting the number of module variants produced
in facility s.
Fig. 4 shows the structure of variables and parameters that

consist of the optimization model. The figure describes how
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FIGURE 5. Optimization model.

market share and complexity cost are calculated depending on
whether product candidates are selected and which markets
and facilities they are assigned to. The optimization model is
formulated in Fig. 5. The model involves information about
product configurations of candidates and estimated values of
parameters. Objective functions are tomaximizemarket share
and to minimize complexity cost simultaneously. Decision

variable wij is a binary variable determining whether candi-
date i is released to market j or not. Other decision variables
for calculating market share and complexity cost are also
included. A set of constraints includes the equations in the
demand model and the complexity cost model.

The goal of the optimization model is to find an optimal
variety for practical suggestions to a product family planning
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FIGURE 6. Structure of the nested logit model.

manager. Since product family design is a combinatorial
optimization problem, many studies use evolutionary algo-
rithms to solve the problem, such as MOGA, NSGA II,
and SPEA-2. Among them, this study adopts NSGA II
(non-dominated sorting genetic algorithm) that has been ver-
ified to outperform other algorithms [26]. It has been used
by D’Souza and Simpson [27] and Kwong et al. [19] to
solve multi-objective optimization problems in product fam-
ily design. This study implements the algorithm by using
the Python module Platypus, which derives Pareto optimal
solutions for a multi-objective optimization problem.

B. DEMAND MODEL
This subsection constructs a demand model to estimate mar-
ket share of product family members using the nested logit
model introduced by Ben-Akiva [28]. The nested logit model,
reflects the similarity of product variants in the same group
(nest), considering the practical decision process for the cus-
tomer choice problem. The nested logit model involves a
structure of the hierarchical decision process described in
Fig. 6. The structure shows that a customer first chooses
a nest, which is a group of similar product variants, and
then selects a variant in the nest. According to McFadden’s
research [29], when a commuter faces a choice problem
among a car, a red bus, and a blue bus, it is more reasonable
that a commuter considers between a car and buses in advance
and selects a color of a bus afterward. The nest structure is
easily found in the marketplace. Østli et al. [30] demonstrated
that a nest structure is suitable for the car market because
general customers tend to consider a car brand first and then
choose a trim model.

Under the nest structure, market share (equal to the choice
probability) of product variant i included in nest gj in market
segment j is formulated by the conditional probability as
below:

MSij = P(i, gj) = P(gj) × P(i|gj) (3)

where P(gj) is the probability of choosing nest gj and P(i|gj)
is the probability of choosing variant i given the first selected
nest gj.

The choice probability is obtained by the utility which is
defined as the attractiveness of a product variant represented
by a set of attribute levels [31]. Jiao and Zhang [17] adopted a
utility function constructed by part-worth utilities of attribute
levels in product family design. Part-worth utilities can be
estimated by conjoint analysis [32] based on customers’
choice data. In conjoint analysis, a part-worth utility of each
attribute level is estimated by decomposing the preference
of a product profile into the preferences of attribute levels.
Following the utility function of Jiao and Zhang [17], the
utility function of variant i in nest gj is defined as:

Uigj = Vigj + (1 − µgj )εigj =

K∑
k=1

Lk∑
l=1

βjklxikl+(1 − µgj )εigj

(4)

where Vigj is the expected attractiveness of variant i in nest gj,
βjkl is the part-worth utility of level l of attribute k in segment
j, xikl is a binary variable indicatingwhether level l of attribute
k is included in variant i, εigj is the choice error of customers
and it is assumed that independently and identically double
exponentially distributed, and µgj is the scaling parameter of
the error term.

