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ABSTRACT The rapid development of wireless communication systems demands extremely high reliability
in transmission links. However, non-ideal characteristics of RF links, such as carrier frequency offset (CFO)
and IQ mismatch (IQM), can lead to RF impairments, severely affecting system performance. Advanced
signal processing techniques are indispensable to mitigate the non-ideal characteristics of RF links. Within
signal processing, synchronization issues, including CFO estimation schemes for frequency synchronization,
should be prioritized. However, the traditional CFO estimation schemes are susceptible to interference
from the harmonics caused by IQM, resulting in severe performance degradation. Therefore, based on the
least squares (LS) interpolation method, we develop a CFO estimation scheme robust to IQM by using
2l0+1 (l0 ⩾ 3) discrete Fourier transform (DFT) coefficients. The proposed estimator combines a coarse
estimation and a fine estimation. In the first stage, the peak position of the signal amplitude spectrum is
detected to provide a rough frequency estimation. In the second stage (fine estimation), an LS equation
relationship between the observation vector and the observation matrix is established with observed DFT
samples and DFT rotation factors. The precise frequency is extracted using the LS principle from the
equation, utilizing 2l0+1 (l0 ⩾ 3) DFT sample points. Because the IQM interference structure is considered
in the equation, the proposed method can combat IQI. Test results based on the RF verification platform
indicate that the proposed method improves accuracy by at least 20 dB at an input power of −45 dBm.
Accuracy improves by at least 9 dB at an input power of −65 dBm. Complexity analysis shows that the
proposed method increases by at most 10.74% compared to the traditional LS-based methods.

INDEX TERMS Frequency synchronization, carrier frequency offset, DFT interpolation, IQmismatch, least
squares.

I. INTRODUCTION
With the explosive growth in wireless communication
demands, current spectrum resources have become highly
congested. One strategy to address this issue is the
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development of ultra-high-frequency communication, such
as the millimeter-wave bands (30 GHz - 300 GHz) used in
5G and the terahertz bands (0.1 THz - 10 THz) considered
in 6G [1], [2]. The requirements for achieving ultra-high-
frequency communication are that the transmission links
possess extremely high performance and reliability. The
error requirements for 5G communication systems are as
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follows: in the Sub-6 GHz bands, the error vector magnitude
(EVM) should be less than 0.5%; in the millimeter-wave
bands, the EVM should be less than 0.75% [3]. To achieve
reliable ultra-high-frequency transmission for current and
future communication systems, a significant challenge that
must be considered is the non-ideal characteristics of the
radio frequency (RF) transmission links, such as carrier
frequency offset (CFO) [4], [5], [6], [7], [8], which is caused
by the frequency accuracy error of the local oscillator (LO)
or Doppler frequency shift [8]. In wireless communication
systems, the CFO occupies signal bandwidth, limiting the
effective utilization of spectrum resources. Additionally, the
frequency offset caused by the CFO mismatches the signal
with the receiver’s filters, thereby reducing the signal strength
and reliability. In orthogonal frequency division multiplexing
(OFDM) systems, CFO introduces inter-symbol interference
and inter-carrier interference, disrupting the orthogonality
between OFDM subcarriers and severely affecting the
demodulation performance of OFDM systems [8].
To mitigate the impact of CFO on signal transmission

and signal processing, advanced estimation and correction
techniques are needed. These estimation schemes can be
roughly divided into blind estimation [9], [10], [11] and
training sequence estimation [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22]. Blind estimation does not require
additional training sequences but demands a high signal-to-
noise ratio (SNR). Training sequence estimation relies on
specific training sequences, offering high estimation accuracy
and adaptability to complex transmission environments [10].
In training sequence-based estimation methods, the CFO
normalized to subcarrier spacing is typically divided into
integer and fractional parts. The former results in periodic
signal variations, while the latter causes amplitude and phase
distortion. Among these estimation schemes, the maximum
likelihood criterion has received particular attention [14],
[15]. Typically, two steps are considered to approximate the
maximum likelihood (ML) criterion: a coarse search around
the normalized CFO integer part and a fine search around
the normalized CFO fractional part. However, ML-based
CFO estimation involves a complex search process with high
computational complexity.

The method proposed in [16] estimates the frequency
by searching for the maximum value of the received
signal discrete Fourier transform (DFT) magnitude spectrum.
However, due to spectral leakage and the picket-fence
effect introduced by DFT operations, the performance of
this method is suboptimal. Therefore, this method can also
be considered as providing only a rough estimate of the
normalized CFO integer part.

