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ABSTRACT In the domain of road inspection and structural health monitoring, precise crack identification
and segmentation are essential for structural safety and disaster prediction. Traditional image processing
technologies encounter difficulties in detecting cracks due to their morphological diversity and complex
background noise. This results in low detection accuracy and poor generalization. To overcome these
challenges, this paper introduces MixSegNet, a novel deep learning model that enhances crack recognition
and segmentation by integrating multi-scale features and deep feature learning. MixSegNet integrates
convolutional neural networks (CNNs) and transformer architectures to enhance the detection of small cracks
through the extraction and fusion of fine-grained features. Comparative evaluations against mainstream
models, including LRASPP,U-Net, Deeplabv3, Swin-UNet, AttuNet, and FCN, demonstrate thatMixSegNet
achieves superior performance on open-source datasets. Specifically, the model achieved a precision of
95.2%, a recall of 88.2%, an F1 score of 91.5%, and a mean intersection over union (mIoU) of 84.8%,
thereby demonstrating its effectiveness and reliability for crack segmentation tasks.

INDEX TERMS Crack segmentation network, crack images, convolutional neural network, transformer
model, image processing, deep learning, self-attention mechanism.

I. INTRODUCTION
Crack identification occupies a vital position in the field
of structural health monitoring because it is directly related
to the safety and reliability of building structures. With the
development of technology, crack detection methods have
gradually transformed from traditional manual inspection
to automatic identification using modern technologies such
as advanced image processing, artificial intelligence, and
machine learning [1]. These methods not only improve
identification accuracy and efficiency, but also enable poten-
tial structural problems to be discovered at an early stage,
enabling preventive maintenance and extending the life of
the building. The existence of cracks may be caused by a
variety of reasons, including structural aging, environmental
erosion, excessive loads, and natural disasters. If these
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cracks are not discovered and treated in time, they may
lead to a decrease in structural performance and even
threaten personnel safety. Therefore, developing effective
crack detection and identification systems is crucial to ensure
structural safety.

Traditional crack detection methods, such as threshold
techniques [2], demonstrate limited adaptability. To address
this, Yang et al. [3] introduced a novel approach utilizing a
fully convolutional network (FCN), enhancing the detection
process. This technique employs single-pixel width skeletons
for crack segmentations, allowing for the detailed analysis
of crack features—like topology, length, and widths—
thus offering critical indicators for practical assessments.
However, the scarcity of training data for crack segmen-
tation presents a challenge. In response, König et al. [4]
developed a method to streamline the annotation process
for semantic segmentation of surface cracks. They uti-
lized a U-Net architecture based on a fully convolutional
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network, optimized for small datasets through patch-based
training, leading to unprecedented results on various crack
datasets. Ren et al. [5] explored the application of deep
fully convolutional networks for concrete crack detection in
tunnel images, proposing CrackSegNet, an advanced network
for comprehensive crack segmentation. This innovation
improves feature extraction, aggregation, and resolution
reconstruction, significantly boosting segmentation perfor-
mance. Kang et al. [6] introduced an automated method
combining Faster R-CNN and a modified TuFF algorithm
for precise crack detection, localization, and quantification,
overcoming the limitations posed by varying environmental
conditions. Similarly, Lau et al. [7] applied convolutional
neural networks for segmenting pavement crack images,
marking a significant advancement in the field. Liu et al. [8]
proposed a two-step convolutional neural network method
for enhanced crack detection and segmentation. Following
this, Guan et al. [9] aimed to refine the accuracy and speed
of 3D crack segmentation models, pushing the boundaries
of current methodologies. Ali et al. [10] proposed an addi-
tive attention gate-based network architecture called Crack
Segmentation Network-II (CSN-II).