In a discrete choice model, a customer chooses a variant
having the maximum utility value. In the nested logit model,
the aggregate attractiveness of a nest is measured by the
expectation of the maximum utility among variants in a nest
as below:

Vgj = E[max
i∈gj

Uigj ] (5)

For the double exponentially distributed error term, the
attractiveness of nest gj is transformed into the following
equation [33]:

Vgj = (1 − µgj ) ln
∑
i∈gj

exp(Vigj/(1−µgj )) (6)

Based on (3) and (5), the attractiveness of a variant and a nest,
the choice probabilities in (2) are stated by the logit model as
below:

P(gj) =
exp(Vgj )∑

g′
j∈Gj

exp(Vg′
j
)

(7)

P(i|gj) =
exp(Vigj/(1 − µgj ))∑
i′∈gj exp(Vi′gj/(1 − µgj ))

(8)

where Gj is a set of all nests in market j, and the scaling
parameter µgj ∈[0,1) represents the degree of similarity of
variants in nest gj. The case µgj =0 means that all variants
are equally distinguished as if each variant is in an individual
nest. In this case, the formula reduces to the multinomial logit
model. The other extreme caseµgj →1means that all variants
in a nest become perfect substitutes each other, where the
number of variants in a nest does not affect market share.

This paper uses aggregate sales data to estimate part-worth
utilities of attribute levels and similarity parameters.
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FIGURE 7. Structure of complexity cost.

Berry [34] proposed a technique in which the choice proba-
bilities constructed by the nested logit model are transformed
into a linear form. The technique obtains the estimate of a
part-worth utility of each attribute level and the similarity
parameter of each nest through a linear regression analysis.
The estimates are used for the variety optimization to calcu-
late market share for product variants configured by attribute
levels. The demand model constructed in this subsection
reflects the tendency of concavely increasing revenue. The
increasing tendency of market share will be analyzed in the
case study.

C. COMPLEXITY COST MODEL
This subsection formulates a cost model that estimates
complexity cost generated in production domain. Since com-
plexity cost is difficult to trace where it comes from, previous
studies [13], [35], [36] have attempted to estimate the cost
as the incremental cost associated with the increasing vari-
ety. Lechner et al. [36] introduced the zero-based costing
approach in which an incremental cost and time are allocated
to each additional variant compared to the case when the
variant is not produced. Along with the previous studies, the
complexity cost model is represented by a degree of change
in a production system affected by an additional variant.
Fig. 7 shows the structure of variety impacts on cost and time.
Variety basically influences production cost and process time.
In the model, production cost is defined as the additional
investment cost in a production system, and process time
is converted into the opportunity cost derived from loss of
productivity.

One of the major parts of the complexity cost is the
investment cost incurred when a variant is added. Whereas
the investment cost is traditionally regarded as a fixed cost,
it should be calculated as a variable cost because it increases
with the increasing variety [35]. Fujita et al. [13] estimated
an additional investment cost as a variable cost based on the
design similarity between variants to be produced. In this
study, the investment cost for the shared processes is defined

FIGURE 8. Complexity cost of a facility (a) Investment cost and
(b) Opportunity cost.

as the process cost, and the cost for the non-shared facilities
is termed the variant cost. Fig. 8(a) describes the process
cost shared by variants and the variant cost incurred by each
variant. If a variant is produced in the facility, the relevant
processes marked with an ‘O’ should be invested. On the
other hand, the variant cost is imposed only on a particular
variant, such as inventory cost. The variant cost generated
in a module production facility is allocated to each module
variant, and the cost incurred in a final assembly line is
assigned to each product variant. The investment cost (IC)
is represented as follows:

IC =

∑
s

∑
t

cstZst +

∑
m

∑
n

cmnYmn +

∑
i

ciWi (9)

where Zst , Ymn, and Wi are binary variables indicating the
existence of production process rst , module variant mmn, and
product candidate i, respectively. Parameters cst , cmn, and ci
represent the process cost, module variant cost, and product
variant cost.

Complexity cost also arises from the loss of productivity
due to the incremental process time. The reasons are that
variety reduces the learning effect in a facility and demands
frequent setups to processes. The cost generated by lower
productivity is considered as an opportunity cost because it
is not counted up in a traditional costing system. As shown
in Fig. 8(b), the opportunity cost is estimated by a change
in production volume compared to the possible production
volume when a single variant is produced. The opportunity
cost from the production volume change can be estimated by
historical data or a predicted value. The opportunity cost can
be represented as a function of the number of variety. This
study introduces a general function that reflects an increasing
tendency of the opportunity cost as the increasing variety. The
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opportunity cost (OC) function of facility s is as below:

OCs = fs(vs) = φs(vs − 1)θs (10)

where φs is the cost difference between when vs = 1 and
vs = 2, and θs describes an increasing tendency of the cost
where vs ≥3. If θs equals to one, the cost linearly increases
with the amount of loss of production volume, and if θs is
larger than one, the function reflects that the cost increases
convexly. This study calls θs as the flexibility parameter.
For the case θs = 1, a facility experiences no complexity,
indicating that the opportunity cost increases linearly with
the increased variety. On the other hand, the case θs > 1
means that production loss increases with the increased vari-
ety (e.g., longer production time and higher inefficiency of
production), indicating that the facility becomes less flexible.
The higher the parameter value, the greater the impact of the
variety. Most facilities have parameter values greater than 1,
unless a facility operates as an ideally modular assembly line.

The parameter estimation requires historical data. Thone-
mann and Brandeau [35] applied an estimation approach
in which cost is allocated to activities and converted to
variants. The approach’s key idea is to conduct sensitiv-
ity analysis investigating how complexity cost changes as
a variant is added. Another useful approach is to establish
an activity-based costing (ABC) system. Park and Simp-
son [37] developed a framework for activity-based costing
that activity costs are allocated to a variant in a product
family through cost modularization. Using these estimating
and costing approaches introduced in this paragraph will be
helpful to estimate the process cost and the variant cost. After
conducting sensitivity analysis, regression analysis will help
to identify fitted parameter values to reflect the tendency of
the incremental opportunity cost.

V. CASE STUDY
A. CASE DESCRIPTION
In this case study, the optimization model is applied to a front
chassis family. A front chassis is a part of an automobile and
forms a family by creating front chassis variants. Fig. 9 shows
a front chassis composed of nine modules. The nine modules
are related to twelve attributes having differentiated levels.
The attributes are arranged in rows of the matrix in Fig. 10,
and this matrix represents the relationships between attributes
and modules. The relationships have the n-to-m type, thus
manymodule variants can be required to cover diverse combi-
nations of attribute levels. In production domain, eachmodule
is produced by each supplier and assembled to a complete
product in a single assembly line. The relationships between
modules and facilities are close to the one-to-one type.

The case study is conducted on two mid-sized sedan
models, Hyundai Sonata and Kia Optima. The two models
share the front chassis family but are considered in different
brands. Target markets of both models are diverse, but the two
best-selling regions, the Korean and European markets, are
analyzed in the case study. Table 1 shows the description of
market segments. The European market is divided into three

FIGURE 9. Automobile front chassis.

FIGURE 10. Attribute-module relationship matrix.

segments depending on the market-dependent characteristics,
which are drive type (DT), weather type (WT), and regional
characteristic (RC), having different market sizes. Hyundai
and Kia have launched a total of 17 model variants to the
Korean market, and only Kia has targeted the European mar-
ket with 5, 10, and 2 model variants for each segment. A front
chassis variant is matched to a model variant. To configure all
front chassis variants, a total of 88 module variants have been
developed.

B. DATA SOURCE
Market sales data were collected from auto.danawa.com (for
sales in the Korean market) and carsalesbase.com (for sales
in the European market), covering two years from January
2017 to February 2019. The data include market sales, spec-
ifications, and price of each model variant (trim model).
Information about competitive models was also obtained,
such as SM5, SM6, and Malibu in the Korean market, and
Passat, Superb, Peugeot 508, Mondeo, and Insignia in the
European market.
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TABLE 1. Market segment description.

Other information, such as structures, configurations,
BOM (bill-of-materials) of the car models, is sourced from
Hyundai-Kia Automotive Group’s R&D Center. It was hard
to access process data for security reasons, so production
processes were recreated from BOM data of all module
variants. A BOM has a generic form by which all parts in
module variants are listed, and each part is assigned to the
used module variant. Using these data, production processes
by each module variant were predicted. For example, if a
part is shared across several module variants in a BOM, the
shared process was created. The process cost and the variant
cost were numerically generated. Historical data in costing
systems would be a good solution to update the costs.

