
Received 27 June 2024, accepted 28 July 2024, date of publication 5 August 2024, date of current version 20 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3438161

HEaaN-NB: Non-Interactive Privacy-Preserving
Naive Bayes Using CKKS for Secure
Outsourced Cloud Computing
BOYOUNG HAN 1,∗ , HOJUNE SHIN 1,∗ , YEONGHYEON KIM 2, JINA CHOI 1,
AND YOUNHO LEE 1,3, (Member, IEEE)
1Department of Data Science, Seoul National University of Science and Technology, Seoul 01811, South Korea
2CryptoLab, Seoul 08826, South Korea
3Department of Industrial Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea

Corresponding author: Younho Lee (younholee@seoultech.ac.kr)

This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).

∗Boyoung Han and Hojune Shin are co-first authors.

ABSTRACT Although there has been significant progress in homomorphic encryption (HE) technology,
a fully homomorphic Naive Bayes (NB) classifier capable of training on HE-encrypted data without
decryption has not yet been efficiently developed. This research introduces a new method for approximating
homomorphic logarithm calculations with an average relative error under 0.01%. Leveraging the SIMD
functionality of the HE framework and a GPU, this technique can compute logarithm values for thousands
of encrypted probabilities in about 2.5 seconds. Building upon this, we present a more efficient fully
homomorphic NB classifier. Our method can train on a breast cancer dataset in roughly 14.3 seconds and
perform query inferences in 0.84 seconds. Compared to the recent privacy-protecting NB classifier from Liu
et al. in 2017, which offers a similar security level, our method is estimated to be about 28 times faster.

INDEX TERMS Naive Bayes classifier, privacy-preserving machine learning, CKKS, fully homomorphic
encryption.

I. INTRODUCTION
The swift advancement in artificial intelligence (AI) tech-
nology has spurred a growing need for AI applications in
sectors like healthcare and finance, where user data is highly
sensitive and private. Due to stringent legal regulations [1],
[2], this type of information cannot be utilized unless its
privacy is safeguarded. Furthermore, models developed from
training with such sensitive data hold substantial commercial
value, making the security of the model information crucial.
This paper explores how the Naive Bayes (NB) machine
learning algorithm can be applied to privacy-sensitive data in
a real-world system context, ensuring data privacy throughout
the process.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

The NB classifier is renowned for its simplicity and
accuracy, and is recognized for its scalability. Its ease of
implementation and effectiveness with limited data make it
a popular choice for applications such as text classification,
sentiment analysis, system performancemanagement, collab-
orative filtering, and clinical decision support systems [3],
[4], [5], [6], [7], [8], [9], [10], [11].

Our research is centered on the privacy-preserving Naive
Bayes (PPNB) classifier, which employs homomorphic
encryption (HE). In this setup, the training process does not
necessitate decrypting the intermediate data at any point.
As a result, the cloud server can independently complete the
training once it has received the ciphertexts containing the
training data. Additionally, the inference process is entirely
conducted by the cloud server using just the encrypted input
data, thereby obviating the need for decrypting any interme-
diate ciphertexts before arriving at the inference result.

110762

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0009-0004-6190-5791
https://orcid.org/0009-0008-8804-963X
https://orcid.org/0000-0002-8326-169X
https://orcid.org/0009-0004-1851-5712
https://orcid.org/0000-0003-1767-6165
https://orcid.org/0000-0001-7005-6489

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

Existing research has faced challenges in achieving this
goal due to two main reasons. First, there has been no
efficient method to implement complex functions, such as the
homomorphic logarithm function [12], [13], [14], [15], [16].
Second, certain homomorphic operations, like division or
multiplication over encrypted multi-precision integer values,
are prohibitively expensive [17]. To address these issues,
the costly operations are carried out after decrypting the
data. Following this, the computation results are re-encrypted
and sent back to the cloud to resume training or inference
processes.
Contribution: This paper introduces a novel approach

enabling a server to construct a training model exclusively
through homomorphic operations on encrypted training data,
without requiring interaction with the data owner or a trusted
party possessing decryption keys.

The data owner encrypts her data using the system’s
public key and transmits it to the server. Subsequently, the
server independently generates and stores the model using
solely homomorphic operations. Notably, this study marks
the first implementation of a homomorphic encryption-based
PPNBmethod that avoids intermediate plaintext computation
post-encryption of training data.

Our method efficiently approximates the natural logarithm
of a probability value encrypted by CKKS, termed Approx-
Log(), and requires about 2.5 seconds in a GPU-assisted
desktop environment. Utilizing the SIMD function, we can
compute over 1000 logarithmic values simultaneously,
achieving an accuracy with a relative error of less than 0.01%
for most of the input range (0,1].

Our PPNB method is notably efficient for practical appli-
cations. It processes encrypted models and data, requiring
around 14.3 seconds for training on the Breast Cancer
dataset [18] and just 0.84 seconds for a single inference.
The amortized time is further reduced to about 4.65ms
when considering that 180 inputs can be encrypted together
for inference. This represents a substantial speed increase
compared to Liu et al.’s [17], which took 2951.8 minutes
for training and 348.8 minutes for classification, making our
method about 12,000 times faster for training and 24,900
times faster for classification.

To accommodate different computational environments,
such as GPU utilization and the use of Residue Number
System (RNS), we adjusted our comparison of multiplication
operation speeds between our proposed PPNB method
and [17]. Specifically, we found that the multiplication oper-
ation in [17] is approximately 430.77 times slower compared
to our PPNB implementation under similar conditions.

To assess the performance improvements of our method
in terms of computational complexity, we conducted a
comparative analysis with [17] focusing on homomorphic
addition, multiplication, and slot rotation operations—
fundamental operations provided by homomorphic encryp-
tion (HE). Specifically, we examined the multiplicative depth
of these operations, which directly impacts bootstrapping
requirements. Our findings highlight that our proposed

method demonstrates superior performance in multiplication
operations relative to the number of slots accommodated
in a ciphertext. Particularly, we observed a substantial
difference in the multiplication operation depth between our
method and [17] during the training phase. In our method,
the multiplication depth remains constant (O(1)), whereas
in [17], it scales with O(ldata · nmax), dependent on the size
of the data and the maximum number of categories (nmax).
The remainder of this paper is structured as follows.

Section II presents the necessary background information
for understanding this work. Section III details the system
and security models of the proposed method. This is
followed by the proposed homomorphic logarithm technique
in Section IV and the proposed PPNB training and inference
methods in Section V. The experimental results and com-
putational complexity analysis are provided in Sections VI
and VII, respectively. Section VIII offers a comprehensive
noise analysis of the proposed method and discusses its
extension when the Key Manager is semi-honest. Section IX
reviews related work. Finally, the conclusion is presented in
Section X.

II. BACKGROUNDS
A. NOTATION
The notations used in this paper are listed in Table 1.

B. NAIVE BAYES CLASSIFIER
Consider a vector of values x⃗ = (x0, · · · , xd−1), which
belongs to a set of categorical variables X (= X0×X1×· · ·×
Xd−1), and a target categorical variable Y = {y1, . . . , yu}.
The NB classifier determines the classification result yr ∈ Y
in the following manner:

yr := argmax
1≤i≤u

Pr[Y =yi|X= x⃗]

= argmax
1≤i≤u

Pr[Y =yi] · Pr[X= x⃗|Y =yi]
Pr[X= x⃗]

= argmax
1≤i≤u

Pr[Y =yi] · Pr[X= x⃗|Y =yi]

= argmax
1≤i≤u

Pr[Y =yi] ·
d−1∏
j=0

Pr[Xj=xj|Y =yi]

= argmax
1≤i≤u

logPr[Y =yi]+6d−1
j=0 logPr[Xj=xj|Y =yi]

(1)

Among the equations mentioned earlier, (1) arises from
assuming that each element in the input vector is indepen-
dently sampled. This allows the application of Bayes’ rule.

C. CKKS (CHEON-KIM-KIM-SONG) HE
CKKS encryption does not eliminate the noise associated
with the message, which persists as an error in the decrypted
output [19]. This error is treated as a computational cost,
enabling efficient multiplication operations on encrypted
complex numbers. Despite introducing small errors during

VOLUME 12, 2024 110763

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

TABLE 1. Notations and conventions.

operations in an encrypted state, CKKS remains viable
for implementing privacy-preserving versions of various
applications, especially in fields like machine learning where
minor calculation discrepancies using IEEE floating point
representation do not significantly affect overall perfor-
mance.

CKKS supports the following algorithms:
• KeyGen(1λ) takes a security parameter λ as input and

returns pk , sk , and evk .
•Encpk (−→x) outputs [[x]] thatmaintains the vector structure

as −→x .
• Decsk ([[x]]) returns −→x if [[x]] is a valid encryption of
−→x , resulting from Enc or generated through operations on
valid ciphertexts using the correct pk , evk , and sk . Otherwise,
it returns ⊥.

TABLE 2. Parameters of RNS-CKKS used.

• Add([[x]], [[y]])(Sub([[x]], [[y]])) outputs a new ciphertext
[[−→x +−→y]] ([[−→x −−→y]]).
• Add([[x]], k)(Sub([[x]], k)) outputs a new ciphertext

that is an encryption of (x0 + k, · · · , xM−1 + k) ((x0 −
k, · · · , xM−1 − k)) for given k ∈ C.
• Level([[x]]) returns [[x]]’s level l, the number of further

possible multiplication with [[x]].
• Multevk ([[x]], [[y]]) returns an (approximate) encryp-

tion of (x0 ∗ y0, · · · , xM−1 ∗ yM−1) whose level is
min(Level([[x]]), Level([[y]])) − 1. (min(A,B) returns the
minimum value among A and B.)
•Multevk ([[x]], k) outputs an encryption of (kx0, · · · , kxM−1)

where k ∈ C. The level of resultant ciphertext is decremented
from the level of [[x]] by 1.
• Rotevk ([[x]], i) returns an encryption of (xM−i, xM−(i−1),
· · · , xM−1, x0, · · · , xM−(i+1)), if i ∈ [0,M − 1]. If i is
negative, it refers toM + i.
• Bootevk ([[x]]) returns a fresh ciphertext [[x ′]] that has

approximation of −→x if Level([[x]]) ≥ lminboot , the number
of required multiplication level to perform Boot(). lminboot
depends on what bootstrapping algorithm is used and
parameter.

We assume that the rescaling algorithm [19] operates
within the Mult() function. Additionally, for simplicity,
we have omitted details about the keys used. Our implemen-
tation employs RNS-CKKS, leveraging GPU acceleration to
enhance performance [20], [21], [22], [23].

Table 2 shows the parameters for setting up CKKS.