To provide more accurate frequency estimation with fewer
observation sequences, many schemes focus on providing
finer estimates of the normalized CFO fractional part through
DFT interpolation methods [17], [18], [19], [20], [21], [22].
In [19], a parabolic interpolation method is employed to
estimate the residual fractional frequency offset using only

three samples near the DFT spectrum peak. The advantage
of this method is its simplicity in computation, but its
estimation performance is suboptimal. Consequently, many
optimized DFT interpolation methods have been proposed.
In [20], based on Jacobsen’s interpolation scheme, a bias-
corrected estimator with superior estimation accuracy is
presented. Morelli introduced an estimator based on the
weighted least squares (WLS) algorithm, utilizing arbitrary
DFT samples [21], which demonstrated higher accuracy than
previous techniques when the DFT length was 64. However,
the WLS coefficients need to be solved iteratively and the
calculation overhead is huge. In [22], an estimator with lower
complexity that uses two DFT sample points is proposed. The
results demonstrate that the estimator performance will suffer
deterioration in the presence of harmonics but did not provide
practical solutions.

Nevertheless, the aforementioned techniques ignore RF
impairments and only consider thermal noise and channel dis-
tortion. In RF broadband transmitters or receivers, quadrature
modulation or demodulation structures are widely used ben-
efiting from the improved spectrum utilization at the expense
of in-phase and quadrature mismatch (IQM) [23]. Stemming
from the imperfections of RF and baseband components in
the I and Q branches, IQM causes serious mirror interference.
In such systems, IQM is usually entangled with CFO so that
the conventional CFO estimation schemes suffer from severe
performance degradation [24].

To handle this problem, a great deal of research on CFO
estimation with IQM has been conducted. Although the
approaches in [25] and [26] are robust to IQM, the lack of
a closed-form solution makes them excessively complicated.
To this end, the low-complexity methods are presented
in [27] and [28]. However, the pilot symbols of these methods
are designed according to WLAN standards, limiting their
application in synchronization standard-customized systems,
such as satellite communications, radar signal processing,
pre-distortion systems, and instrumentation testing.

Focusing on the CFO estimation entangled with IQM,
this paper presents a fine estimator robust to IQM. Unlike
the conventional estimation method, the proposed scheme
considers the IQM interference structure in fine estimation.
By using the observed DFT samples and the DFT rotation
factors, the proposed method establishes an equation for DFT
interpolation. The characteristics of the frequency domain
impulse response of the single-tone pilot sequence promote
the decoupling of the IQM and CFO. Then, the least squares
(LS) principle can be employed to solve the coefficients from
the equation so that the proposed algorithm provides a closed-
form solution. The effectiveness of the proposed algorithm
is confirmed through an in-depth analysis of its complexity,
extensive simulations, and the validation of experimental
outcomes.

The innovations of the proposed method in this paper
include: 1) Incorporating the IQM interference structure into
the traditional LS interpolation to mitigate the impact of IQM
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on CFO estimation. 2) Leveraging the sampling characteris-
tics of single-tone sequences to decouple IQM parameters
from CFO parameters in the coefficient equation, thereby
simplifying the coefficient-solving process. 3) Utilizing a
greater number of DFT sample points to solve the coefficient
equation, and resulting in a more accurate CFO estimation
value.

The remainder of this paper is organized as follows.
The analytical model of IQM with CFO is presented in
Section II. The proposed method and the computational
complexity are derived in Section III. In Section IV,
simulation and experimental results are discussed. Finally,
Section V concludes this paper.

FIGURE 1. The system architecture with IQM and CFO.

II. SYSTEM AND SIGNAL MODEL
An overview of the transceiver architecture with IQM and
CFO is shown in Fig. 1, where the IQ transmitter and the
following super-heterodyne receiver are considered. In this
case, IQM typically occurs in the IQ transmitter with a
quadrature up-conversion structure. The CFO is modeled by
the difference in carrier frequency between the transmitter
and the receiver and denoted by 1f .
Letting s(n) = sI (n) + jsQ(n) represent the complex,

discrete-time, baseband signal, its components sI (n) and
sQ(n) are fed into the digital-to-analog converters (DACs)
and the reconstruction filters with real-valued compos-
ite impulse responses hI (t) and hQ(t) of the I and Q
channels, respectively, whose relative difference results in
frequency-dependent IQM. In the quadrature up-converter,
the filter output signal is modulated to RF and the RF
signal can be expressed as sLO,tx(t) = cos(2π fct) −

jα sin(2π fct + φ), where fc represents the carrier frequency.
Due to LO’s imperfections, the IQ branches usually suffer
from an amplitude mismatch and phase errors characterized
by α and θ , respectively, giving rise to the frequency-
independent imbalance.