C. OPTIMIZATION SETTING
Firstly, the configuration planning phase was conducted to
generate candidates of product configurations. Parameters
in the demand model and complexity cost model were also
estimated. Candidates were created based on the relation-
ships between attributes and modules as shown in Fig. 10.
To reduce the number of possible candidates, combination
rules were also set based on the current specifications of trim
models already launched in themarkets. Table 2 is a sample of
all candidates of product configurations. Each row represents
a combination of attribute levels of a candidate. A total of
96 candidates were created. Then, a candidate was repre-
sented by a configuration of module variants and production
processes. All configurations were added as binary variables
in the optimization model.

Parameter estimationwas conducted to set the optimization
model. The transformation technique suggested by Berry [34]
was used to estimate part-worth utilities and similarity param-
eters. A logit function was transformed into a linear function
and a linear regression was performed to estimate the param-
eters using aggregate market sales data. Table 3 is the result of
estimating similarity parameters of all brands in the markets.
Part-worth utilities of attribute levels were also estimated
by a linear regression, and some nonsignificant results were
excluded from the study. For similarity parameters, most
brands in the markets have values more than 0.8, which
indicates that customers consider product variants in the
same brand highly similar. The flexibility parameter θs in the

cost model was set to 2.0 to reflect the convexly increasing
tendency.

D. RESULT
Fig. 11(a) shows the result of solving the optimization prob-
lemwith the evolutionary algorithm. Pareto optimal solutions
are represented as black dots, and dominated solutions are
marked as grey dots. Market share grows fast between 11.5%
and 14.0% without too much increase of complexity cost,
and then complexity cost is steeply increased after 14.0% of
market share. For the Pareto optimal solutions, market share
and complexity cost were separately analyzed to identify the
relationship with variety. In Fig. 11(b), the circles on the
upper curve are the selected solutions which have the highest
market share for each number of variety, and the squares
close to the lower curve are the solutions which are the
lowest value of complexity cost for each number of variety.
The result shows the increasing tendencies of market share
and complexity cost as addressed in the introduction section.
We noticed that an optimal variety exists at the point where
the gap between revenue and complexity cost is greatest.

Combining all results of market share and complexity cost,
Fig. 12 shows the optimal variety of the case. To find the opti-
mal variety, price of each product variant was multiplied by
its estimated demand. The price was obtained from regression
analysis with the market sales data of the released product
variants. The two curves in Fig. 11(b) are combined into the
single curve in Fig. 12, where the optimal variety can be found
at the top of the curve. In this case, profit is maximized when
the number of products is 12, but we have found that nearby
values have almost equal values of profit. While the optimal
number of products may fluctuate with slight variations in
parameters, a prevailing trend shows that launching fewer
products is advantageous compared to launching a larger
number. The first reason is that car brands tend to have high
levels of similarity, which is observed in this case studywhere
the similarity levels exceed 0.7. For this reason, launching
a large number of products may cannibalize their individual
market shares. The second reason for the lower optimal vari-
ety is that the flexibility parameter θs was set to 2.0, which
means lower flexibility of production facilities.

From the result, it is worth considering whether the com-
pany is launching too many product variants. The number
of front chassis currently in the markets is 88, but the case
study suggests 12. This indicates that the complexity cost
may increase significantly. It would be more cost-effective
to release fewer product variants by commonizing parts,
integrating unnecessary variants, etc. While it may be nec-
essary to offer a large number of product variants to satisfy
a broader market, it may not be necessary if the complexity
cost outweighs the gain in market share. In this context, it is
an important task for manufacturing companies to find the
right level of product variety, and this paper emphasizes the
need for a balanced view of variety. In the next subsection,
sensitivity analysis is conducted to analyze the impacts of
variety in different situations.
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TABLE 2. Candidates of front chassis configurations.

TABLE 3. Estimates of similarity parameters.