D. APPROXIMATE FUNCTIONS ON CKKS CIPHERTEXTS
We employ ApproxSign([[x]]), which takes a ciphertext [[x]]
and outputs an encrypted vector (a0, · · · , aM−1), where ai =
1 if [[x]][i] > 0, and ai = −1 if [[x]][i] < 0 for
i ∈ [0,M − 1]. This is implemented using the method
described by [24] in the HEAAN library [25]. Additionally,
we utilize ApproxInv([[x]]), which produces an encryption of
themultiplicative inverse of the values in [[x]]. This function is
implemented using the Newton approximation method [25].

III. SYSTEM MODEL
This section outlines the system setup and presents an
overview of the proposed PPNB protocol.

A. PLAYERS AND PROTOCOL OVERVIEW
An overview of the protocol is illustrated in Fig. 1. Below is
a description of the three participants in the protocol:
• Data Owners (DOi (i ∈ Su)) encrypt their data

using the system public key (pks) and send the encrypted

110764 VOLUME 12, 2024

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

FIGURE 1. Protocol overview and assumption.

data ([[Datai]]pks in Fig. 1) to the cloud server (CS) for
training.
• CS holds both the system public key (pks) and the

evaluation key (evks). It carries out training on the encrypted
data received from the data owners. Since the data is
encrypted with pks, CS can perform CKKS HE operations
without needing key switching. Once the model is trained,
CS can process encrypted inference queries from clients and
provide the encrypted results using pks, tagged with the
requesting user’s ID.
• Client encrypts their input data for inference with pks

(represented as [[inputs]]pks in Fig. 1) and sends it to CS. The
client then receives the inference result, encrypted with pks
(shown as [[label]]pks in Fig. 1).

B. ASSUMPTION AND PROBLEM DEFINITION
Assumptions: Initially, we assume that a common system
public key is shared among all participants. And the
second assumption is that the evaluation key for performing
homomorphic operations are provided to the CS, as shown
in Fig. 1. This key distribution can be facilitated by a trusted
third party, as described in [26], or in a secure outsourcing
context where the data owner, who delegates their data to
the CS for processing, generates the keys and supplies both
the public and evaluation keys to the CS. In the environment
of [26], data collected from various organizations is combined
and analyzed, and in this case, due to legal constraints, the
analysis results must be reviewed by a trusted third party
before being sent to Client. We provide two instances of the
systemmodel, where the entity responsible for key generation
and distribution can either be a trusted third party or a semi-
honest, described in Section VIII-B and Section VIII-C,
respectively.
ProblemDefinition:This research introduces a protocol for

privacy-preserving NB training and inference, which needs to
satisfy the following criteria.

1) The CS receives encrypted training data using the
system public key and independently generates an
encrypted model (the result of training). This process
does not require assistance from other participants or
the use of decryption keys, enabling the model to be
used for inference.

2) The CS can compute encrypted inference results using
the system public key without decryption or assistance
from other entities. This is based on input data
encrypted with the system public key received from the
Client.

3) Under the honest-but-curious (HBC) model, the CS,
Client, and Data Owners do not have access to
information regarding the training data, inference
results, or the model itself. The training model remains
concealed from all involved parties.

4) The CS operates exclusively within a single security
domain. In scenarios involving multiple CSs, there
exists a risk of potential malicious cooperation if they
act adversarially.

According to discussions in [26], 1) is crucial in
scenarios where multiple owners of encrypted training
data need to collaborate for training purposes. In such
cases, restrictions on the use of decryption keys during
training or inference processes may apply. Moreover, legal
frameworks often impose constraints on the utilization of
decryption keys during training, as highlighted in [26].
In the context of secure outsourcing, 1) offers advantages
by reducing the resource requirements of Data Owners,
enabling them to operate offline after transferring their
data to the CS.
2) relates to the efficiency of communication costs and

reducing security risks by limiting the use of encryption
keys, as mentioned in [27]. 3) focuses on security, ensuring
the protection of valuable model information while main-
taining the privacy of participants’ data used in training
and inference. Lastly, 4) addresses scenarios where using
CSs from different security domains is not feasible. Using
multiple CSs not only incurs high costs but also heightens the
potential for undetectable collusion between them. Therefore,
this study assumes the CS operates within a single security
domain.

C. SECURITY MODEL
Similar to many prior studies, our assumption is that
each participant in the protocol might act as an adversary,
following the behavior defined in the honest-but-curious
(HBC) model, with the exception of KM. Assuming KM
is trustworthy as described in Section V-B, there is limited
concern because CKKS is already established as CPA-secure,
CS handles only encrypted data, and Client receives solely
the inference result. However, if KM operates under semi-
honest assumption, it becomes necessary to verify the privacy
of the model and the inference data in relation to KM. This
concern is addressed in Section VIII-C.

VOLUME 12, 2024 110765

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

IV. HOMOMORPHIC LOGARITHM FUNCTION OVER
ENCRYPTED DATA
The core of homomorphic PPNB classification involves mul-
tiplying probabilities and performing the argmax operation on
the resulting values. However, many homomorphic encryp-
tion (HE) schemes that support precise calculation results
incur high computational costs for high-precision homomor-
phic multiplications [17]. Additionally, using approximate
HE schemes for homomorphic multiplication on very small
encrypted data does not achieve high accuracy due to noise
introduced during encryption.

To address this, recent homomorphic PPNB methods [16],
[27] transform all probability values into their logarithmic
form, replacing multiplication with addition for classifi-
cation. However, logarithmic operations on HE data are
not well-studied, leading many existing approaches to
compute logarithms of probabilities only after decryption.
This presents challenges when decryption keys are restricted
during training. In this study, we propose a homomorphic
logarithm calculation method (ApproxLog()) that ensures
high accuracy andmanages encrypted values within the range
(ϵ, 1], where ϵ is a very small positive number. This method
can be applied to any approximate HE scheme with SIMD
functions, such as CKKS [19], allowing for polynomial
computations over encrypted x.

To our knowledge, no existing literature addresses the
homomorphic logarithm operation on encrypted data within
the range (0,1]. The open left range causes polynomial
approximation methods like Remez [28] to have high approx-
imation errors when applied directly. Additionally, using
Newton’s approximation [29] directly results in substantial
errors when approximating the log function with inputs in the
range (0,1].

Our ApproxLog() utilizes a well-established polynomial
approximation method for logarithmic operations as pro-
posed in [30]. It first computes s = (x−1)/(x+1) on the input
x, followed by evaluating s ∗ (L1s2 + L2s4 + L3s7 + L4s8 +
L5s10 + L6s12 + L7s14) to derive the result. The coefficients
L1 ∼ L7 are specifically chosen for computations with
encrypted inputs using CKKS, characterized by their small
absolute values, all less than 0.1 (exact values are detailed in
Section XI). This method demonstrates a high level of accu-
racy, with a maximum approximation error reaching up to
2−58.45 ≈ 10−17.6; however, such precise accuracy is attain-
able onlywhen the input falls within the range [1/

√
2, 2/
√
2].

We denote this approach as HermesLog() [30].
The contribution of this research is to develop a method

for transforming encrypted data from an original range of
(0,1] into a new encrypted range [1/

√
2, 2/
√
2] so that the

transformed data can be an input for HermesLog() [30].
After applying our proposed transformation to the encrypted
data, we then use HermesLog() on this transformed data.
Finally, we complete the process by subtracting the outcome
obtained from HermesLog(), applied to the transformed
data, from the logarithm of the multiplier used in the initial
conversion of the original input.

The challenge with this issue lies in the complexity of
determining the scaling factor required to transform the input
into the range [1/

√
2, 2/
√
2], especially since the input value

is in an encrypted state.

Algorithm 1 Proposed Approximate Logarithm Algorithm

1: procedure ApproxLog([[input]]) ⃗input = (

t+2︷ ︸︸ ︷
x, x, . . . , x, 0, . . . , 0)

2: cinp ← [[input]]
3: csign ← ApproxSign(Sub(T1, cinp))
4: c0 ← Mult(Mult(Add(csign, Rot(csign, 1)), 0.5), 1[0,t+1])
5: c1 ← Sub(1⃗[0,t+1], Mult(c0, c0))
6: ch ← Mult(Mult(c1,T2), cinp)
7: cr ← Mult(c1, HermesLog(ch))
8: cu ← Sub(cr, Mult(c1,T3))
9: cret ← SumGroup(cu, t + 2, t + 2)

10: return cret // (cret has loge(x) in 0th slot)
11: end procedure

A. PROPOSED METHOD
The proposed approach computes the natural logarithm of
the encrypted input x ∈ (0, 1] using the following steps:
1) Identify a such that x × 2a falls within the interval
[1/
√
2, 2/
√
2]. 2) Apply the function HermesLog(x ×

2a), yielding the result r−a × loge(2) to obtain the final
logarithmic value.

On encrypted x, we can determine a as follows.

If 2−b < x ≤ 2−(b−1) Then a← b− 1/2, (2)

If a is computed as described earlier, x × 2a = x ×
2(b−1/2) ∈ (1/

√
2, 2/
√
2]. To verify if x falls within a

specific range for b as mentioned previously, we utilize
ApproxSign(). The challenge arises from the need to
perform this comparison operation multiple times in an
encrypted state to determine the appropriate b, since x
remains encrypted. To efficiently execute these comparisons,
we replicate x across multiple slots and compare each
instance with 2−b values for various b. An example of
implementing this method is illustrated in Fig. 2. Assuming
the minimum value of x is 2−t , the core of the method
involves Steps 2∼5 in Fig. 2. By utilizing ApproxSign(),
we ascertain that x lies within the range (2b, 2b−1] for
a specific b.1 Consequently, we can apply HermesLog()
after scaling x appropriately and feeding the result of this
multiplication as input.

Moreover, when t is significantly smaller than M within
a ciphertext, we can concurrently compute logarithmic
values for ⌊M/(t + 2)⌋ numbers using the aforementioned
approach by performing ApproxSign() only once after
consolidating all inputs into a single ciphertext. Setting t
to approximately 20 allows us to compute the logarithm
for over a thousand values simultaneously, considering the
total number of slots (= 32768) in our configuration. The

1This does not imply that we know b in plaintext; rather, we possess a
ciphertext indicating the correct b

110766 VOLUME 12, 2024

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

FIGURE 2. Proposed ApproxLog()- An example of execution.

algorithmic description of ApproxLog() is provided in Alg.
1. Note that pre-computed ciphertexts T1,T2,T3 are depicted
in Fig. 2.

V. PRIVACY-PRESERVING NAIVE BAYESIAN TRAINING
AND CLASSIFICATION ALGORITHMS
A. DATA ORGANIZATION AND REPRESENTATION
We represent the training data as a table, where each column
corresponds to a categorical variable. Each value in a variable
is binary-encoded using one-hot encoding. For instance, if X1
has a value of two and n1 = 3, it is encoded as (0, 1, 0).
We aggregate the component values from these encoded
vectors at the same position across all variables to form a
vector of collected values. As an example, we can create
a vector specifically for the first component of the one-hot
encoded vectors from X1’s values. This vector is referred
to as a binary mask vector (BMV), denoted as b⃗X1,1, which
manages the values in the 1st component of one-hot encoded
vectors corresponding to X1. To encompass values across all
features X0, . . . ,Xd−1, we need (n0 + . . .+ nd−1) BMVs.