A. RESEARCH GAP
Recent research has led to further improvements in various
aspects of crack segmentation. Wang et al. [11] intro-
duced a lightweight crack segmentation network based
on knowledge distillation. Liu et al. [12] presented an
upgraded CrackFormer network for pavement crack seg-
mentation. This network achieved higher accuracy with
fewer floating-point operations (FLOPs) and parameters
compared to previous methods. Wu et al. [13] developed a
lightweightMobileNetV2-DeepLabV3 network for enhanced
precision in dam crack width measurement. Yao et al. [14]
developed a CrackResU-Net model with a pyramid region
attention module for pixel-level pavement crack recognition.
Lin et al. [15] proposedDeepCrackAT, a framework for crack
segmentation based on learning multi-scale crack features.
Tang et al. [16] introduced a novel lightweight concrete crack
segmentation method based on DeeplabV3+. This method
reduces the number of model parameters and enhances
segmentation accuracy. Chen et al. [17] introduced a dynamic
semantic segmentation algorithm with an encoder-crossor-
decoder structure for pixel-level building crack segmentation.
Li et al. [18] concentrated on crack segmentation in asphalt
pavement using an enhanced YOLOv5s model. Moreover,
Sohaib et al. [19] proposed an ensemble approach for robust
automated crack detection and segmentation in concrete
structures, achieving high precision and an intersection over
union score. Collectively, these studies contribute to the
advancement of crack segmentation algorithms, addressing
various challenges and improving the accuracy and efficiency
of crack detection and segmentation processes.

However, the aforementioned models fail to fully leverage
the respective strengths of CNN and Transformer. Therefore,

we propose the MixSegNet model as a means of enhancing
the accuracy of crack segmentation.

II. RELATED WORK
A. SEMANTIC SEGMENTATION
Semantic segmentation is derived from the further refinement
of classification problems. It requires pixel-level classi-
fication tasks and puts forward higher requirements for
architecture and algorithms. At present, semantic segmen-
tation technology has been widely used in different fields
of computer vision. Among them, semantic segmentation is
applied in various fields, including satellite imagery [20],
medicine [21], material science [22], and meteorology [23].
It can be seen that semantic segmentation technology is
crucial. FCN (Fully Convolutional Networks) [24], which
was first proposed by Jonathan Long, Evan Shelhamer, and
Trevor Darrell in 2015, aims to classify each pixel in the
image into the corresponding category. The core idea of FCN
is to use a fully convolutional layer to replace the fully con-
nected layer in the traditional convolutional neural network,
so that the network can accept input images of any size
and output a spatial map of corresponding size. The spatial
map can be directly applied to pixel-level prediction tasks.
U-Net [25], a deep learning model specifically designed
for medical image segmentation, was initially introduced
by Olaf Ronneberger, Philipp Fischer, and Thomas Brox in
2015. The architectural design of U-Net is particularly well-
suited for tasks that necessitate high-precision localization,
such as the segmentation of organs and tissues within
medical imagery. This model is named for its unique
‘‘U’’-shaped structure, which effectively combines shallow
(high-resolution) features and deep (high-level semantics)
features to improve segmentation accuracy. LRASPP (Lite
R-ASPP, or Lightweight Residual Atrous Space Pyramid
Pooling) [26] is a deep learning architecture optimized for
mobile devices and edge computing, especially for semantic
segmentation tasks. It is improved and simplified based on
the original ASPP (Atrous Spatial Pyramid Pooling) and
DeepLab series models. ASPP captures multi-scale informa-
tion by using different dilation rates in parallel convolutional
layers, thereby improving the model’s ability to understand
different areas of the image. LRASPP aims to reduce the
computational complexity and number of parameters to
adapt to environments with limited computing resources.
DeepLabv3 [27] is an advanced deep learning architecture
designed specifically for image semantic segmentation tasks.
It is the third version of the DeepLab series model, developed
by Liang-Chieh Chen and others, aiming to further improve
the segmentation accuracy of the model in complex image
scenes. The core contributions of DeepLabv3 include the
improved atrous spatial pyramid pooling (ASPP) module
and the systematic application of atrous convolution. These
features enable the model to effectively capture multi-scale
information and handle different object sizes in images.
AttuNet [28] is a recently proposed semantic segmentation
architecture. It is an improved version of U-Net. It better
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integrates shallow and deep semantic information through a
special attention module.

B. ATTENTION MECHANISM
As Transformer [29] based on self-attention mechanisms
have gained advantages in NLP in recent years, more and
more people are trying to use Transformers in visual models.
The ViT (Vision Transformer) [30] model is a deep learning
model based on the Transformer architecture, specially
designed to handle image recognition tasks. It was originally
proposed in 2020 byAlexeyDosovitskiy and others at Google
Research. By partitioning images directly into serially
arranged patches and subsequently processing these serial-
ized image patches using Transformers, Vision Transformer
(ViT) has demonstrated performance that matches or even
surpasses the state-of-the-art on multiple image recognition
tasks, providing results comparable to those of Convolutional
Neural Networks (CNN) models. However, ViT cannot be
directly used for semantic segmentation. The original ViT
can only be used for classification tasks. Subsequently, many
people have proposed variants based on the ViT model for
semantic segmentation.