Assuming that xRF (t) = 2Re{x(t)sLO,tx(t)} is the RF
real-valued bandpass signal, then its corresponding baseband
equivalent x(t) = xI (t) + jxQ(t) can be modelled as:

x(t) = s(t) ⊗ g1(t) + s∗(t) ⊗ g2(t) (1)

where g1(t) and g2(t) represent the impulse responses
associated with the signal and its image, respectively, and

expressed as:

g1(t) = [hI (t) + αe−jθhQ(t)]/2 (2)

g2(t) = [hI (t) − αe−jθhQ(t)]/2 (3)

After a succeeding power amplifier common to both I
and Q channels and a propagation channel, the received
RF waveform rRF (t) is down-converted to baseband in the
super-heterodyne receiver with frequency offset1f . Then the
observed baseband complex envelop is expressed as:

r(t) = LPF{rRF (t)e−j2π (fc−1f )t
}

= [x(t) ⊗ c(t)]ej2π1ft (4)

where c(t) characterize the channel response after up-
conversion and before down-conversion. Substituting (1)
into (4) yields

r(t) = [s(t)ej2π1ft ] ⊗ g′

1(t) + [s∗(t)ej2π1ft ] ⊗ g′

2(t) + q(t)

(5)

where g′
i(t) = [gi(t) ⊗ c(t)]ej2π1ft with i = 1, 2, and q(t)

represents the overall additive Gaussian white noise.

FIGURE 2. The baseband signal model and Spectrum elaboration
impacted by IQM and CFO.

In the equation presented above, the first term characterizes
the signal component of interest, while the second term
accounts for self-interference. Fig. 2 illustrates the analytical
model of the IQM system incorporating CFO, accompanied
by relevant spectral representations. Assuming the complex
baseband signal as a single-tone sequence centered at (fc +

1f ), it is important to observe that due to IQM, a spectral
component landing at (−fc + 1f ) is regenerated within the
spectrum of the signal of interest.

III. DFT INTERPOLATION BASED CFO ESTIMATION
A. CONVENTIONAL DFT INTERPOLATION METHOD
The DFT interpolation technique is a commonly employed
method in frequency estimation. The conventional frequency
estimation methods based on DFT interpolation typically
proceed in two steps. In the first stage, the input sequence
undergoes an N-point DFT to obtain a rough spectral peak
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location. In the second stage, a fine search is conducted
around the peak determined in the first stage.

The two-stage estimation is based on the following
considerations. First, under a certain signal-to-noise ratio
condition, the peak of the discrete-time Fourier transform
(DTFT) magnitude spectrum of the observed tone signal
corresponds to the true frequency to be estimated. However,
due to the high complexity of peak search in the DTFT
magnitude spectrum, DFT computations are used in the
first stage to obtain a rough peak position. Nonetheless,
DFT computations introduce effects such as spectral leakage,
resulting in an error between the position of the DTFT
magnitude spectrum peak and the DFT magnitude spectrum
peak. Therefore, DFT interpolation is required in the second
stage to achieve fine-tuning of the search.

A complex exponential observation signal affected by car-
rier frequency offset in a Gaussian white noise environment
is considered and written as:

r(n) = Aej(2π f1nTs+ϕ)
+ q(n), n = 0, 1, · · · ,N − 1 (6)

whereA and ϕ respectively represent the amplitude and initial
phase of the single-tone signal, N is the sample length, q(n)
characterizes the noise, and f1 denotes the initial frequency
which can be expressed as:

f1 = fo + 1f (7)

where fo represents the initial frequency CFO.
Notice that f1 represents the true frequency to be estimated

and corresponds to the DTFT magnitude spectrum peak
position, which is located between two DFT subcarriers. Due
to spectrum leakage and the fence effect, the peak of the DFT
magnitude spectrum of r(n) does not align with the true peak
position of the DTFT magnitude spectrum. This discrepancy
means that f1 can be expressed as the sum of integer multiples
and fractional multiples of the subcarrier spacing, i.e.

f1 = (kp + ε)D (8)

where kp ∈ [−N/2 − 1,N/2] and ε ∈ [−0.5, 0.5] are the
integer multiplier and the fractional multiplier respectively.
D = 1/NTs is the subcarrier spacing, and Ts represents the
sampling period.

According to (8), the estimation of f1 can be regarded as
the estimation of the integer multiplier kp and the fractional
multiplier ε. The two-stages estimation is performed sequen-
tially.