B. SUBROUTINES
The subroutines utilized are SumGroup() and FindMax-
Pos(). SumGroup([[a]], gs, ts) groups the values in [[a]]
into segments of gs slots to compute the sum of values
within each segment. When considering cases where only a
subset of slots in [[a]] are active, the number of slots to be
utilized is specified by ts. The computed sum is stored in
the first slot of each segment, starting from the leftmost slot
in a ciphertext. With slight modifications, we can implement
SumGroupz(), where the spacing between adjacent elements
is not necessarily one but can be an arbitrary number z slots
apart.

FindMaxPos(c,ns) returns a new ciphertext where the
slot position containing the maximum value among the first

ns slots in c is set to one, while all other slots are set
to zero. The execution of FindMaxPos(c,ns) proceeds as
follows: it identifies the largest value among the inputs
using FindMax(c,ns), then constructs a ciphertext (cmax) that
fills the first ns slots exclusively with this maximum value.
Subsequently, cmax is subtracted from the input ciphertext,
followed by adding a very small ϵ value to each slot in the
resulting subtraction (cin). The ApproxSign(cin) function is
then applied to obtain cout. Finally, the resulting ciphertext
cout is adjusted by adding 1 to each slot and then multiplying
every slot by 0.5 to yield the final result. Algorithms 2
and 3 provide detailed descriptions of SumGroup() and
FindMaxPos(), respectively.

The following algorithms are the subroutines to implement
FindMaxPos().

1) FINDMAX() ALGORITHM
The function FindMax([[input]], ns) returns a ciphertext
where the first slot contains the maximum value among
the leftmost ns slots of [[input]]. The number of calls to
ApproxSign() is ⌈log2(ns)⌉. Detailed steps are provided in
Algorithm 4.

2) COPYSLOT() ALGORITHM
This function generates a new ciphertext where the first
j slots are filled with the value from the i-th slot of the
input ciphertext. It uses Copy2PSlot() as a subroutine. The
Copy2PSlot(c, i, n) function creates a new ciphertext where
the first i slots contain the same value as c, and the value
from the i-th slot in c is copied to the (i+ 1) to (i+ 2n) slots
in the new ciphertext. The CopySlot algorithm is detailed in
Algorithm 5, and Copy2PSlot() is described in Algorithm 6.

Algorithm 2 SumGroup Algorithm
1: procedure SumGroup([[input]], gs, ts)
2: [[a]]← [[input]]
3: while gs > 1 do
4: if gs is even then
5: −→m ← (1⃗

gs
2 ||0⃗

gs
2)⌈ts/gs⌉

6: [[r]]← Rot([[a]], gs2)
7: [[t1]]← Mult(−→m , [[r]]), [[t2]]← Mult(−→m , [[a]])
8: [[a]]← Add([[t1]], [[t2]]), gs← gs/2
9: else

10: −→m 1 ← (1⃗
gs−1
2 ||0⃗

gs+1
2)⌈ts/gs⌉

11: −→m 2 ← (1⃗
gs+1
2 ||0⃗

gs−1
2)⌈ts/gs⌉

12: [[r]]← Rot([[a]], gs+12)
13: [[t1]]← Mult(−→m 1, [[r]]), [[t2]]← Mult(−→m 2, [[a]])
14: [[a]]← Add([[t1]], [[t2]]), gs← (gs+ 1)/2
15: end if
16: end while
17: return [[a]]
18: end procedure

C. TRAINING
The training process of the plaintext version of the Naive
Bayes (NB) protocol involves tallying the number of rows

VOLUME 12, 2024 110767

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

Algorithm 3 FindMaxPos Algorithm
(ns: the number of slots having input)
1: procedure FindMaxPos([[input]], ns)
2: cmax ← FindMax([[input]],ns) %max value in 0th slot
3: ccopy←CopySlot(cmax,0,ns)%max value is copied to the

leftmost ns slots
4: cin ← Add(Sub(c, ccopy), ϵ) %ϵ: tiny positive value
5: cout ← ApproxSign(cin)
6: cout ← Mult(Add(cout, 1⃗

ns), 0.5)
7: return cout
8: end procedure

Algorithm 4 FindMax Algorithm
1: procedure FindMax([[input]], ns)
2: if ns == 1 then
3: return [[input]]
4: end if
5: if ns is odd then
6: Assume we know the minimum value that can be in

[[input]], put it into(ns+1)-th slot in [[input]].
7: ns← ns+ 1
8: end if
9: c0 ← Mult([[input]], 1⃗[0,

ns
2 −1])

10: c1 ← Rot(Mult([[input]], 1⃗[
ns
2 ,ns−1]), ns2)

11: ccmp ← ApproxSign(Sub(c0, c1))
12: c0>1 ← Mult(Mult(Add(1⃗[0,

ns
2 −1], ccmp), 0.5), c0)

13: c1>0 ← Mult(Mult(Sub(1⃗[0,
ns
2 −1], ccmp), 0.5), c1)

14: cout ← Add(c0>1, c1>0)
15: return FindMax(cout, ns/2)
16: end procedure

for each combination of values in Xi and Y , as well as
counting the occurrences of each category value in Y from
the dataset. This allows for straightforward computation of
Pr[Xi = j|Y = k] and Pr[Y = k], where (i, j, k) ∈
SXniY . These computations collectively form the model for a
Naive Bayes classifier. Fig. 3 provides a detailed description
of the proposed PPNB training algorithm. In Step 1-(1),
cnti, j, k[0] stores the count of rows where Xi = j and
Y = k . Step 2 updates cntYk [0] with the count of rows where
Y = k . In Step 7, the inverse of this count is computed. These
counts are then multiplied in Step 8 to derive the conditional
probability Pr[Xi = j|Y = k]. Steps 9 to 11 outline
the process for computing the logarithmic values of these
probabilities.

Algorithm 5 CopySlot Algorithm
1: procedure CopySlot([[input]], i, j)
2: c1 ← Rot(Mult([[input]], 1⃗(i)), i)
3: ind ← j− 1, cp ← 0
4: while ind > 0 do
5: c1 ← Copy2PSlot(c1, cp, ⌊log2(ind)⌋)
6: cp← cp+ 2⌊log2(ind)⌋

7: ind ← ind − 2⌊log2(ind)⌋

8: end while
9: return c1
10: end procedure

Algorithm 6 Copy2PSlot Algorithm
1: procedure Copy2PSlot([[input]], i, n)
2: c1 ← Rot(Mult([[input]], 1⃗(i)),−1)
3: for j = 1 to n do
4: c1 ← Add(Rot(c1,−2j−1), c1)
5: end for
6: cret ← Add(Mult(c, 1⃗[0,i−1]), c1)
7: return cret
8: end procedure

FIGURE 3. The proposed PPNB training algorithm.

In the training protocol, it is assumed that the CS has
received the encrypted BMVs for all values across all
variables. To compute the conditional probability Pr[Xi =
j|Y = k], we incorporate α as the Laplace smoothing factor
in both the numerator and ni × α in the denominator. This
approach is necessary to address cases where the numerator
is zero and to ensure that the probability does not exceed
one even with the addition of α in the numerator. We set
α = 0.01. Detailed steps of the training procedure are

110768 VOLUME 12, 2024

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

FIGURE 4. The proposed PPNB inference algorithm.

depicted in the ‘Training’ figure above. In Step 9, the value
from one slot is duplicated into t + 2 consecutive slots for
use with the proposed ApproxLog(). In Step 11, the result of
the logarithmic operation is moved back to the original slot
position from where the input value was taken before Step 9.

D. INFERENCE
The proposed PPNB inference algorithm is detailed in Fig. 4.
To illustrate the inference process clearly, we provide an
execution example in Fig. 5, assuming the existence of three
variables: X0,X1,Y . Each variable has 2, 3, and 2 categories,
respectively. Initially, as depicted in Fig. 5, the CS possesses
the model obtained from the training process, represented as
c(model)i .
The algorithm does not specify how the result is delivered

to the user requested for inference. Depending on if KM is
trusted or semi-honest, the methods become different. Please
refer to Section VIII-B and VIII-C for each case.

First, the input data required for inference is encrypted and
sent to the CS after pre-processing. The pre-processing steps
are illustrated in the fourth line of Fig. 5. For example, if the
input values are X0 = 1 and X1 = 2, each value is one-hot
encoded, resulting in h⃗x0 = (1, 0) and h⃗x1 = (0, 1, 0). These
are combined into a vector h⃗(x0, x1) = 1||hx0||hx1 , forming
the final input ⃗inp = (h⃗(x0, x1))yt . This vector ⃗inp is then

FIGURE 5. Inference example.

encrypted, and the ciphertext [[inp]] is sent to CS. In the fourth
line of Fig. 5, the blue section represents h⃗x0, and the yellow
section represents h⃗x1 .

After receiving [[inp]], CS multiplies it with cmodel(i) and
performs the SumGroup() operation on the result, producing
a ciphertext that contains A1 and A2, as shown in Step 2) of
Fig. 5. Here, A1 = loge(Pr[Y = 1] × Pr[X0 = 1|Y =
1] × Pr[X1 = 2|Y = 1]) and A2 = loge(Pr[Y =

2] × Pr[X0 = 1|Y = 2] × Pr[X1 = 2|Y = 2]). In the
final step, the FindMaxPos() function determines which of
A1 or A2 is larger, placing a one in that position and zero
in the other. The final result is then sent to the KM, which
converts the ciphertext into a form that can be decrypted by
the client and delivers it to the user. Note that if yt is two,
the ApproxSign() function suffices to identify the largest
value’s position. However, for yt > 2, the more complex
FindMaxPos() function is required.

VI. EXPERIMENTAL RESULTS
This section presents the experimental results of the proposed
NB algorithms on various data sets. The experiment envi-
ronment comprised an AMD RYZEN 5950X CPU, NVIDIA
Quadro RTX A6000 48GB GPU, and 128GB RAM using
ubuntu 20.04LTS. We performed timing measurements for
operations, algorithms, and protocols across 30 trials.

A. CKKS AND SUBROUTINES
Table 3 presents performance metrics for CKKS unit
operations and subroutines. Boot operations require only
152ms thanks to GPU acceleration [20]. Approximately 2s
are consumed by ApproxSign(), used in both ApproxLog()
and other subroutines. The relative error of ApproxInv()
measures 9.052E − 04± 3.13E − 06%. Errors for other unit
operations are under 1E − 06%.
We measured ApproxLog() averaging 2525±1.14ms.