C. SEGMENTATION BASED ON ATTENTION MECHANISM
The SETR (Semantic Segmentation Transformer) [31] model
is a deep learning model specially designed for semantic
segmentation tasks. It combines the powerful capabilities
of Transformer with the advantages of traditional semantic
segmentation methods. SETR was originally proposed by
Zheng et al. in 2020. Its core idea is to apply Transformer
to the global feature extraction of images to directly classify
at the pixel level. This is an idea borrowed from the
NLP field, and it is the first time that it has been widely
used. Scale applied to semantic segmentation tasks in
computer vision. Swin Transformer [32] is a deep learning
model designed based on the Transformer architecture and
optimized for processing computer vision tasks. It was
proposed by Ze Liu et al. of Microsoft Research in 2021.
The core innovation of Swin Transformer is the introduc-
tion of a Transformer structure called ‘‘hierarchy’’, which
effectively manages global dependencies and computational
complexity in images by using variable window sizes,
allowing the model to be more efficient Process large-scale
image data. SegFormer [33] is an advanced deep learning
model designed for semantic segmentation tasks, which
combines the power of Transformer with the efficiency
of Convolutional Neural Networks (CNN). Introduced by
Xie et al. in 2021, SegFormer achieves precise segmentation
of objects of varying sizes within images by incorporating a
lightweight Transformer encoder and an efficient multi-scale
feature fusion strategy, all while preserving the model’s
efficiency and adaptability. The Swin-UNet [34] model is
a deep learning model that combines the characteristics of
Swin Transformer and U-Net architecture. It is specially
designed for fine segmentation tasks such as medical image

segmentation. It was proposed by Hao Chen et al. and
aims to utilize the hierarchical and self-attention mechanism
of Swin Transformer to capture the details and contextual
information of the image, while achieving high-precision
pixel-level segmentation through the encoder-decoder struc-
ture of U-Net. Through this combination, Swin-UNet aims
to improve the model’s ability to understand details and
structures in complex images such asmedical images, thereby
improving the accuracy and efficiency of segmentation.

The models described above are either based on convolu-
tional neural networks (CNNs) or transformers, or combine
the advantages of both. However, in the context of crack
segmentation, where the need for fine segmentation of the
scene and the ability to deal with a variety of background
noise, environmental impact, and other factors is paramount,
the aforementioned models are not optimal. Consequently,
this research paper proposes the MixSegNet model as a
solution to address the shortcomings of existing models in
the context of more complex segmented images. In summary,
the main contributions of this article include: (1) We adopt
a similar structure to U-Net, while using the innovative UC
Block module to obtain more details while increasing the
receptive field, and through the proposed multi-scale fusion
module for crack segmentation (Fuse Block) to enhance it.
Ablation experiments show that all the proposed modules,
including parallel CNN and Transformer architecture, help
the model combine multi-scale features more effectively
and generate more accurate crack segmentation masks. (2)
The developedmodel demonstrates satisfactory segmentation
accuracy on a benchmark datasets (cracks-APCGAN [28]).

III. METHODOLOGY
In our research, the MixSegNet crack segmentation model
uses two major deep learning technologies, Convolutional
Neural Network (CNN) and Transformer, to take full advan-
tage of their respective strengths to achieve highly accurate
crack image segmentation. CNN is a powerful deep learning
tool specifically designed to process data with a grid structure
(such as images). In MixSegNet, we use CNN to extract
local and low-level features from images, taking advantage
of its excellent spatial feature extraction capabilities. The
advantage of CNN is that it can automatically learn basic
features such as edges and textures of images through
convolutional layers, and capture more complex image
features through deep network structures, providing a solid
foundation for accurate crack segmentation. Transformer
technology is based on the self-attention mechanism and
can process sequence data and is particularly good at
capturing long-range dependencies. In theMixSegNet model,
we introduce Transformer to complement the limitations
of CNN, especially in understanding the global context
of images and capturing long-range dependencies. The
advantage of Transformer is that it can dynamically weigh
the importance of each part in the image through the
self-attention mechanism, thereby better understanding the
global structure of the image. This is particularly important
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FIGURE 1. The proposed MixSegNet framework.