In the first stage, computing N -point DFT of r(n) yields:

R(k) =

N−1∑
n=0

r(n)W nk
N (9)

where k ∈ [−N/2 − 1,N/2] represents the subcarrier index
of N -point DFT, W k

N is the rotation factor of DFT which can
be expressed as:

W k
N = e−j2πk/N . (10)

Then the peak position of the DFT magnitude spectrum of
r(n) can be obtained by:

k̂p = argmax
k

(|R(k)|) (11)

where k̂p is the estimation of the integer multiplier kp.
In the second stage, DFT interpolationmethod is employed

to estimate ε. Applying the following DFT operation on r(n):

RL(k) =

N−1∑
n=0

r(n)W
n(k+kp)
N (12)

then the DFT spectrum peak of r(n) is moved to the position
near the subcarrier index k = 0. That means that RL(0)
denotes the DFT spectrum peak, RL(−1) and RL(1) are the
neighbors of RL(0). Traditional DFT interpolation methods
only utilize the three DFT samples near the peak, i.e., RL(0),
RL(−1), and RL(1) to estimate the residual frequency offset
ε, as referenced in [19], [20], [21], and [22].

B. THE INFLUENCE OF IQM ON DFT INTERPOLATION
The impact of harmonics generated by IQM on the transmit-
ted signal spectrum can be considered from the following
two perspectives. On the one hand, due to the need for
time-domain truncation of the received signal, the DFT
computation at the receiver unavoidably faces the issue of
spectral leakage. Additionally, truncating the received signal
in the time domain is equivalent to convolving it with a
sinc function in the frequency domain. Therefore, under the
influence of IQM, harmonic interference spills over through
convolution with the sinc function, disturbing the phase and
magnitude of the original received signal DFT samples.
On the other hand, in the presence of non-negligible IQI, the
energy of the signal leaks to interference harmonics, altering
the spectral waveform characteristics of the received signal.

FIGURE 3. The normalized DFT amplitude spectrum (near the peak) of the
observed signal without IQM.

Figures 3 and 4 display the signal amplitude spectrum
normalized by the maximum of DTFT (DTFT peak) near
the peak of the observed tone signal. The frequency spacing
between two adjacent DFT samples is D = 1/NTs. A single-
path channel model with duplicated impulse responses
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FIGURE 4. The normalized DFT amplitude spectrum (near the peak) of the
observed signal with IQM.

between the transmitter and receiver is considered to clarify
the effect of IQM on the DFT spectrum. It turns out that
in the absence of IQM (when the impulse responses of the
I and Q paths are identical), the spectrum of the received
signal, as shown in Fig. 3, clearly exhibits only one peak.
However, when there is a slight deviation between the
impulse responses of the I and Q paths (indicating the
presence of IQM), a new frequency component (sub-peak)
appears in the received signal spectrum. Furthermore, in the
absence of IQM, the energy of the tone signal primarily
concentrates on three DFT samples, including the DFT
peak and its immediate left and right neighbors. However,
as depicted in Fig. 4, in the presence of significant IQM,
the signal energy leaks into the harmonics, resulting in the
changes of the spectrum waveform. Since the interpolation
estimation methods rely on the DFT samples near the spectral
peak, any changes in the waveform near the spectral peak will
degrade the performance of traditional interpolationmethods.

C. PROPOSED ROBUST SCHEME
A single-tone signal with the following discrete-time form is
considered as the pilot sequence:

s(n) = Aej(2π fonTs+ϕ), n = 0, 1, · · · ,N − 1 (13)

Substituting (14) into (5), the observation signal can be
written as:

r(n) = Aejϕ[g′

1(n) ⊗ ej2π f1nTs + g′

2(n) ⊗ ej2π f2nTs ] + q(n)

(14)

where g1(n), g2(n) and q(n) denote the discrete-time form
of g1(t), g2(t), and q(t), respectively. f1 and f2 respectively
represent the center frequencies of the desired signal and the
harmonic in the spectrum of the received signal, which can
be expressed as:

f1 = fo + 1f , (15)

f2 = −fo + 1f . (16)

Substituting (15) into (9) yields the N -point DFT of r(n),
i.e.

R̃(k) = AejϕG′

1(k)
1 −W−Nk1

N

1 −W k−k1
N

+ AejϕG′

2(k)
1 −W−Nk2

N

1 −W k−k2
N

+ Q(k) (17)

where R̃(k) denotes the observed DFT sample on k-th
subcarrier which contains the image interference induced by
IQM. k ∈ 3 = [−N/2 − 1,N/2] is the DFT subcarrier
index, k1 and k2 are the DTFT subcarrier index of f1 and f2
respectively, which can be expressed as:

k1 = f1/D, (18)

k2 = f2/D. (19)

Q(k) = DFT [q(n)] is the noise contribution. G′

1(k) and
G′

2(k) denote the DFT forms of g′

1(n) and g
′

2(n) respectively.
Due to the effective bandpass filtering circuitry in signal
transmission, DTFT spectrum peak and sidelobe appear
respectively at k1 and k2.