Accuracy of ApproxLog() was assessed by comparing results
to traditional logarithm computations on plaintexts derived
from decrypted ciphertexts. Both approaches show non-zero
relative errors due to encryption noise.

Figure 6-(A) shows results for inputs at 2−t , with t
from 1 to 20. It indicates minimal relative error differences
between our method and ‘decrypt-then-log’ for inputs ≤
2−14, confirming robust performance near zero. Figure 6-(B)
depicts relative errors for logarithm calculations across

VOLUME 12, 2024 110769

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

TABLE 3. Average Time (ms) of CKKS operations and subroutines.

FIGURE 6. Accuracy of the proposed ApproxLog() comparing to
‘decrypt-then-log’ case.

intervals 0.001 to 0.999. Although about ten times larger than
‘decrypt-then-log’, errors remain < 0.01%, supporting high
accuracy except near 1.0.

B. PERFORMANCE OF THE PROPOSED PPNB
ALGORITHMS
In our experiments, we employed the following datasets:
Acute Inflammation IUB (D1) and NRPO (D2) [31], Breast
Cancer (D3) [18], and Car Evaluation (D4) [32]. D1 and
D2 each contain six independent variables with categories
consisting of 72, 2, 2, 2, 2, and 2, respectively. D3 includes
nine independent variables, each with 10 categories, while
D4 comprises six independent variables with categories
numbered 4, 4, 5, 5, 3, and 3. The target variables in D1,
D2, and D3 have two categories each, whereas D4 has four
categories. All datasets have undergone preprocessing to
convert each category into positive integers. The dataset sizes
are 120 instances for D1 and D2, 699 instances for D3, and
1728 instances for D4.

Table 4 presents an analysis of the communication costs
associated with our proposed protocol. During inference,
if ⌈yt (N + 1)⌉ ≪ M , multiple input data for inference
can be encapsulated within a single ciphertext, facilitating
parallel inference on multiple inputs. Moreover, given that
yt ≪ M typically, multiple inference results can often be
accommodatedwithin a single ciphertext. Regarding training,
we observe that the amount of data transmitted to the
CS scales with the number of rows in the dataset (ldata).
Additionally, the sum of categories for variables (N+yt) also
influences the communication costs.

1) ACCURACY ANALYSIS
Table 5 presents a comparison of accuracy between the
proposed PPNB method and alternative approaches. Our
method demonstrates superior performance compared to
others, particularly evident in D3. For D4, the accu-
racy achieved by our method closely approaches that of
scikit-learn.

TABLE 4. Communication cost.

TABLE 5. Accuracy (scikit:scikit-learn).

TABLE 6. Average time for training and inference.

FIGURE 7. Training and inference time ratio.

2) EXECUTION TIME ANALYSIS
Table 6 displays the elapsed times for training and inference
across datasets D1 to D4. During inference, D3 requires the
most time due to its larger N compared to the other datasets,
despite all datasets having sizes smaller thanM . On the other
hand, D4 performs the least effectively during inference due
to the intensive use of FindMaxPos() with yt set to four.
Figure 7-(A) illustrates the distribution of execution times for
training steps. Key operations such as calculating the distri-
butions of joint variables Xi and Y (Steps 1 to 3), performing
the inversion (Step 7), and executing ApproxLog() (Step 10)
collectively account for about 70.1% to 75.5% of the overall
execution time. The remaining time is spent on placing the
computed values into their designated slots. Figure 7-(B)
illustrates the distribution of execution time for each step
during the inference phase, with Step 4 (FindMaxPos())
taking up the majority of the time. However, removing this
step is not feasible as it relates to concealing conditional
probabilities essential for maintaining model privacy.

3) SOURCE CODE
The source code working on top of the HEAANSDK running
on CPU is available. The HEAAN library can be obtained
from https://heaan.it. Please visit https://gitlab.com/islab-
seoultech/homomorphic-encryption-ml/naive-bayes-classifier

110770 VOLUME 12, 2024

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

to access the code. We are not allowed to release the GPU
implementation version of the proposed method because the
GPU version of HEAAN library is proprietary to CryptoLab.

VII. COMPUTATION COMPLEXITY ANALYSIS OF THE
PROPOSED METHOD AND [17]
This section presents a complexity analysis comparing the
proposed method with the approach described in [17],
highlighting the performance improvements of the proposed
method in terms of computational complexity.

A. ANALYSIS OF THE PROPOSED METHOD
Table 7 presents a detailed analysis of the computational
complexity associated with the proposed PPNB training and
inference protocols, along with the relevant algorithms. The
final column specifies the multiplication depth used.

During training, Mult and Rot operations are performed in
proportion toNtot , which is

∑
i∈X ni×yt , typically a very large

value. In contrast, inference and other algorithms require
Mult or Rot operations proportional to Ntot/M . BecauseM is
generally large in conventional settings, this difference leads
to varying performance between training and other protocols
and algorithms.

Moreover, the FindMaxPos() algorithm employs (log2yt+
1)ApproxSign() to determine the computation needed for
the FindMax() function, which significantly impacts perfor-
mance when yt exceeds 2.
The exact computational demands and multiplication

depth for ApproxSign() and ApproxInv() are undisclosed.
However, based on existing literature [19], [24], it can be
inferred that these methods likely use polynomials of high
degrees. Consequently, the depth required is approximately
the logarithm of the polynomial’s degree, and the number of
multiplications is estimated to be in the tens.

To sum up, the disparity in operations between training
and other processes, especially due to the high Ntot value
and the polynomial approximations in ApproxSign() and
ApproxInv(), leads to notable performance variations.

B. COMPLEXITY ANALYSIS OF [17]
Based on the analysis from Table 8, we have conducted a
detailed assessment of the homomorphic encryption (HE)
operations required for training and inference in the method
proposed by [17]. To ensure a fair comparison, we assume
a single target variable (β = 1 in [17]) and yt = 2.
The outcomes of this evaluation are documented in Table 9
(training) and Table 10 (inference).

Upon reviewing the training phase, it becomes apparent
that the method proposed in [17] necessitates a significantly
deeper level of multiplicative operations compared to our
proposed approach, as delineated in Table 7 and Table 9.
In our method, the multiplicative depth remains constant
because operations like ApproxInv() and ApproxLog() are
independent of variables such as dataset size and the number
of variables. Conversely, the training depth in [17] scales
as O(ldata · nmax), indicating potential extensive use of

TABLE 7. Computation complexity analysis (nctxt := ⌈ldata/M⌉, d(A):
required multiplicative depth to run algorithm A, cMult: Mult where the
multiplier is not a ciphertext.).

bootstrapping operations proportional to dataset size and the
number of independent variable categories.

Regarding Mult and cMult, comparing the required
quantities, our proposed method requires O(Ntot · nctxt) =
O(dnmax ldata/M), whereas [17] needs O(ldata(nmaxd + µ2)).
Our method benefits from the factor 1/M , as it fully utilizes
SIMD. Additionally, since [17] stores only one bit value per
ciphertext slot, it requiresµ slots to represent a single integer,
resulting in an additionalO(ldataµ2) computation. In contrast,
our method can store one number per slot, eliminating this
additional computation.

It’s important to note that, as mentioned in [17], the process
of calculating probabilities and conditional probabilities
using the distribution of each variable value is performed
after decryption. Therefore, no homomorphic operations are
needed for this process in [17]. Conversely, our method
performs this process in an encrypted state and addition-
ally performs the log calculation homomorphically with
encrypted probability values. Hence, Table 7 includes the
necessary HE operations for these processes. In conclusion,
our method achieves more functions in an encrypted state
with significantly fewer computations compared to [17]
during training.

The inference performance of our proposed method
significantly outperforms that of [17], primarily due to the

VOLUME 12, 2024 110771

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

TABLE 8. Computation complexity analysis of the various basic operations in [17] (µ: bit precision of a plaintext value).

TABLE 9. Computation complexity analysis of training (Max: max
function, nmax = Max(n0, · · · , nd−1)) in [17].

lower multiplicative depth. In [17], the multiplicative depth
is O(nmaxµ), which can reach several thousand when µ is 40,
as in our method. This necessitates numerous bootstrapping
operations, greatly increasing inference time. Conversely,
in our method, if yt is set to 2 as in [17], the FindMaxPos()
operation at the end of the inference can be replaced by a
single multiplication, resulting in a multiplicative depth of 3.
This allows inference to be performed without bootstrapping.

In terms of the number of multiplication operations, our
method requires Ntot/M + 1(≤ dnmax/M + 1), whereas [17]
needsO(nmax ·µ2). If d (the number of independent variables)
is small, our method benefits from the 1/M factor, requiring
fewer operations. However, if d is very large such that d/M
exceeds µ2, our method may require more computation.
Fortunately, since our method uses M = 32768, it remains
more efficient unless the number of independent variables is
exceptionally large, in the hundreds of thousands.

In summary, our method offers significant improvements
in inference performance due to its lower multiplicative depth
and more efficient computation, making it superior to [17]
under typical conditions.

VIII. DISCUSSION AND EXTENSION
A. NOISE ANALYSIS OF THE PROPOSED HOMOMORPHIC
LOGARITHM ALGORITHM
In this subsection, we examine the noise generated by the
ApproxLog() algorithm, which is a key factor influencing
the accuracy of the algorithm’s results. The aim is to validate
the correctness of the algorithm’s outcomes. The noise in
ApproxLog() originates from two primary sources. Firstly,
there is noise resulting from the homomorphic operations.
Secondly, there is the approximation error that arises from

TABLE 10. Computation complexity analysis of inference in [17].

ApproxLog() using a polynomial function to approximate
the logarithmic operation. Our analysis begins with an
exploration of the noise stemming from homomorphic
operations. Following this, we evaluate the overall error
by integrating the approximation error with the error from
homomorphic operations.

1) THE ANALYSIS OF THE NOISE BY HOMOMORPHIC
OPERATIONS WITHOUT CONSIDERING BOOTSTRAPPING
According to [33], if the noise generated by decrypting the
ciphertext c1 is called ϵ1 and c2 is called ϵ2, the noise
generated by each operation is described as follows.
• Mult(c1, c2) → ϵ1m2 + ϵ2m1 + ϵrs ≤ ϵ1 + ϵ2 + ϵrs
(∵ m1,m2 ≤ 1)

• Add(c1, c2) (or Sub(c1, c2))→ ϵ1 + ϵ2
• Rot(c1, r)→ ϵ1 + ϵks
• Boot(c1)→ ϵ1 + ϵboot

where m1 and m2 are the plaintext used to create c1 and
c2 by encryption, respectively. Since we suppose the plaintext
values are probabilities,m1,m2 ∈ [0, 1]. ϵrs is the noise by the
rescaling operation and ϵks is the noise by key-switching.
Fig. 8-(A), (B), and (C) show the circuits of the proposed

ApproxLog(), HermesLog(), and SumGroup() function,
respectively. We suppose ‘Square’ operation is the same as
Mult where two identical ciphertexts are provided as inputs.
Also, ’Inverse’ refers to the ApproxInverse() algorithm. The
noise from this function is described as ϵinv. Note that in
Fig. 8-(C), the circuits in the area identified by the blue
solid line is repeated ⌈log2gs⌉ times. Then, the result [[ret]]
is obtained.