E. EXPERIMENTS
When a company implements a variety strategy, it should
consider the similarity level of product variants and the
flexibility level of facilities. Firstly, sensitivity analysis was
conducted to discuss the impact of the company’s similarity
level compared to the competitors’ levels. The purpose of the
experiment is to find the appropriate range of product variety
to launch, taking into account customers’ perceived similar-
ity to a company’s existing products. With the competitors’
similarity parameters fixed at 0.7, the company’s similarity
parameter was adjusted from 0.5 to 0.9 with an interval of
0.1 to investigate the change in an optimal variety. In this
analysis, the flexibility parameter θs was fixed at 1.0.

Fig. 13(a) shows three comparable results with values of
0.6, 0.7, and 0.8 for the similarity parameter. By changing the
similarity parameter from 0.6 to 0.7 to 0.8, the optimal variety

was reduced from 66 to 50 to 16, and the profit also decreased
from 8,997 to 7,059 to 5,930 million KRW, respectively. The
findings indicate the importance of determining the number
of product variants based on the perceived similarity level of
a brand’s offerings. When customers perceive a high level of
similarity among a brand’s products, a strategy of launching
fewer product variants is advisable. On the other hand, if a
company would like to launch a diverse range of products,
it becomes crucial to prioritize concerted efforts toward prod-
uct differentiation, reducing the level of similarity.

Another analysis was conducted to identify the impact
of the increasing tendency of complexity cost by changing
the flexibility parameter θs. The flexibility parameter was
adjusted from 1.0 to 2.0 with an interval of 0.2, with the sim-
ilarity parameter fixed at 0.5. Fig. 13(b) represents the result
of the three comparable values: 1.0, 1.4, and 1.8. As the
parameter value was changed from 1.0 to 1.4 to 1.8, the
optimal variety decreased from 78 to 50 to 40. The profit
was also reduced from 11,559 to 10,264 to 9,265 million
KRW, respectively. The result has demonstrated that the
flexibility—the ability of a facility to maintain productivity
even if a large number of variants are produced—needs to be
improved to reduce negative effects of variety. Thus, when an
automobile manufacturer wants to produce a wide range of
product variants through multiple module variants, a module
production line should have the flexibility to producemultiple
variants without losing productivity as in a final mixed-model
assembly line.

The above two experiments were then combined to identify
an optimal variety by a combination of the two parameters.
The result is summarized by a two-dimensional table in
Fig. 14. Darker cells indicate higher variety values. The result
shows that the smaller the similarity and flexibility parame-
ters are, the higher the optimal variety is. One noticeable point
is that several cells have the same variety. This indicates that
the optimal variety is derived in the form of a step function
rather than a linear function. This is because each product
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FIGURE 11. Optimization result (a) Pareto optimal solutions and (b) Trend
lines of market share and complexity cost.

variant has a different impact on market share and complexity
cost. Some product variants are created with more additional
module variants and production processes, whereas the rest
of the variants can be configured by existing module vari-
ants and production processes without additional elements.
Consequently, it can be said that variety management is not
just a problem of finding an optimal variety, but a problem
of configuring product variants. A manufacturing company
should focus on product configurations composed of attribute
levels, module variants, and production processes rather than
just the number of variety.

F. DISCUSSION
In this subsection, we discuss two main components of the
optimization model: customer preferences and complexity
cost factors.

FIGURE 12. Optimal variety.

Customer preferences are important factors in analyzing
the characteristic of market segments. There are various ways
to obtain customer preference values, but this study focused
on the historical choices made by existing customers in each
market. We used the method of calculating the part-worth
utility of each attribute of products based on the demand
data. Thus, the choice history of existing customers indicates
the responsiveness of future customers in the same market
segment to each product attribute level, which is an important
factor in determining the specifications of product variants
and the number of products released.

This study adopted part-worth utility for the preference
model. Part-worth utility represents the value of each attribute
level of a product and is calculated from customers’ choice
data within the same segmented market. Customers in the
same market are assumed to have identical utility values
for each attribute level, except for the error term, implying
‘homogeneity’ among customers in themarket. Thus, in order
to effectively analyze customer preferences, it is crucial to
consolidate as many homogeneous customers as possible into
a single market segment; otherwise, customer preferences
may be misinterpreted.