According to (8), k1 can be expressed as an integer
component kp, plus a fractional part ε, i.e.

k1 = kp + ε (20)

where kp ∈ [−N/2 − 1,N/2], ε ∈ [−0.5, 0.5].
Since the initial frequency fo of the single-tone signal is

known, the estimation of the carrier frequency offset 1f
can be obtained by estimating f1. Consistent with traditional
methods, the estimation of CFO unfolds through two stages
of estimation: 1) rough estimation related to the integer
multiplier kp; 2) fine estimation related to the fractional
part ε.
Since IQM interference typically does not alter the

spectrum peak position of the received sequence, locating
peaks on the magnitude spectrum of r(n) can be used to
achieve the rough estimation of CFO. Then the estimation of
kp can be obtained by:

k̂p = argmax
k∈3

(|R̃(k)|) (21)

After obtaining the estimation of integer multiplier kp, the
estimation of fractional multiplier ε is performed by applying
the following operation:

R̃L(l) =

N−1∑
n=0

r(n)W
n(kp+l)
N , l ∈ 0 (22)

where l ≤ N denotes the offset of the subcarrier index relative
to kp. By denoting the selected number of DFT sample as l0
and the center subcarrier index as L0, then0 = [−l0+L0, l0+
L0] can be viewed as a set of 2l0 + 1 offsets, which specifies
that the selected DFT samples utilized for DFT interpolation
in the fine estimation stage are [R̃L(L0−l0), · · · , R̃L(L0+l0)].
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Submitting (15) into (23), (23) can be reformulated as:

R̃L(l) = v1(l)
N−1∑
n=0

ej2π f1nTsW
n(k̂p+l)
N

+ v2(l)
N−1∑
n=0

ej2π f2nTsW
n(k̂p+l)
N +QL(l) (23)

where v1(l) and v2(l) represent the filtering parameters of the
desired signal and the harmonic respectively, which can be
written as:

vi(l) = Aejϕ
N−1∑
n=0

g′
i(n)W

n(kp+l)
N , i = 1, 2. (24)

QL(l) represents the influence of the noise on DFT
interpolation, expressed as:

QL(l) =

N−1∑
n=0

q(n)W
n(kp+l)
N . (25)

In (24), note that v1(l) and v2(l) respectively filter the
single-tone signal source and the single-tone interference
source. Considering the frequency domain sampling char-
acteristics of the single-tone signal, v1(l) and v2(l) can be
approximated as constant values υ1 and υ2, respectively.
After setting η = k2 − kp, (24) can be simplified as:

R̃L(l) = υ1
1 −WNε

N

1 −W l−ε
N

+ υ2
1 −WNη

N

1 −W l−η
N

+ QL(l), l ∈ 0. (26)

After performing some standard algebraic operations, the
above equation can be transformed into:

R̃L(l) = (W l−ε
N +W l−η

N )R̃L(l) −W ε−η
N R̃L(l)W 2l

N

− (υ1W
−Nε
N + υ2W

−Nη
N )WNl

N

− (υ1W
−η
N + υ2W

−ε
N )W l

N

+ (υ1W
−Nε−η
N + υ2W

−ε−Nη
N )WNl+l

N
+ υ1 + υ2 + Q′

L(l) (27)

withQ′
L(l) = QL(l)(1−W l−ε

N −W l−η
N +W 2l−ε−η

N ). Then (27)
can be represented in the following matrix form:

R̃L = Pc + QL (28)

where R̃L = [R̃L(L0−l0), R̃L(L0−l0+1), · · · , R̃L(L0+l0)]T

is the observation vector of length 2l0 + 1. The vector QL =

[QL(L0 − l0),QL(L0 − l0 + 1) · · · ,QL(L0 + l0)]T denotes
the noise contribution. P is a (2l0 + 1) × 6-dimensional
observation matrix. Abbreviating R̃L(l) as R̃lL , P can be
expressed as:

P =


R−l0
L W−l0

N
...

RlLW
l
N

...

Rl0LW
l0
N

R−l0
L W−2l0

N
...

RlLW
2l
N

...

Rl0LW
2l0
N

W−Nl0
N
...

WNl
N
...

WNl0
N

W−l0
N
...

W l
N
...

W l0
N

W−Nl0−l0
N

...

WNl+l
N
...

WNl0+l0
N

1
1
1
1
1
1


.