We calculate the error introduced by each circuit in Fig. 8-
(A), (B), and (C) based on the noise of each operation
presented above.

110772 VOLUME 12, 2024

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

Let x be the noise in the input [[input]] of each algorithm.
If we exclude the noise added by bootstrapping, the noise
ϵHM (x) from circuit (B) (HermesLog()), which is a function
of x, can be calculated as 47x+22ϵinv+46ϵrs. We can also
compute that the noise ϵSumGroup(x) generated by circuit (C)
(SumGroup) is 2⌈log2gs⌉(x)+(2⌈log2gs⌉ − 1)(2ϵrs+ϵks). This
is a result of considering that the area surrounded by the blue
line in (C) is repeated by ⌈log2gs⌉ times.
The noise of the proposed ApproxLog() (ϵHL(x)), can be

calculated based on ϵHM (x) and ϵSumGroup(x), where x is the
noise of [[input]] of the corresponding circuit. We can see that
if we can evaluate ϵSumGroup(x) with the correct input that is
mapped to the noise of the input of the SumGroup circuit
and calculate the noise added during performing SumGroup
in (A), we can finally calculate the ϵHL (ϵinp), where ϵinp is
the noise of [[input]] in (A).
From the circuit description of (A), we can calculate the

noise of the input for the HM circuit in Fig. 8-(A) (βHM) as
4ϵinp+2ϵks+4ϵrs.

However, to calculate the noise of the input of the HM
circuit precisely, we need to add the noise caused by
bootstrapping. This will be addressed in the next part.

The noise of the input of SumGroup (βSumGroup) in (A)
is 8ϵinp+4ϵks+8rs + ϵHM (βHM). This also does not take the
noise by bootstrapping into account. We consider the noise
by bootstrapping in the next part.

2) THE ANALYSIS OF THE NOISE BY BOOTSTRAPPING
The bootstrapping algorithm is composed of a specific,
unvarying quantity of homomorphic operations. As a result,
the noise generated by the bootstrapping process can be
characterized as a constant, denoted as ϵboot. This noise
encompasses two main components: firstly, the noise arising
from the homomorphic operations themselves, and secondly,
the approximation error that is inherent to the CKKS-
bootstrapping operation. This approximation error is due
to the process of approximating the plaintext value in the
input ciphertext of the bootstrapping algorithm, and then
incorporating this approximated plaintext into the output
ciphertext.

We model where the bootstrapping operation takes place
in a circuit with a binary variable. If a multiplication or a
squaring operation needs to be evaluated in a circuit but
it is difficult to proceed without bootstrapping, we assume
the bootstrapping operation is inevitably performed. In this
case, the noise caused by bootstrapping is also added in the
input of the multiplication or square, thus the noise of the
result of the operation is also affected. In Fig. 8-(A)∼(C),
each multiplication or squaring operation is numbered with
a parenthesized number. Note that bootstrapping can occur
before any of these operations. However, once bootstrapping
occurs, it will not occur again until all availablemultiplication
depth is consumed. To reflect this situation, we define a
binary variable b(i)(∈ {0, 1}) where i ∈ [1, 19] as a value
set to 1 if bootstrapping occurs before the operation denoted

FIGURE 8. Circuit description of the proposed ApproxLog(), HermesLog(),
and SumGroup() algorithm.

by (i), and to 0 if it does not. We then can denote the noise
generated with respect to bootstrapping before the operation
(i) as b(i)ϵboot.With this, we can compute the noise introduced
by bootstrapping in the circuits (A), (B), and (C) in the
Fig. 8. Note that in (C), operations (18) and (19) are repeated
⌈log2gs⌉ times, so we use b(18),j to represent if bootstrapping
occurs in the j-th iteration before the circuit (18). Note that
b(19),j = b(18),j as they share the same input.
The final aspect to examine is the analysis of the error

induced by the ’Inverse’ operation in circuit (B), specifically
related to bootstrapping. The Inverse operation is significant
because it utilizes multiple multiplicative depths internally.
Understanding the exact number of multiplicative depths
consumed before bootstrapping becomes necessary is crucial
for accurate analysis. To address this, we define the noise
value associated with the Inverse operation as ρinv,k , where
k represents the number of multiplication depths completed
prior to the occurrence of bootstrapping. This definition
allows for a precise quantification of the noise generated as
a result of bootstrapping at various stages of the Inverse
operation’s execution within circuit (B).

Based on the definitions so far, the noise due to boot-
strapping for each circuit can be calculated as follows. First,
we calculate the noise (ρSumGroup) generated by circuit (C).
To do this, we need to check the level of the ciphertext to
see if the multiplications (18) and (19) are possible before
the rotation operation. We can denote it as b(18),i whether
bootstrapping is required at that position at the ith iteration,
so we have ρSumGroup = 6

⌈log2gs⌉
i=1 2⌈log2gs⌉+1−i∗b((18),i)ϵboot.

We calculate the noise ρHM caused by bootstrapping on
Hermes_Log. From the circuit (B), it can be seen that the
result of the operation in (8) is used in many different places.
Therefore, we can denote as b(9) whether bootstrapping is
necessary for further operations after (8). From the structure
of the circuit, b(9) = b(12). Also, since operations (13)
and (15) require the same inputs, we can use b(9) to
denote whether a bootstrapping is required. Taking these into
account, we can derive that ρHM = 48b(6)ϵboot+ 22(ρinv,k +

b(7)ϵboot)+ (5b(8) + 4b(9) +61
i=105(b(i))+ 2 ∗ b(17))ϵboot.

VOLUME 12, 2024 110773

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

FIGURE 9. System Model if KM is a trusted party.

Finally, we compute the noise due to bootstrapping
that occurs within the proposed homomorphic logarithmic
algorithm. Our interest is the amount of the noise (γHM)
added to the input of the HM circuit and that (γSumGroup) to
the input of the SumGroup() in (A), respectively, as they are
needed to calculate the noise of the proposed ApproxLog().
It can be seen that γHM = 2(b(1) + b(2)) + b(3) if we
carefully analyze (A). Note that, since the operation (2)
is a squaring, the noise is doubled. Finally, we calculate
γSumGroup. Because the operations (3), (4), and (5) have
the same input as one of their operands, the noise due
to bootstrapping caused by that input can be denoted as
b(3)ϵboot. Then, we can derive γSumGroup = ρHM + (4(b(1)+
b(2))+ 2b(3))ϵboot.

3) ANALYSIS RESULT
The final noise calculation, which combines the contents of
the two subsections above, is as follows: From the circuit
(A), we can derive ϵHL(ϵinp) = ϵSumGroup(βSumGroup +

γSumGroup) + ρSumGroup. The previous part showed that
βSumGroup = 8ϵinp + 4ϵks + 8ϵrs + ϵHM (βHM +
γHM), γSumGroup = ρHM + (4(b(1) + b(2) + 2b(3))ϵboot,
βHM = 4ϵinp + 2ϵks + 4ϵrs and finally ρSumGroup =

6
⌈log2gs⌉
i=1 2⌈log2gs⌉+1−i ∗ b(18),i. Using them, we can compute

that ϵHL(ϵinp) = 2⌈log2gs⌉(196ϵinp+97ϵks+244ϵrs+22ϵinv+
(98b(1) + 98b(2) + 49b(3) + 48b(6) + 22(finv,k + b(7)) +
5b(8) + 4b(7) + 61

i=105b(i) + 2b(17))ϵboot) − 2ϵrs − 2ϵks +
6
⌈log2gs⌉
i=1 (2(⌈log2gs⌉+1−i)b(18),iϵboot .
Through experimentation, we have found that ϵinp ∼

10−9, ϵrs ∼ 10−8, ϵks ∼ 10−7, ϵboot ∼ 3 × 10−8, ϵinv +
ρinv,k ∼ 2.5 ∗ 10−7, and as a result, the magnitude of the
noise generated by the analysis can be found to be around
10−4 considering Pr[b(i) = 1] = 1/9 for i ∈ [1, 19], as
1 bootstrapping is required for every 9 multiplicative depth
consumption. This is larger than the actual size of the noise.
The reason for this is the inequality in the calculation of
multiplicative noise. If the size of the actual plaintext is less
than 1, the magnitude of the noise generated bymultiplication
will be smaller than the value used in our calculation.

The error we have not considered is the approximation
error. The proposed method approximates the logarithmic

function as a polynomial function using the Hermes method.
This error should also be considered. [30] shows that the
maximum error is about 2−58, which is less than 10−16. This
results in a very small error compared to the error produced
by homomorphic operations.
Theorem 1: The noise of the output of the proposed

logarithm algorithm is at most 10−4 on the parameter used
in the paper.

Proof: The theorem is concluded from the previous
analysis, with its inequality rooted in the presumed inequality
of noise generated by Mult.

B. AN INSTANCE OF SYSTEM MODEL WHEN KM IS A
TRUSTED PARTY
We introduce a plausible instance of the system model where
the proposed PPNB can be utilized, which was suggested
in [26]. There are three protocols: key distribution, training
and inference. Initially, in the key distribution protocol, users
generate public key/private key pairs and sent the public
keys to the key manager (KM) which is a trusted party. KM
generates a public key/private key pair and evaluation keys.
KM’s public key is distributed to all the other players, and the
evaluation keys are delivered to the cloud server (CS).

In the training protocol, the users, who act as data owners
in Fig. 1, deliver the encrypted data with some parameters
such as the variable names, the number of categories in each
variable, and the size of data, to CS. The data is encrypted
by the system public key. CS performs training with the
received ciphertexts and the parameters. The training is solely
performed by CS, without the help of the other players.
Therefore,CS can calculate themodel which is the encryption
of the logarithm of probabilities and conditional probabilities
of variables in the data. This is depicted in Fig. 1-a).
The inference process is as follows. A user (ui), who also

act as a client, first creates a query that is an encrypted
vector of the input variables, then delivers the query to CS
along with her ID, CS performs the inference and sends the
result to KM. KM decrypts the received ciphertext using sks
then re-encrypt the result using the user’s public key after
checking if the inference result violates the privacy policy.
The re-encrypted inference result is sent to the user. In the
case of a secure outsourcing scenario, the system public key
is eventually the public key of the Data Owner, so decryption
is possible because the Data Owner, which is equal to Client
in the setting, has a corresponding private key. This process
is depicted in Fig. 9.