FIGURE 2. UC block.

for the crack segmentation task, where crack identification
requires not only the accurate extraction of local features,
but also a comprehensive understanding of their location and
morphology in the entire image. By combining the benefits of

CNN and Transformer, MixSegNet is able to simultaneously
leverage the advantages of CNN in extracting powerful local
features and Transformer in understanding the global context.
This combination not only improves the accuracy of fracture
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FIGURE 3. Cat Block. Fuse Block. Start Block. End Block.

segmentation, but also enhances the adaptability and gener-
alisation of the model to different fracture types and complex
backgrounds. Our method enables an efficient exchange
of information between CNN and Transformer through a
carefully designed network structure, ensuring the model’s
excellent performance in the fracture segmentation task.

A. MIXSEGNET
As seen in Figure 1, the overall architecture is divided into
two parts, one is Encoder and the other is Decoder, where
the Encoder part is divided into three parts, the top part is
the tandem CNN architecture, the middle part is the Fuse
Block part, and the bottom part is the architecture that uses
part of the Swin Transformer [32] model(If you want more
details, refer to the original paper). The Decoder part is the
tandem CNN module that accepts the output of the Fuse
Block module, which in turn recovers the feature map step
by step and extracts the segmentation part we need from it.
When given an image 3 × 256 × 256, we first pass through
the upper part of the Encoder (such as the consecutive blue
part of the figure, which we call UC Block, and we will
explain it in detail later) and the lower part at the same time
by means of the concatenated architecture, so that we can
get the hierarchical feature maps. Then the layered features
from CNN and Transformer are fused by the proposed Fuse

Block module fusion. The most important use of Fuse Block
is in fusing the features extracted from Swin Transformer
using transformer and the features extracted from CNN
network. With the feature fusion technique, the global and
local features can be captured better, and the segmentation
accuracy can be improved. Finally, these layered features are
passed into the continuous Decoder part (as shown in the
continuous purple part of the figure, which we call Cat Block,
and will be explained in detail later), which in turn recovers
the mask information of the image step by step.

1) UC BLOCK
As shown in the Figure 2, this is our proposed UC
Block module, which differs from the previous approach of
changing the image width and height to obtain features at
different levels through Maxpool in that we cleverly first
enlarge the input image to more than twice its size through
the Upsample operation, and then obtain more sensory fields
through oversized convolutions (in this research, the size
of convolution is 1.5 times the size of the image in the
input UC Block, and the dilation rate is 6) to obtain more
sensory fields, although this causes a computational burden,
we reduce the computational burden by using a null depth-
separable convolution. At the same time, we combine the
previous Maxpool method to acquire detailed features. With
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UC Block, we acquire feature maps with larger receptive
fields and detailed information.

The formula for upsampling using nearest neighbor
interpolation is as follows Equation 1.

U (x, y) = F
(⌊x

s

⌋
,
⌊y
s

⌋)
(1)

U (x, y) represents the value at coordinates (x, y) in the
upsampled feature map. F is the original feature map. s is the
scaling factor for upsampling. ⌊.⌋ denotes the floor function.
This formula indicates that for each point (x, y) in the output
feature map, we find the value in the original feature map F
at the point closest to x

s ,
y
s , and use it as the new pixel value.

Dilated Depthwise Separable Convolution consists of two
main steps, Dilated Convolution, calculated in Equation 2.

G[i, j] =

∑
k,l

F[i+ r · k, j+ r · l] · K [k, l] (2)

G[i, j] is the output feature map, F is the input feature map,K
is the convolutional kernel, r is the dilation rate(In this paper,
we take the value 6), and i, j denote positions in the output
feature map, while k, l denote positions in the convolutional
kernel.

Depthwise Separable Convolution, calculated in Equation 3
and Equation 4.

H [i, j,m] =

∑
k,l

G[i+ k, j+ l] · Dm[k, l] (3)

O[i, j, n] =

∑
m

H [i, j,m] · Pmn (4)

H is the feature map after Depthwise convolution, Dm is the
m-th Depthwise convolutional kernel, O is the final output
feature map, and P is the pointWise convolutional kernel.