(29)

TABLE 1. Complexity of different estimators with N = 1024, ρ1 = 7,
ρ2 = 3, R = 20, K = 16.

c = [c1, c2, c3, c4, c5, c6]T is a vector with c1−c6 denoted
as: 

c1 = W−ε
N +W−η

N

c2 = −W−ε−η
N

c3 = −υ1W
−Nε
N − υ2W

−Nη
N

c4 = −υ1W
−η
N − υ2W

−ε
N

c5 = υ1W
−Nε−η
N + υ2W

−ε−Nη
N

c6 = υ1 + υ2.

(30)

Note that when l0 ≥ 3, P is a column full rank matrix.
According to (28), the LS solution of c is:

c = (PHP)−1PH R̃L (31)

Due to the fact that ε > ηwhen fo > 0. Then the estimation
of ε can be obtained by:

ε̂ =
N
4π

Im(ln(c1 +

√
c21 − 4c2)). (32)

Since the DFT samples closer to the spectral peak suffer
the least interference from spectrum leakage, in order to
provide a better CFO estimate, 2l0 + 1 DFT samples that
are symmetrical about the spectral peak are given priority,
that is L0 = 0, the corresponding DFT sample set is
[R̃L(−l0), R̃L(−l0 + 1), · · · , R̃L(l0)].

D. COMPLEXITY ANALYSIS
The complexity analysis is carried out based on the real
multiplications in the process of frequency estimate. For
the proposed estimator, a coarse estimation requires N -point
DFT, which generates (N/2) log2 N complex product and
thus consumes 2N log2 N real multiplication resources. Then,
the calculation amount of fine estimation is reflected in
solving (28), including the construction of matrix P from (29)
and LS solution from (31). Considering that the calculation of
trigonometric functions can be implemented through lookup
tables, the complexity of calculating the exponential factor
W k
N and extracting 1f from ε̂ can be ignored. Then the

complexity of (29) is 8ρ1, where ρ1 = 2l0 + 1 represents the
number of observed continuous DFT samples. Solving the LS
problem of (31) using the Cholesky decomposition requires
about 4[σ 2

1 (σ1+ρ1+1)+σ1ρ1] real multiplications, in which
σ1 is the number of coefficients of c.

For comparison, the overall complexity of a couple of
CFO estimators is summarized in Table 1. These include:
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1) the proposed method, 2) the conventional least squares
estimator (CLSE) [21], 3) the R-times zero padding based
fast Fourier transform (FFT) estimator (ZPE) [16], 4) the
parabolic interpolation-based estimator (PE) [19], 5) the
nonlinear LS estimator (NLSE) [25], 6) the pseudo-offset
injection-based estimator (POIE) [27].
Note that the cost of fine estimation is negligible relative

to the FFT operation in coarse estimation for first four single-
tone-based estimators. Meanwhile, the proposed method
incorporating IQM introduces a slight complexity increase
of 10.74% in fine search compared to PE, which is an
inevitable result of enhancing the robustness of IQM. The
last two lines report two CFO estimators with IQM based
on the OFDM pilot sequence adopting the WLAN standard
of O = 16 pilot symbols and NS = 16 subcarriers for
each symbol. NLSE uses iterative interval search, whose
complexity is determined by the number of search intervals
K . In any case, it is much more demanding than the single-
tone-based estimators (the first four estimators in Table 1).
POIE uses an approximate sequence correlation algorithm,
reducing complexity but presents limiting performance [28].
In the next section, the effective of the proposed estimator
is demonstrated by extensive numerical simulations and
experiments. Together with the complexity analysis, it will
be shown that the proposed algorithm has a good trade-off
between complexity and performance.

IV. NUMERICAL RESULTS AND DISCUSSION
A. SIMULATION RESULTS
Comprehensive simulation tests based on MATLAB were
carried out to confirm the estimation performance of the
suggested algorithm. The statistical performance of the
estimator is assessed using the mean square error (MSE) of
the CFO estimation normalized by subcarrier spacing and the
subcarrier spacing is denoted as D = 1/NTs. In simulation,
the sampling period Ts is set to 50 ns. A frequency selective
fading channel is employed, in which the impulse response is
denoted by c(n) = [ej1.38, 0.5ej0.30, 0.3e−j2.02]T . To examine
the impact of IQM on algorithm performance, two IQM
scenarios are considered [26]:
Case A): relatively small IQM condition, in which impulse

responses of analog IQ filters is hI (n) = hQ(n) = 1 and LO-
induced imbalance is characterized by α = 0.2dB, θ = 1◦.
Case B): severe IQM condition with hI (n) = [0, 1]T , and

α = 1dB, θ = 5◦.
In addition, each scenario considers SNR traversal

and frequency offset traversal at the carrier frequency
of fc = 2.4 GHz. When exploring the impact of SNR,
values from 10 to 40 dB will be considered. When traversing
frequency offset, a typical low-cost oscillator instability of
50 parts-per-million (ppm) is set to the maximum frequency
offset. To further validate the sensitivity of the estimator to
IQ mismatch parameters, the MSE of different estimators are
also measured under varying conditions of gain error and

phase error. The gain error factor α changes from −2 to 2 dB,
and the phase error varies from −20◦ to 20◦.