Please be aware that this system model assumes the data
owners and the clients are the same set of entities. For
example, a small number of companies want to share their
data to create models with which each company can perform
the desired inference through CS, and the companies perform
inference on their desired inputs through CS to receive the
inference results. Because multiple companies’ data are used
to generate models, an individual company cannot access the
generated models thus can only perform inferences with them

110774 VOLUME 12, 2024

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

throughCS. In this scenario, the companies can act as both the
data owner and the client running inferences.

Another thing we would like to mention in this model
is the role of KM. As mentioned in [26], it could be a
legal requirement in certain countries that the inference
results must be verified if the inference results contain any
privacy-sensitive information related to the people who are
related to the training data. This verification must be done
by a trusted government agency. In a privacy preserving
service utilizing homomorphic encryption, one of the ways to
satisfy this legal requirement is for a trusted entity to decrypt
the inference result, verify its contents, and deliver it to the
client who requested inference. Therefore, in this case, it is
inevitable that a third party entity such as KM decrypts the
inference result.

C. THE INFERENCE PROTOCOL WHEN KM IS
SEMI-HONEST
We discuss the inference protocol if KM is semi-honest.
We remind the inference protocol when KM is a trusted third
party, as depicted in Fig. 10-(A) in the previous section. In the
protocol, the client encrypts her input with the system public
key and sends it to CS with his ID. Then, CS performs
the inference protocol described in Fig. 10-(A) (details given
in Fig. 4 of Section V-D) and sends the result to KM with
the client’s ID (IDu). KM decrypts the result to obtain the
classification result (⃗ret), re-encrypts it with the client’s
public key, and sends it to the client. The client decrypts the
result to obtain the classification result.

Assuming KM is semi-honest, we can design an inference
protocol as shown in Fig. 10-(B). The difference from (A)
is that CS encrypts an element r⃗ selected from a uniform
distribution in the plaintext space (Z21 [X]/(XN + 1)) with
the system public key, add it to the ciphertext of the
inference result then sends the addition result to KM, and
simultaneously encrypts r⃗ with the client’s public key and
sends it to the client. KM receives the ciphertext that contains
the inference result plus r⃗ . It decrypts the ciphertext and
re-encrypts the decryption result with the client’s public key.
Finally, it sends the re-encrypted ciphertext to the client. The
client decrypts all the received ciphertexts and subtracts the
decryption result received from the KM from that received
from the CS. The result of the subtraction is the final
inference result.

1) SECURITY ANALYSIS
We discuss the privacy of the proposed inference protocol of
semi-honest setting. We show that in the protocol in Fig. 10-
(B), it should be difficult for KM to obtain any information
about the classification results and the model used from the
information it receives. To this end, we define the following
experiment in Alg. 7, where Adv refers to an adversary.
In the experiment, TrainingOracle is defined in Alg. 8 as

an oracle that generates the model that is the result of the
training, to be ready to execute InferenceOracle, which is
defined in Alg. 9. To execute TrainingOracle, Adv provides

it with the training data needed to generate the model.
TrainingOracle runs the training algorithm and returns the
generated model. Later, Adv can call InferenceOracle to
obtain information given to KM when the proposed inference
protocol runs. The goal of the experiment is to check if Adv
can distinguish whether InferenceOracle operates in the
World-0 setting or in the World-1 setting, given in Fig. 10.
Adv runs its algorithm arbitrarily and returns his guess as b′.
The final part of the experiment is to compare it to the actual
value of b and return 1 if the guess is correct and 0 otherwise.

Algorithm 7 Experiment: Exp(1k , HE)
1:procedureExp(1k , HE)
2: sk, pk, evk ← HE.KeyGen(1k)
3: state, {c(model)i }i∈[0,⌊Ntot/M⌋] ← AdvTrainingOracle(·,pk,evk)

4: b←$
{0, 1}

5: b′ ← AdvInferenceOraclesk (·,state,{c(model)i }i∈[0,⌊Ntot /M⌋],pk,evk)

6: return 1 if b = b′ else 0

Based on the experiment, we define the privacy of the
proposed inference protocol with semi-honestKM as follows.
Definition 1: (KM-privacy) We say that an inference

protocol supports KM-privacy if Pr[Exp(1k , HE) → 1] <

1/2 + ϵ (where ϵ is negligible over security parameter k)
when performing the experiment of Alg. 7, i.e., KM cannot
computationally distinguish between model information and
random information using the information it has obtained.

The above definition can be justified by the difference
between the World-0 and World-1 in Fig. 10. In World-1,
KM acquires information that is completely unrelated to the
model and inference inputs. The indistinguishability between
World-0 andWorld-1 by the adversary means that KM cannot
extract any meaningful information from what it obtains even
it runs the real inference protocol in World-0.

Algorithm 8 TrainingOracle(data, pk, evk)
1: procedure: TrainingOracledata, pk, evk
2: Preprocess data to make BMVs and encrypt them with pk .
3: Run the training protocol with the encrypted input in
the previous step and pk, evk .
4: Obtain {c(model)i }i∈[0,⌊Ntot/M⌋] as an output of the training
protocol.
5: Set state to any information needed to run the inference pro-
tocol.
6: return state, {c(model)i }i∈[0,⌊Ntot/M⌋]

Based on these definitions, we prove the following
theorem.
Theorem 2: The inference protocol for the semi-honest

KM described in Fig. 10-(B) satisfies KM-privacy.
Proof: In Fig. 10, the only difference between World-0

(B) andWorld-1 (C) is Step 3⃝-4), i.e., whether the ciphertext
c′ret delivered to the KM is simply the ciphertext of a random
vector or a random vector plus the inference result. Therefore,
in bothworlds, the result obtained byKM from decrypting c′ret
is eventually a uniformly randomly selected value from the
possible plaintext space, and the probability of the decryption

VOLUME 12, 2024 110775

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

FIGURE 10. The original protocol and the World-0 and World-1 settings for the security proof of the inference
protocol in the semi-honest setting (Inferencepks,evks (cinp(w), cmodel (w)) refers to the inference algorithm
performed by CS. cinp(w) contains the values of the independent variables as an input for inference and

cmodel (w) is the set of ciphertexts that contain the model as a result of training. IDu is the ID of the user.
−→
ret is

the inference result.)

result being a particular value is the same in both worlds.
Therefore, it is statistically indistinguishable to tell whether
KM is in World-0 or World-1 based on the −→out value alone.
However, if the ciphertext c′r⃗ in Step 7⃝-2) is decrypted,

the attacker can distinguish his world, so the adversary is
computationally indistinguishable.

More detailed description on the inference protocol with
semi-honest KM is provided in Fig. 11.

IX. RELATED WORK
A. PRIVACY PRESERVING NAIVE BAYES ALGORITHMS
Initial research into Privacy-Preserving Naive Bayes (PPNB)
algorithms, commencing in the early 2000s, was geared
towards developing models that utilize user data for training
while ensuring the privacy of each participant’s data remains
intact. This research, referenced in various studies [34], [35],
[36], [45], [46], [47], [48], has continued up to the recent past.
The primary outcome of this research is a trained model

that either gets shared with all participants or is stored on a

central server in an unencrypted (clear-text) format. However,
a notable limitation of this early-stage research is its lack of
consideration for access control measures for the resulting
model. This oversight means that the model cannot be exclu-
sively distributed to entities outside the circle of participants
who contributed to its creation. Furthermore, it does not allow
for classification tasks to be conducted without revealing the
model to those participants involved in its development. Such
limitations highlight the need for further advancements in
PPNB research, particularly in enhancing the privacy and
control aspects of the generated models.

The second category PPNB methods involves introducing
a certain level of perturbation to both data and models. This
approach, designed to obscure the original data and model
details used in training and classification, is documented in
various studies [49], [50], [51], [52]. The primary goal of
these methods is to achieve differential privacy.

However, as highlighted in [35], a significant drawback
of this approach is its reduced classification performance
compared to scenarios where data and model perturbation

110776 VOLUME 12, 2024

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

Algorithm 9 InferenceOraclesk,b(
−→
inp = (x0, · · · , xd−1), state, {cmodel(i)}i∈[0,⌊Ntot/M⌋])

1:procedure:InferenceOraclesk (
−→
inp, state, {c(model)i }i∈[0,⌊Ntot/M⌋], pk, evk)

2: Setup the players User(Client), KM, and CS with state, {c(model)i }i∈[0,⌊Ntot/M⌋], pk , and evk .
3:

−→
inp is given to User.

4: Run the inference protocol with World-b setting. (See Fig. 2)
5: Extract what KM obtains while running the inference protocol, which is cuℓ

and −→out .
6: return cuℓ

and −→out

TABLE 11. Summary of related work.

are not applied. Consequently, in situations where main-
taining high classification accuracy is critical, this method
proves to be less suitable. The trade-off between privacy
protection and classification efficiency poses a notable chal-
lenge in the application of these perturbation-based PPNB
methods.

To address previously identified issues, we propose a
centralized training and classification method using HE to
protect model privacy and ensure classification accuracy.
The process involves users encrypting data with the system’s
public key and sending it to the server, which lacks the private
key but has evaluation keys. The server computes the model
using these encrypted inputs. For classification, it receives
encrypted data, processes it, and sends the encrypted result
back to the user, who decrypts it with their private key.

This method maintains privacy for both the user’s input
and the models, with all operations centralized on the
server, minimizing communication needs and data exposure
risks. The server’s processing of encrypted data reduces
the likelihood of data breaches, even if compromised or
malicious. Furthermore, classification is executed without
decrypting input data, ensuring only the requesting user can
access the result, thus preserving privacy.

However, this approach has not been widely adopted due to
technical challenges. Key among these are the complexities in
performing certain arithmetic operations homomorphically,
such as division for probability calculations and logarithmic
operations in Naive Bayes algorithms. Additionally, the
argmax operation, essential for identifying the highest value
position in encrypted data during classification, presents
another significant challenge. These factors have previously
impeded the broader implementation of this method.

To circumvent these challenges, many studies have intro-
duced a separate trusted entity responsible for managing
the decryption key. Research like [12] and [13] involves
decrypting encrypted values for argmax comparison. In [17],
probability calculations involving division are performed
post-decryption. Other studies, for instance, [53], [54],

operate on the assumption that probability distributions
follow a normal distribution. Only a handful of methods, such
as [27] and [38], execute the argmax operation on encrypted
inputs, but these are either computationally intensive [27] or
compromise security for efficiency [38].
Several methods employ additive Homomorphic Encryp-

tion [55] as opposed to Fully Homomorphic Encryption [13],
[14]. These methods require data decryption for operations
above, constrained by the addition-only support of the
underlying HE. Additionally, the security of these HE
methods [55] is known to be vulnerable to quantum computer
attacks.

Another approach to maintain efficiency uses an HE that
only secures against ciphertext-only attacks [44]. However,
this level of security is generally considered inadequate for
practical applications.