The case study applied conventional segmentation criteria
commonly used in the automotive industry, such as sales
region, driver position, weather, and vehicle class. These
criteria are general, but high-level, so it is difficult to ensure
that customers have identical preferences. In the case study,
we restricted the market to the mid-sized sedan to allow for
as homogeneous a market as possible. However, in order
to make the proposed demand model more effective, it is
necessary to conduct an analysis of market segmentation
at a deeper level and to incorporate other critical factors,
including regional demographics, regulatory environments,
cultural preferences, market dynamics, customers’ economic
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FIGURE 13. Sensitivity analysis (a) Impact of µj on optimal variety
(θs =1.0) and (b) Impact of θs on optimal variety (µj =0.5).

and living conditions, etc. Considering these factors, which
were not explored in detail at this time, customer preferences
should be complemented by in-depth analysis and is a key
area for future research.

Next, we discuss complexity cost factors induced from
variety. Although this study primarily focuses on production
cost and process time, variety-induced complexity in prac-
tice occurs across various domains such as design, logistics,
supply chain, operations, and maintenance. Furthermore, the
concept of complexity encompasses more than just cost and
time, making it challenging to quantify complexity as cost.
Capturing all the complexity factors is extremely hard, how-
ever, to overcome this challenge, there have been efforts to
evaluate them in the previous research. One of the most useful
methodologies is activity-based costing (ABC), which is a

FIGURE 14. Optimal variety in different scenarios.

methodology that tracks costs based on activities occurring
across multiple domains. Time-based ABC [38] and variant-
based ABC [36] have been subsequently proposed to address
the intertwined relationships among variants. These method-
ologies use time or variant as base units for costing.

The complexity cost model proposed in this paper is based
on the concept of variant-based ABC. The model has focused
on representing convexly increasing tendency of complexity
cost resulting from the complex relationships among variants,
rather than reflecting all complexity factors. In this process,
a simplified version of the model has been defined, assuming
various complexity factors as a single parameter, variant cost.
In order to apply the model to practical cases, however, the
cost model should be improved to calculate actual complexity
cost, considering various factors across different domains.
The model may require additional variables and parameters.
To reflect as many factors as possible, practical experiences
or historical data would be necessary to fit the appropriate
level of the cost model. In further research, the cost model
should evolve from the simplified version to a more detailed
one, taking into account various complexity factors across
multiple domains such as design, logistics, supply chain, etc.

VI. CONCLUSION
This paper proposed a variety optimization model to find an
optimal product variety, a balanced solution between market
share and complexity cost in product family design. The
two-step approach was adopted by decomposing the opti-
mization process into the configuration planning and the
variety optimization phases. The key contribution of this
study is to reflect the increasing tendencies of market share
(concavity) and complexity cost (convexity) in the opti-
mization model. A demand model was developed based on
the nested logit model to consider the tendency of market
share. A complexity cost model was constructed through
the zero-based costing approach by which the incremental
concept of complexity cost was reflected. Finally, a multi-
objective combinatorial optimization model was formulated
to identify Pareto optimal solutions. In the case study, the
optimization model was applied to the front chassis family.
The case study analyzed how an optimal variety is changed
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by the similarity level of product variants and the flexibility
level of facilities. The analysis demonstrated that the model
is useful for coordinating a number of requirements from
multiple domains, finding an appropriate level of product
variety and configurations in various situations.

There are some future works in improving the optimization
model. While this study focused on an automobile family
design, it can be applied to other industries where companies
launch a series of products, such as smartphones, computers,
home appliances, etc. The proposed model is suitable for
modular product families where products have module-level
specifications and are produced with module-based assem-
bly processes. In addition, as discussed, there is a need
for in-depth study of customer preference and complex-
ity cost. Since high-level market segmentation does not
guarantee homogeneity of customers, a lower-level market
segmentation technique should be analyzed in detail. The
analysis can reflect regional demographics, regulatory envi-
ronments, cultural preferences, and customer characteristics
at a more granular level. Next, how to define complexity cost
still remains a challenge to overcome. This paper regarded
complexity cost as the investment cost for production pro-
cesses and the opportunity cost due to loss of productivity.
Future works require an in-depth study of complexity sources
throughout the entire lifecycle of a product family.
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