2) CAT BLOCK
The Cat Block is shown in the Figure 3. This module
accepts inputs from two sources, on the one hand the input
obtained by fusing the feature maps through Fuse Block
and on the other hand the input processed through UC
Block. Through this fusion module, we first concatenate
the two, and then further fuse the feature maps by CNN,
so that we can get the feature maps with the advantages
of CNN and the feature maps from the Transformer, which
is able to directly calculate the dependency between any
two positions in the sequence through the mechanism of
self-attention, which makes the model more efficient in
dealing with the long distance dependency information,
and thus able to capture the long distance dependency
information. The integration of this mechanism enhances
the model’s effectiveness in handling long-range dependency
information, thereby enabling it to capturemore complex data
patterns. Since crack segmentation is an intensive task, the
Fuse Block module allows us to obtain feature maps with
more detail while maintaining accuracy at large scales.

B. MODEL TRAINING DETAILS
1) DATASETS
In this study, we have opted to utilize the secondary
open-source dataset, cracks-APCGAN [28], which has
recently been supplemented with additional data from the
DeepCrack [35] dataset. This choice was made in light of
the open-source nature of the DeepCrack dataset, which
we have found to be a valuable resource in our research.
cracks-APCGANwas developed via the APCGAN enhanced
dataset, the principle is to generate more similar images by
GAN based on the training set, and then further enhance the
training dataset by manually annotating the GAN-generated
images, the enhanced training dataset in the original paper
has a great enhancement for the training process, so we chose
cracks-APCGAN as our benchmark dataset.

2) LOSS FUNCTION
The loss function plays a crucial role in deep learning as a
measure of the difference between the predicted and actual
values of the model. During training, the main purpose of
the loss function is to guide the model learning and adjust
the model parameters by minimising the loss function values
to make the model predictions more accurate. The loss
function not only affects the efficiency and effectiveness of
model training, but also relates to whether the model can
effectively learn the complex patterns and structures in the
data. Therefore, choosing an appropriate loss function is
crucial for the performance optimisation of deep learning
models. Three common loss functions are listed below and
analysed one by one.

BCEloss = −
1
N

N∑
i=1

[
yi log(pi) + (1 − yi) log(1 − pi)

]
(5)

The Binary Cross-Entropy (BCE) loss function defined as
Equation 5. N is the total number of samples, representing
all the samples considered when computing the loss. yi is
the actual label of the i-th sample, which can be 0 or 1,
representing the two categories in binary classification. pi is
the model’s predicted probability that the i-th sample belongs
to class 1, with a value between 0 and 1. log denotes the
natural logarithm, a function to measure the discrepancy
between the predicted probabilities and the actual labels. This
formula averages the discrepancies between the predicted
probabilities and the actual labels across all samples to obtain
the overall loss value.

WBCEloss = −
1
N

N∑
i=1

[wpos · yi log(pi)

+ wneg · (1 − yi) log(1 − pi)] (6)

The Weighted Binary Cross-Entropy (WBCE) loss func-
tion [25] defined as Equation 6. N is the total number
of samples, indicating all samples are considered when
computing the loss. yi is the actual label of the i-th sample,
which can be 0 or 1, representing the two categories in binary
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classification. pi is the model’s predicted probability that
the i-th sample belongs to class 1, with a value between
0 and 1. wpos and wneg are the weights for positive and
negative classes, respectively. These weights are used to
handle class imbalance by adjusting the loss contribution of
each class. log denotes the natural logarithm, used to measure
the discrepancy between the predicted probabilities and the
actual labels. This formula computes the weighted average
of the discrepancies between the predicted probabilities and
the actual labels across all samples, thus obtaining the overall
loss value.