In a different vein, some studies use multiple cloud
servers for enhanced security [36], [37], [45], [56]. This
assumes each server is in a distinct security domain with
no possibility of malicious collaboration between servers.
Each server handles a fraction of the computation during
training and inference, keeping the complete model and
results undisclosed, thus preserving privacy. Nevertheless,
this approach falls short of meeting the requirement 4)
outlined in Section III-B.

Lastly, certain studies focus exclusively on inference, such
as [27], [57], and [58], but are not suitable for training
purposes.

Table 11 provides a summary of these previous works in
relation to the requirements in Section III-B. Unfortunately,
no existing method satisfies all these requirements.

B. HOMOMORPHIC LOGARITHM
To date, there appears to be no algorithm capable of comput-
ing even an approximate logarithm over encrypted inputs in
the range (0,1] using HE. For instance, in [13], logarithmic
values for PPNB inference are calculated in an unencrypted
form before encryption, thereby not computing logarithms

VOLUME 12, 2024 110777

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

FIGURE 11. Inference protocol with semi-honest KM.

on encrypted data. Similarly, [59] proposes a method for
calculating logarithmic values in a secret sharing-based
Multi-Party Computation (MPC) setting, which, as noted
in [5], is not applicable to systems utilizing HE.

Among PPNB methodologies that employ HE, the
approach by Kjamilji et al. [16] is the closest to an ideal
scenario. This method utilizes the BFV HE scheme [60], [61]
and facilitates both training and classification on encrypted
data. However, due to the computational intensity of loga-
rithmic and division operations with BFV ciphertexts, this
method also resorts to using a decryption key during training.
Furthermore, to our knowledge, there is no established
method for performing homomorphic logarithm operations
directly on BFV ciphertexts, highlighting a significant gap
in the current capabilities of HE in PPNB.

X. CONCLUSION
This paper presents a novel method for training and
classifying data using the Privacy-Preserving Naive Bayes
(PPNB) algorithm, integrated with the Cheon-Kim-Kim-
Song (CKKS) homomorphic encryption (HE) algorithm.
Our approach facilitates non-interactive training and clas-
sification by introducing an efficient way to compute a
homomorphic logarithm function. This innovation allows for
significantly faster NB training and classification processes,
achieving speeds arounds 28 times faster than those reported

in [17]. Through computational complexity analysis, the
efficiency and effectiveness of our proposed method are
confirmed. It proves especially beneficial in situations where
intermediate decryption is impractical, such as environments
with multiple data owners reluctant to share data, or in cases
where the trusted entity with the decryption key has limited
computational resources.

For future work, enhancing the approximation of the
homomorphic logarithm function to require fewer slots is a
consideration. This improvement would enable the parallel
processing of a greater number of encrypted values, further
optimizing the system’s performance.

XI. CONSTANTS FOR HERMES_LOG()
In order to implement Hermes_Log() function, the constants
L1 ∼ L7 are needed. They are given using python expression
as

• L1 = float.fromhex(’0× 1.5555555555593p-1’)
• L2 = float.fromhex(’0× 1.999999997fa04p-2’)
• L3 = float.fromhex(’0× 1.2492494229359p-2’)
• L4 = float.fromhex(’0× 1.c71c51d8e78afp-3’)
• L5 = float.fromhex(’0× 1.7466496cb03dep-3’)
• L6 = float.fromhex(’0× 1.39a09d078c69fp-3’)
• L7 = float.fromhex(’0× 1.2f112df3e5244p-3’)

XII. SUMMARY OF CHANGES
This paper has been expanded from its conference pro-
ceedings version [62] with the following additions. First,
we have included an inference protocol that operates under
the assumption that the Key Management server (KM) is
semi-honest and have provided a proof of security for this.
The previous conference version only proposed a protocol
for when KM is a trusted entity. This content is detailed in
Section VIII-C.
Second, a thorough analysis of the errors arising from the

proposed approximate homomorphic logarithm calculation
method is described in Section VIII-A. This analysis
considers errors from homomorphic operations, the approx-
imation of logarithm operations, and errors introduced by
bootstrapping operations, ultimately proving that the relative
error is less than 0.01% for the homomorphic encryption
parameters used in this research.

Third, we have significantly enhanced the related work
section and conducted a detailed analysis based on the
requirements set forth in this paper. The results of this
analysis are outlined in Table 10. Additionally, we have
included a survey and analysis of previous research related
to homomorphic logarithm operations in the related work
section IX-B.

REFERENCES
[1] P. Voigt and A. Von dem Bussche, ‘‘The EU general data protection

regulation (GDPR),’’ in A Practical Guide (GDPR), vol. 10, 1st ed., Cham,
Switzerland: Springer, 2017.

[2] E. Goldman, ‘‘An introduction to the California consumer privacy act
(CCPA),’’ Santa Clara Univ. Legal Stud. Res. Paper, Santa Clara, CA,USA,
2020.

110778 VOLUME 12, 2024

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

[3] J. L. Hellerstein, T. S. Jayram, and I. Rish, ‘‘Recognizing end-user
transactions in performance management,’’ in Proc. 17th Nat. Conf. Artif.
Intell. 12th Conf. Innov. Appl. Artif. Intell., Jul. 2000, pp. 596–602.

[4] T. Mitchell, B. Buchanan, G. DeJong, T. Dietterich, P. Rosenbloom, and
A. Waibel, ‘‘Machine learning,’’ Annu. Rev. Comput. Sci., vol. 4, no. 1,
pp. 417–433, 1990.

[5] M. Abbas, K. A. Memon, A. A. Jamali, S. Memon, and A. Ahmed,
‘‘Multinomial Naïve Bayes classification model for sentiment analysis,’’
Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 3, p. 62, 2019.

[6] Y. Nurdiansyah, S. Bukhori, and R. Hidayat, ‘‘Sentiment analysis system
for movie review in bahasa Indonesia using naive Bayes classifier
method,’’ J. Phys., Conf. Ser., vol. 1008, Apr. 2018, Art. no. 012011.

[7] V. A. Fitri, R. Andreswari, and M. A. Hasibuan, ‘‘Sentiment analysis of
social media Twitter with case of anti-LGBT campaign in Indonesia using
Naïve Bayes, decision tree, and random forest algorithm,’’ Proc. Comput.
Sci., vol. 161, pp. 765–772, Jan. 2019.

[8] C. Slamet, R. Andrian, D. S. Maylawati, W. Darmalaksana, and
M. Ramdhani, ‘‘Web scraping and Naïve Bayes classification for job
search engine,’’ IOP Conf. Ser., Mater. Sci. Eng., vol. 288, no. 1, 2018,
Art. no. 012038.

[9] E. S. Berner, Clinical Decision Support Systems, vol. 233. Berlin,
Germany: Springer, 2007.

[10] M. A.Musen, B.Middleton, and R. A. Greenes, ‘‘Clinical decision-support
systems,’’ in Biomedical Informatics. Berlin, Germany: Springer, 2021,
pp. 795–840.

[11] C. Schurink, P. Lucas, I. Hoepelman, and M. Bonten, ‘‘Computer-
assisted decision support for the diagnosis and treatment of infectious
diseases in intensive care units,’’ Lancet Infectious Diseases, vol. 5, no. 5,
pp. 305–312, May 2005.

[12] C.-Z. Gao, Q. Cheng, P. He, W. Susilo, and J. Li, ‘‘Privacy-preserving
Naïve Bayes classifiers secure against the substitution-then-comparison
attack,’’ Inf. Sci., vol. 444, pp. 72–88, May 2018.

[13] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, ‘‘Machine learning
classification over encrypted data,’’ in Proc. Netw. Distrib. Syst. Secur.
Symp., vol. 4324, 2015, p. 4325.

[14] T. Li, Z. Huang, P. Li, Z. Liu, and C. Jia, ‘‘Outsourced privacy-preserving
classification service over encrypted data,’’ J. Netw. Comput. Appl.,
vol. 106, pp. 100–110, Mar. 2018.

[15] X. Liu, R. Lu, J. Ma, L. Chen, and B. Qin, ‘‘Privacy-preserving patient-
centric clinical decision support system on Naïve Bayesian classification,’’
IEEE J. Biomed. Health Informat., vol. 20, no. 2, pp. 655–668, Mar. 2016.

[16] A. Kjamilji, E. Savas, and A. Levi, ‘‘Efficient secure building blocks
with application to privacy preservingmachine learning algorithms,’’ IEEE
Access, vol. 9, pp. 8324–8353, 2021.

[17] X. Liu, R. H. Deng, K. R. Choo, and Y. Yang, ‘‘Privacy-preserving
outsourced clinical decision support system in the cloud,’’ IEEE Trans.
Services Comput., vol. 14, no. 1, pp. 222–234, Jan. 2021.

[18] W. Wolberg, ‘‘Breast cancer Wisconsin (original),’’ UCI Mach. Learn.
Repository, Univ. California, Irvine, CA, USA, 1992.

[19] J. H. Cheon, A. Kim, M. Kim, and Y. Song, ‘‘Homomorphic encryption
for arithmetic of approximate numbers,’’ in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur. Berlin, Germany: Springer, 2017, pp. 409–437.

[20] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, ‘‘Over
100× faster bootstrapping in fully homomorphic encryption through
memory-centric optimization with GPUs,’’ IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2021, no. 4, pp. 114–148, 2021, doi:
10.46586/tches.v2021.i4.114-148.

[21] K. Han and D. Ki, ‘‘Better bootstrapping for approximate homomorphic
encryption,’’ in Proc. Cryptogr. Track RSA Conf. Berlin, Germany:
Springer, 2020, pp. 364–390.

[22] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, ‘‘A full RNS variant
of approximate homomorphic encryption,’’ in Proc. Int. Conf. Sel. Areas
Cryptogr. Berlin, Germany: Springer, 2018, pp. 347–368.

[23] J. W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No, ‘‘High-precision
bootstrapping of RNS-CKKS homomorphic encryption using optimal
minimax polynomial approximation and inverse sine function,’’ in Proc.
40th Annu. Int. Conf. Theory Appl. Cryptograph. Techn. Berlin, Germany:
Springer, 2021, pp. 618–647.

[24] J. H. Cheon, D. Kim, and D. Kim, ‘‘Efficient homomorphic comparison
methods with optimal complexity,’’ in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Security (ASIACRYPT). Berlin, Germany: Springer, 2020,
pp. 221–256.

[25] CryptoLab. (2022). HEAAN Library. [Online]. Available: https://heaan.it/

[26] Y. Lee, J. Seo, Y. Nam, J. Chae, and J. H. Cheon, ‘‘HEaaN-STAT:
A privacy-preserving statistical analysis toolkit for large-scale
numerical, ordinal, and categorical data,’’ IEEE Trans. Depend.
Secure Comput., vol. 21, no. 3, pp. 1224–1241, May/Jun. 2024, doi:
10.1109/TDSC.2023.3275649.