Moreover, the proposed estimator, CLSE, PE, ZPE, NLSE,
and POIE are used as simulation objects. For the first four
single-tone-based estimators (the proposed, PE, CLSE, and
ZPE), set the initial frequency fo = 17.5 kHz and the data
sample length N = 1024. In the proposed method, the FFT
size N during the coarse search stage is set to 1024, and the
observation length l0 during the fine search stage is fixed
at 3, consistent with CLSE and PE. Meanwhile, the FFT size
for ZPE is set to 20480. The OFDM-based estimators (POIE
and NLSE) adhere to the WLAN standard format, with their
parameter settings referenced in [28].

FIGURE 5. MSE of CFO estimation algorithms with different SNR values
under case A.

FIGURE 6. MSE of CFO estimation algorithms with different SNR values
under case B.

Fig. 5 and Fig. 6 plot the MSE of CFO estimators as a
function of different input SNR values under cases A and
B, respectively. As is shown, the proposed method exhibits
monotonic decline and optimal performance in any scenario.
Although the curve of POIE has the same trend as the
proposed method, its accuracy is unreliable. The curves of
ZPE and NLSE show a relatively stable trend but maintain a
poor error level.
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The reasons can be explained in sequence. For ZPE, the
FFT method based on zero padding can only increase the
number of frequency domain sampling points rather than
the effective signal length and, therefore, cannot improve
physical resolution. For NLSE, although the complex search
process related to IQM is considered, the range of search
intervals limits estimation accuracy. In addition, it also turns
out that the performance of CLSE deteriorates severely in
Case B while the proposed method works well under not only
slight but also severe IQM conditions. This is thanks to the IQ
interference structure considered in the fine search stage. It is
worth observing that, under mild IQM scenarios (Case A),
the proposed method exhibits performance close to CLSE at
low SNR values. The reason is that higher noise power masks
lower interference components induced by IQM.

FIGURE 7. MSE of estimation algorithms under different gain errors α.

FIGURE 8. MSE of estimators under different phase errors θ .

The accuracy of estimators versus CFO (ppm) is illustrated
in Fig. 7 and Fig. 8. As shown, the proposed method
outperforms the others across the frequency range consid-
ered. Furthermore, the fluctuation observed in the curve
of ZPE with the initial CFO depends on the proximity
of the estimated value of k1 to the integer multiples of
subcarrier spacing. In comparison, CLSE performs better
with smaller fluctuation amplitudes, which implies that

the estimation algorithm with DFT interpolation is less
dependent on the specific value of CFO than the zero-
padding-based approach. This advantage is also evident in the
performance of the proposed technique, which incorporates
DFT interpolation. Furthermore, the significant enhancement
in accuracy achieved by the proposed method is attributed to
its ability to mitigate the influence of the regenerated spectral
component.

FIGURE 9. MSE of CFO estimators with different CFO under case B.

FIGURE 10. MSE of CFO estimators with different CFO under case A.

Fig. 9 illustrates the variation of MSE with the gain
imbalance factor α. Set the CFO to 25 ppm, SNR to 40 dB,
and θ to 0.2◦. Fig 10 depicts the variation of MSE with the
phase error factor θ , with α fixed at a very small value of
0.02 dB. As shown in Fig. 9, the estimation errors of both
POIE and NLSE are close, with POIE slightly outperforming
NLSE. The MSE curve of CLSE exhibits a significant
change with α, where the estimation error decreases as α

approaches 0, but sharply deteriorates as α increases to
±2 dB. The suggested method maintains stable estimation
accuracy even as α varies, consistently achieving minimal
error levels.

It also turns out that CLSE and the proposedmethod exhibit
similar trends in Fig. 10. This indicates that CLSE is effective
only when the IQ mismatch is very low or absent, while the
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TABLE 2. Performance of different estimators.

proposed estimator provides optimal estimation under any
IQ mismatch condition. The reason behind this phenomenon
is that CLSE does not consider the interference structure
of IQM in DFT interpolation. Due to its DFT observation
samples are distorted by harmonic interference, the accuracy
of DFT interpolation for CLSE depends on the harmonic
influence. In contrast, the proposed estimator considers the
interference structure of IQM in DFT interpolation, thereby
mitigating the impact of IQM on estimation performance
even with distorted DFT observation samples.