Focalloss = −
1
N

N∑
i=1

[αyi(1 − pi)γ log(pi)

+ (1 − α)(1 − yi)p
γ
i log(1 − pi)] (7)

The Focal loss function [36] defined as Equation 7. N is
the total number of samples, indicating that all samples are
considered when computing the loss. yi is the actual label
of the i-th sample, which can be 0 or 1, representing the
two categories in binary classification. pi is the model’s
predicted probability that the i-th sample belongs to class 1,
with a value between 0 and 1. α is a weighting factor for the
positive class, used to address class imbalance by weighting
the importance of positive/negative examples differently. The
exact calculation can be obtained by counting the proportion
of positive and negative classes in the datasets. γ is the
focusing parameter, a hyperparameter that adjusts the rate
at which easy examples are down-weighted, thus allowing
the model to focus more on hard, misclassified examples.
(1−pi)γ and pγ

i are factors that adjust the contribution of each
sample to the loss based on the prediction confidence. These
factors reduce the loss for well-classified examples, thereby
focusing the model’s learning on hard examples. log denotes
the natural logarithm, used to measure the discrepancy
between the predicted probabilities and the actual labels.
This formula aims to reduce the loss contribution from
easy examples and increase the influence of hard examples,
improvingmodel performance on difficult classification tasks
by modulating the effect of the sample based on its prediction
confidence and actual class.

In the case of crack segmentation, the default and most
commonly used choice is the cross-entropy loss, which is
applied pixel by pixel. The loss function evaluates the class
prediction for each pixel independently and averages over all
pixels. However, it can be biased by an unbalanced dataset,
causing most classes to dominate. To overcome this problem
when the dataset is unbalanced, they introduced weighted
cross-entropy loss. As a further improvement to cross-entropy
loss, the focal loss technique was introduced. This is achieved
by changing the structure of the cross-entropy loss. When the
focal loss is applied to samples with accurate classification,
the scaling factor values are weighted down. This ensures
that more difficult samples are emphasised and therefore
advanced imbalances do not bias the overall computation.

Therefore, in this paper we have chosen the focal loss as the
loss function.

3) OPTIMIZER
In our crack segmentation task, we selected AdamW [37]
as the optimisation algorithm to better adjust model weights
and mitigate overfitting. The AdamW optimiser is a variant
of the Adam optimiser that primarily improves model
generalisation by modifying the weight decay strategy.
Traditional L2 regularisation methods may not be effective
in adaptive learning rate optimisation algorithms, as such
algorithms automatically adjust the update step for each
parameter, potentially conflicting with the goals of L2
regularisation. In contrast, AdamW decouples weight decay
from the optimiser’s adaptive learning rate adjustments,
allowing weight decay to operate independently of the
adaptive learning rate mechanism, thereby implementing
regularisation more effectively.

In this study, we used an initial learning rate of 6 × 10−5

chosen on the basis of experience and the results of several
experiments. This learning rate is intended to strike a balance
between convergence speed and stability during the training
process, avoiding excessively large update steps early in
training that could cause the model to fail to stabilise on an
optimal solution. The AdamW optimiser allows us to finely
control the learning rate for each parameter in an adaptive
manner, while using weight decay to suppress overfitting,
providing strong support for deep learning models in crack
segmentation tasks.

Furthermore, by using AdamW’s weight decay mecha-
nism, we can more effectively manage model complexity and
prevent the occurrence of overfitting, which is particularly
important for tasks such as crack segmentation that require
a high level of detail and precision. By considering both
training efficiency and model generalisation capabilities,
we are confident that the choice of the AdamW optimiser and
its configuration will provide optimal training results for our
crack segmentation model.

IV. RESULTS AND DISCUSSION
A. EVALUATION METRICS
In the table 1, we first define the variables commonly used
to evaluate the metrics. In crack segmentation, the commonly
used evaluation indicators are as follows:

• Precision in crack segmentation assesses the ratio of
correctly predicted positive areas to all areas predicted as
positive, highlighting the accuracy of positive class pre-
dictions. The Precision can be calculated in Equation 8.

Precision =

∑
p∑

p+
∑
p

(8)

• Recall in crack segmentation quantifies the fraction of
true positive areas correctly identified, reflecting the
model’s sensitivity to actual positives. The Recall can

VOLUME 12, 2024 111541



Y. Zhou et al.: MixSegNet: A Novel Crack Segmentation Network Combining CNN and Transformer

be calculated in Equation 9.

Recall =

∑
p∑

p+
∑
g

(9)

• F1 score in crack segmentation is the harmonic mean of
precision and recall, balancing both metrics. It evaluates
the model’s accuracy and sensitivity, with higher values
indicating better overall performance. The F1 score can
be calculated in Equation 10.