[27] H. Park, P. Kim, H. Kim, K.-W. Park, and Y. Lee, ‘‘Efficient machine
learning over encrypted data with non-interactive communication,’’
Comput. Standards Interfaces, vol. 58, pp. 87–108, May 2018.

[28] E. Y. Remez, ‘‘Sur la détermination des polynômes d’approximation de
degré donnée,’’ Commun. Soc. Math. Kharkov, vol. 10, no. 196, pp. 41–63,
1934.

[29] K. E. Atkinson, An Introduction to Numerical Analysis. New York, NY,
USA: Wiley, 1989.

[30] D. Hermes. (2017). Remez Algorithm for Log(x). [Online]. Available:
https://gist.github.com/dhermes/105da2a3c9861c90ea39#file-remez-pdf

[31] J. Czerniak, ‘‘Acute inflammations,’’ UCI Mach. Learn. Repository,
Tech. Rep., 2009.

[32] Car Evaluation, UCI Mach. Learn. Repository, Univ. California, Irvine,
CA, USA, 1997.

[33] B. Li, D. Micciancio, M. Schultz, and J. Sorrell, ‘‘Securing approximate
homomorphic encryption using differential privacy,’’ in Proc. Annu. Int.
Cryptol. Conf. Springer, 2022, pp. 560–589.

[34] J. Vaidya, M. Kantarcıoğlu, and C. Clifton, ‘‘Privacy-preserving
Naïve Bayes classification,’’ VLDB J., vol. 17, no. 4, pp. 879–898,
2008.

[35] Z. Yang, S. Zhong, and R. N. Wright, ‘‘Privacy-preserving classification
of customer data without loss of accuracy,’’ in Proc. SIAM Int. Conf. Data
Mining. Philadelphia, PA, USA: SIAM, Apr. 2005, pp. 92–102.

[36] X. Yi and Y. Zhang, ‘‘Privacy-preserving Naïve Bayes classification
on distributed data via semi-trusted mixers,’’ Inf. Syst., vol. 34, no. 3,
pp. 371–380, May 2009.

[37] P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen, ‘‘Privacy-
preserving outsourced classification in cloud computing,’’ Cluster Com-
put., vol. 21, no. 1, pp. 277–286, Mar. 2018.

[38] X. Sun, P. Zhang, J. K. Liu, J. Yu, and W. Xie, ‘‘Private machine learning
classification based on fully homomorphic encryption,’’ IEEE Trans.
Emerg. Topics Comput., vol. 8, no. 2, pp. 352–364, Apr. 2020.

[39] A. Khedr, G. Gulak, and V. Vaikuntanathan, ‘‘SHIELD: Scalable
homomorphic implementation of encrypted data-classifiers,’’ IEEE Trans.
Comput., vol. 65, no. 9, pp. 2848–2858, Nov. 2016.

[40] A. Kjamilji, A. Idrizi, S. Luma-Osmani, and F. Zenuni-Kjamilji, ‘‘Secure
Naïve Bayes classification without loss of accuracy with application to
breast cancer prediction,’’ in Proc. Int. Conf. Sci. Eng., vol. 3, 2020,
pp. 397–403.

[41] H. V. L. Pereira, ‘‘Efficient AGCD-based homomorphic encryption for
matrix and vector arithmetic,’’ in Proc. Int. Conf. Appl. Cryptogr. Netw.
Secur. Berlin, Germany: Springer, 2020, pp. 110–129.

[42] Y. Yasumura, Y. Ishimaki, and H. Yamana, ‘‘Secure Naïve Bayes
classification protocol over encrypted data using fully homomorphic
encryption,’’ in Proc. 21st Int. Conf. Inf. Integr. Web-Based Appl. Services,
2019, pp. 45–54.

[43] A. Wood, V. Shpilrain, K. Najarian, A. Mostashari, and D. Kahrobaei,
‘‘Private-key fully homomorphic encryption for private classification,’’ in
Proc. 6th Int. Conf. Math. Softw. (ICMS), South Bend, IN, USA. Berlin,
Germany: Springer, Jul. 2018, pp. 475–481.

[44] A. Wood, V. Shpilrain, K. Najarian, and D. Kahrobaei, ‘‘Private
Naïve Bayes classification of personal biomedical data: Application in
cancer data analysis,’’ Comput. Biol. Med., vol. 105, pp. 144–150,
Feb. 2019.

[45] D.-H. Vu, ‘‘Privacy-preserving Naïve Bayes classification in semi-
fully distributed data model,’’ Comput. Secur., vol. 115, Apr. 2022,
Art. no. 102630.

[46] H. Kaur, N. Kumar, and S. Batra, ‘‘ClaMPP: A cloud-based multi-party
privacy preserving classification scheme for distributed applications,’’
J. Supercomput., vol. 75, no. 6, pp. 3046–3075, Jun. 2019.

[47] J. Vaidya and C. Clifton, ‘‘Privacy preserving Naïve Bayes classifier
for vertically partitioned data,’’ in Proc. SIAM Int. Conf. Data Mining.
Philadelphia, PA, USA: SIAM, Apr. 2004, pp. 522–526.

[48] M. Kantarcıoglu, J. Vaidya, and C. Clifton, ‘‘Privacy preserving
Naïve Bayes classifier for horizontally partitioned data,’’ in Proc. IEEE
ICDM Workshop Privacy Preserving Data Mining, Nov. 2003, pp. 3–9.

[49] W. Tang, Y. Zhou, Z. Wu, L. Lu, and M. Li, ‘‘Naïve Bayes classification
based on differential privacy,’’ in Proc. Int. Conf. Artif. Intell. Adv. Manuf.,
Oct. 2019, pp. 1–6.

VOLUME 12, 2024 110779

http://dx.doi.org/10.46586/tches.v2021.i4.114-148
http://dx.doi.org/10.1109/TDSC.2023.3275649

B. Han et al.: HEaaN-NB: Non-Interactive Privacy-Preserving Naive Bayes

[50] J. Vaidya, B. Shafiq, A. Basu, and Y. Hong, ‘‘Differentially private
Naïve Bayes classification,’’ in Proc. IEEE/WIC/ACM Int. Joint Conf. Web
Intell. (WI) Intell. Agent Technol. (IAT), vol. 1, Nov. 2013, pp. 571–576.

[51] A. D. Sarwate and K. Chaudhuri, ‘‘Signal processing and machine learning
with differential privacy: Algorithms and challenges for continuous data,’’
IEEE Signal Process. Mag., vol. 30, no. 5, pp. 86–94, Sep. 2013.

[52] B. C. M. Fung, K. Wang, and P. S. Yu, ‘‘Top-down specialization for
information and privacy preservation,’’ in Proc. 21st Int. Conf. Data Eng.
(ICDE), 2005, pp. 205–216.

[53] X. Wang, J. Ma, Y. Miao, R. Yang, and Y. Chang, ‘‘EPSMD: An efficient
privacy-preserving sensor data monitoring and online diagnosis system,’’
in Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM), Apr. 2018,
pp. 819–827.

[54] X. Wang, J. Ma, Y. Miao, X. Liu, and R. Yang, ‘‘Privacy-preserving
diverse keyword search and online pre-diagnosis in cloud computing,’’
IEEE Trans. Services Comput., vol. 15, no. 2, pp. 710–723, Mar. 2022.

[55] P. Pallier, ‘‘Public-key cryptosystems based on composite degree residuos-
ity classes,’’ inProc. EUROCRYPT, in Lecture Notes in Computer Science,
vol. 1592, 1999, pp. 223–238.

[56] X. Zhao and Z. Xia, ‘‘Secure outsourced NB: Accurate and
efficient privacy-preserving Naïve Bayes classification,’’ Comput.
Secur., vol. 124, Jan. 2023, Art. no. 103011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404822004035

[57] J. Chen, Y. Feng, Y. Liu, W. Wu, and G. Yang, ‘‘Non-interactive privacy-
preserving Naïve Bayes classifier using homomorphic encryption,’’ in
Proc. Int. Conf. Secur. Privacy New Comput. Environ. Berlin, Germany:
Springer, 2021, pp. 192–203.

[58] A. Kjamilji, A. Levi, E. Savaş, and O. B. Güney, ‘‘Secure matrix operations
for machine learning classifications over encrypted data in post quantum
industrial IoT,’’ in Proc. Int. Symp. Netw., Comput. Commun. (ISNCC),
Oct. 2021, pp. 1–8.

[59] A. Aly and N. P. Smart, ‘‘Benchmarking privacy preserving scientific
operations,’’ in Proc. Int. Conf. Appl. Cryptogr. Netw. Secur. Berlin,
Germany: Springer, 2019, pp. 509–529.

[60] J. Fan and F. Vercauteren, ‘‘Somewhat practical fully homomorphic
encryption,’’ Cryptol. ePrint Arch., Berlin, Germany, Tech. Rep. 2012/144,
2012.

[61] Microsoft Research, Redmond, WA, USA. (Feb. 2019). Microsoft SEAL
(release 3.2). [Online]. Available: https://github.com/Microsoft/SEAL

[62] B. Han, Y. Kim, J. Choi, H. Shin, andY. Lee, ‘‘Fully homomorphic privacy-
preserving Naïve Bayesmachine learning and classification,’’ inProc. 11th
Workshop Encrypted Comput. Appl. Homomorphic Cryptogr. New York,
NY, USA: Association for Computing Machinery, Nov. 2023, pp. 91–102,
doi: 10.1145/3605759.3625262.

BOYOUNG HAN received the B.S. degree in IT
management and the M.S. degree in data science
from Seoul National University of Science and
Technology, South Korea, in 2020 and 2023,
respectively. Her current research interests include
private AI and applied AI.

HOJUNE SHIN received the B.S. degree in
industrial and information systems engineering
from Seoul National University of Science and
Technology, South Korea, in 2022, where he is
currently pursuing the M.S. degree in data science.
His research interests include private AI and
homomorphic encryption.

YEONGHYEON KIM received the B.S. degree in
IT management from Seoul National University
of Science and Technology, South Korea, in 2022.
He is currently with CryptoLab, South Korea.
His research interests include homomorphic
encryption and private AI.

JINA CHOI received the B.S. degree in IT
management from Seoul National University of
Science and Technology, South Korea, in 2024,
where she is currently pursuing the M.S. degree in
data science. Her research interests include private
AI and homomorphic encryption.

YOUNHO LEE (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in computer science
from KAIST, South Korea, in 2000, 2002, and
2006, respectively. He was a Visiting Postdoctoral
Researcher and a Research Staff with GeorgiaTech
Information Security Center, from 2007 to 2009.
He is currently a Professor with the Department
of Data Science, Seoul National University of Sci-
ence and Technology, South Korea. His research
interests include applied cryptography and data
security.

110780 VOLUME 12, 2024

http://dx.doi.org/10.1145/3605759.3625262