The performance of the estimator is summarized in Table 2.
The estimation accuracy is reflected by the MSE value.
Figures 5 to 10 show that the MSE value of PE exceeds
10−2, indicating the worst accuracy. TheMSE curves of ZPE,
NLSE, and POIE fluctuate above 10−5 demonstrating the
poor performance. TheCLSEmethod performs slightly better
than ZPE, NLSE, and POIE. Overall, the proposed method
exhibits the best estimation accuracy.

Figures 7 to 8 reveal that the proposed method has the
lowest sensitivity to CFO among these methods,. Although
the MSE curve of POIE is the flattest, its estimation accuracy
is lower than that of the proposed method. Figures 9
to 10 show that the proposed method demonstrates the
best robustness to IQM. The MSE curve of CLSE varies
significantly with IQ mismatch conditions, but within a large
IQM variation range, its estimation error is lower than that of
POIE and NLSE, indicating better performance.

FIGURE 11. Verification platform.

B. MESUREMENT RESULTS
Measurements are also carried out to prove the effectiveness
of the investigated scheme in RF applications. A verification

platform with RF signals and components is shown in
Fig. 11. The baseband pilot signal is generated by a PC and
downloaded to the SMB100A vector signal generator (VSG),
where the IQ modulation mode is configured, and the IQ
imbalance parameters α = 1dB and θ = 5◦ are applied. The
VSG modulates the baseband pilot signal to RF frequency
fc = 2.4 GHz, which is then repeatedly played with tunable
output power levels.

A vector signal analyzer (VSA) of type Agilent N9000A
CXA centered at fc − 1f collects the RF output for down-
converting to baseband and digital sampling. The resulting
discrete-time digital signal is finally fed into the PC, where
the estimator is run after removing the time delay. The
estimator parameters similar to those in simulation.

FIGURE 12. Measured MSE versus input Power.

Fig. 12 illustrates the MSE of PLSE and CLSE as a
function of the signal input power. As expected, the error
curve of the proposed method significantly decreases with
the input power increase, while CLSE is plagued by an error
floor, maintaining a poor level. Such a discrepancy can be
explained by considering the main causes of the estimation
error, i.e., the noise and the IQM. Under low input power,
the estimation error is dominated by noise disturbances,
so the performance of the proposed method is poor and
close to CLSE. However, as the input power increases, the
interference of IQM leads to errors, and the fine estimation
model considering IQM in the proposed method becomes
effective.

Fig. 13 depicts the accuracy of the two estimators for
different initial CFO. Each estimator is evaluated with an
input power of−65 dBm and−45 dBm. The results show that
the proposed approach outperforms CLSE in all considered
CFO values, with a gain of approximately 9 dB at an input
power −65 dBm and 20 dB at an input power −45 dBm.

To further evaluate the impact of estimators on demodula-
tion performance, an OFDM signal (512 subcarriers) is tested
on the platform. An efficient IQ imbalance compensation
algorithm presented in [23] is considered. Fig. 14 and
Fig. 15 plot the constellation of demodulated signals at the
input power level of −45 dBm with frequency correction

VOLUME 12, 2024 107513



Y. Kuang et al.: Estimation of CFO Plagued by IQM

FIGURE 13. Measured MSE versus CFO.

FIGURE 14. Constellation of demodulated signals with CFO corrected by
CLSE.

FIGURE 15. Constellation of demodulated signals with CFO corrected by
the proposed method.

of the proposed algorithm and CLSE, respectively. It is
clearly seen that the symbol points in Fig. 14 are displaced
at different times and connected into arcs caused by the
residual frequency offset estimated by CLSE, while Fig. 15
provides a more easily distinguishable constellation. This is
because the estimation accuracy of CLSE is affected by IQM,
resulting in residual frequency offset in the demodulated
signal after CLSE correction, leading to constellation rotation

in Fig. 14. However, for PLSE, due to its interference-
resistant structure, the impact of IQM is alleviated, providing
more accurate frequency offset estimation. As a result, the
residual frequency offset in the demodulated signal is small
after frequency offset correction using PLSE, thus a clearer
constellation is presented in Fig. 15.

V. CONCLUSION
In this paper, the interference of IQM on the CFO estimation
is investigated in detail. A fine search scheme based on DFT
interpolation is proposed to extract the CFO estimate after
roughly locating the position of the maximum spectral peak
of the single-tone signal. Considering the IQ interference
structure in DFT interpolation, the proposed method is robust
to IQM. Then, the DFT interpolation coefficients are solved
through the LS rule. Complexity analysis and numerical
results demonstrate that the proposed algorithm exhibits a
good compromise between accuracy and complexity.
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