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

(10)

• mIoU (mean Intersection over Union) in semantic
segmentation calculates the average IoU, which is
the overlap versus total area of predicted and true
regions, across all classes. It assesses the model’s
segmentation accuracy, with higher mIoU indicating
better performance. The mIoU can be calculated in
Equation 11.

mIoU =
1
C

C∑
c=1

∑
p∑

p+
∑
p+

∑
g

(11)

TABLE 1. Definitions in crack segmentation.

B. RESULTS
In this paper, we describe a novel deep learning model for
crack segmentation, MixSegNet, and provide an in-depth
analysis of its performance. As shown in Table 2, MixSeg-
Net outperforms current mainstream segmentation models,
including LRASPP, FCN, DeepLabV3, U-Net, AttuNet,
and Swin-UNet, in a number of key metrics. Specifically,
MixSegNet attains a precision of 0.952, a recall of 0.882,
an F1 score of 0.915, and a mean intersection over union
(mIoU) scores of 0.848. These results show that MixSeg-
Net has a significant leading performance on the crack
segmentation task. When analysing these results in more
detail, we can see that MixSegNet is only slightly higher in
precision by 0.001 compared to U-Net, but the improvement
in recall is even more significant, being 0.040 higher than
that of U-Net. This suggests that MixSegNet is able to
maintain a high level of detection accuracy while avoiding
missing actual cracks. In addition, the F1 score, which is
a reconciled average of precision and recall, also shows
that MixSegNet outperforms all compared models on this
metric, further demonstrating its superiority in correctly
identifying and segmenting cracks. MixSegNet also performs
well on the mIoU metric, outperforming the second highest
model, AttuNet, by 0.012, demonstrating better consistency
and overall performance in the crack segmentation task.
mIoU is an important metric for assessing the quality of
a model’s segmentation, and its high value underscores
MixSegNet’s reliability and robustness in the crack detection

TABLE 2. Comparison of different models on the test data.

task. These performance improvements of MixSegNet are
due to its unique model design. The model combines the
use of a CNN-based UC block module and an attention
mechanism that improves segmentation accuracy by focusing
on key information in the image. The introduction of the
UC block module improves the capture of crack features,
while the attention mechanism ensures that the model is
able to distinguish between foreground cracks and complex
backgrounds. In addition, the parallel and serial structure
we adopt allows the model to respond effectively to crack
variations in different scenes, improving the model’s ability
to adapt to crack morphology. We also employ a focal loss
function and an adaptive learning strategy to address the
problem of category imbalance in the dataset. The focal
loss function can reduce the weight of easy to classify
samples, allowing the model to focus more on crack regions
that are difficult to segment. The adaptive learning strategy
further optimises the training process and ensures the model’s
performance in a variety of complex scenarios and conditions.

As illustrated in Figure 4, this study randomly selected
seven images from diverse scenes and employed distinct
segmentation models to illustrate the outcomes. The segmen-
tation outcomes depicted in the figure demonstrate that the
results produced by the MixSegNet model align with those
presented in Table 2. Additionally, the MixSegNet model
exhibits consistent and continuous segmentation outcomes
when compared to other models. This consistency can be
attributed to the fact that MixSegNet integrates the strengths
of CNN and Transformer. A comparison of the details of
the various models reveals that the MixSegNet model also
maintains a leading level of detail processing, which is crucial
for the refined crack segmentation scene.

In summary, MixSegNet’s innovative design and strategy
set a new performance benchmark for the crack segmentation
task. Its outstanding performance bodes well for the model’s
wide application and far-reaching impact on future crack
segmentation. We are excited about MixSegNet’s ability to
handle complex problems and look forward to seeing its
performance in real-world applications.

C. DISCUSSION
Table 3 shows the results of the ablation experiments
performed on the MixSegNet model, where the contribution
of each part to the overall model performance is verified by
incrementally adding UC Block and Transformer modules.
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FIGURE 4. A comparison of the results obtained using different segmentation models in different scenarios. (a) Original Image (b) Ground
Truth (c) MixSegNet (d) AttuNet (e) Swin-UNet (f) U-Net (g) Deeplabv3 (h) FCN (i) LRASPP.

Ablation experiments are a method of assessing the impor-
tance of model components by removing or adding specific
sections and observing changes in model performance. The
results of these experiments are analysed in detail below. The
base model serves as a frame of reference with Precision,
Recall, F1 Score and mean Intersection over Union (mIoU)
of 0.931, 0.836, 0.881 and 0.813 respectively. This model
already has good performance on its own, providing a solid
foundation for adding new modules. Adding the UC Block
module to the base model improves all performance metrics,
including precision to 0.935, recall to 0.858, F1 score to
0.895 and mIoU to 0.827. This shows that the UC Block
module plays a key role in improving the performance of
crack segmentation, especially in the significant increase
in recall, suggesting that the addition of UC Block helps
the model to reduce the cases of missed crack detection.
When the Transformer module is added to the base model,
the recall rate improves from 0.836 to 0.863, showing the
effectiveness of the Transformer module in capturing the
global information of the crack image and understanding
the relationship between the crack and the background.
However, the accuracy decreased slightly to 0.928, which

may be due to the fact that the Transformer module’s
emphasis on global features may lead to some local noise
being misidentified. Nevertheless, the slight improvement
in F1 and mIoU confirms the positive contribution of the
Transformer module in the model. By combining the UC
Block and Transformer modules into MixSegNet, the model
was significantly improved in all metrics. Precision reached
a maximum of 0.952, recall also reached a maximum
of 0.882, and F1 score and mIoU reached 0.915 and
0.848 respectively. This all-round performance improvement
fully demonstrates the positive impact of combining the UC
Block and Transformer modules on the model’s performance,
especially on recall and mIoU, which shows the model’s
efficiency in crack detection and accuracy in segmenting the
crack region. The contribution of each component to the
MixSegNet model was experimentally demonstrated: the UC
Block module significantly improved the recall rate, showing
that it is effective in avoiding missed crack detection. While
the Transformer module enhances the global understanding
of the model and improves recall. When these two modules
are combined, they work in synergy to significantly improve
the overall performance of the model, especially in terms
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TABLE 3. Ablation experiment.

of precision and recall, enabling MixSegNet to excel in
the field of crack segmentation. These results validate the
effectiveness of our proposedmodel design and provide a new
powerful tool for crack segmentation tasks.

Although the results indicate that MixSegNet has achieved
a leading level of performance, it is important to note that
the model combines the CNN and Transformer architectures,
which inevitably increases the computational complexity.
However, the focus of this study is on high-precision seg-
mentation, and computational complexity is not the primary
consideration. In the next research, we will optimize the
computational efficiency of the model and improve its real-
time performance. The current work focuses on improving
the accuracy of crack segmentation, and subsequent workwill
be used in real drone scenarios to realize real-time crack seg-
mentation warning using a drone and an onboard computer.

V. CONCLUSION
This research proposes an innovative crack segmentation
model, MixSegNet, which represents a major breakthrough
in the field of crack segmentation. MixSegNet not only
improves the perceptual capability of the model, but also
strengthens the capture of details and the maintenance
of long-range dependencies by combining an innovative
UC block and a parallel CNN and Transformer design.
This unique two-pronged approach effectively overcomes
the limitations of previous single-architecture designs and
achieves significant improvements in key performance met-
rics such as 95.2% precision, 88.2% recall, 91.5% F1
score and 84.8% mIoU. The performance advantages of
MixSegNet are fully demonstrated by comparing it to existing
state-of-the-art models LRASPP, FCN, DeepLabV3, U-Net,
AttuNet and Swin-UNet. The model not only improves in
all indices, but also shows better generalisation ability in the
experiments, predicting its wide applicability and potential
value in practical applications. In future research, we plan to
extend the scope of application of MixSegNet, improve its
generalisation ability, and verify its robustness by testing it on
more diverse and complex datasets. At the same time, we will
work on optimising the computational efficiency of themodel
to meet real-time processing requirements and applications in
real industrial scenarios. We will also explore the potential
of MixSegNet in cross-domain image segmentation tasks
such as medical image analysis and remote sensing image
processing. Improving the interpretability of the model
and adapting it to small-sample learning environments to
maintain excellent performance in data-constrained situations
will also be the focus of our future work. With these efforts,

we expect to open new avenues for research and practical
applications of crack segmentation.
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