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ABSTRACT Wheat is one of themost extensively cultivated cropsworldwide that contributes significantly to
global food caloric and protein production and is grown onmillions of hectares yearly. However, diseases like
brown rust, septoria, yellow rust, and other fungus diseases pose notable threats to wheat crops, impacting
production and quality. Diagnosing these diseases is challenging, especially in areas with limited agricultural
experts. Thus, creating computerized disease identification and decision-support technologies is crucial for
safeguarding wheat leaf preservation and crop loss mitigation. The traditional approach to integrating data
gathering and model training has substantial challenges in terms of data confidentiality, availability, and the
costs related to data transmission. To address these challenges, federated learning (FL) is an appealing and
effective option. Our study focuses on applying FL to classify agricultural diseases using image analysis.
In our study, we conduct experiments on high-parameterized transfer learning (TL) models along with our
proposed architecture based on the attention mechanism, introducing these models into a distributed learning
strategy founded in FL. Our proposed architecture leverages the beneficial interactions of two cutting-edge
vision transformermodels including the advanced depthwise incorporating self-attentionmodel referred to as
CoAtNets, and the enhanced Swin Transformer V2, resulting in enhanced feature representation. Moreover,
we introduce weight pruning into our model which is further classified by a reinforced linear attention
mechanism (LA) to lower output dimensions. Our pruned lightweight (32M parameters) considerably
decreases inference time with 624.249 ms and 644.899 on devices with low computational power, making
it highly efficient in FL-based systems. The proposed model in our FL system significantly outperforms
all other tested transfer learning models, including ConvNeXtBase, ConvNeXtLarge, EfficientNetV2L,
InceptionResNetV2, ResNet152, and NASNetLarge, achieving accuracies up to 98% and 99%, precision
up to 98%, recall up to 98%, and F-1 scores up to 95% across multiple input dimensions for wheat leaf
disease classification.

INDEX TERMS Machine learning, deep learning, federated learning, transformers, attention mechanism,
wheat leaf disease identification.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xinyu Du .

I. INTRODUCTION
Wheat (Triticum aestivum) is one of the most extensively
consumed cereals globally and a key food source for human-
ity [1]. Its relevance has grown, notably due to the harmful
impacts of bad agricultural practices during the epidemic
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and the subsequent conflict between Ukraine and Russia.
Both countries rank among the top 10 wheat producers
worldwide. Wheat is key in reducing hunger, especially in
African areas with limited access to food [2]. As a result,
there are enormous incentives to produce this crop, coupled
with numerous methods targeted at enhancing productivity.
Wheat is one of the key staple foods and is considered the
second-largest crop in the world. Significant yield advances
in wheat production over the past 40 years have resulted
in an ongoing equilibrium of supply versus demand [3],
[4]. However, climate change and extreme weather events
present substantial obstacles to agriculture and ecosystems.
Fluctuations in temperature and precipitation patterns lead
to an escalation in droughts, floods, and heat waves, which
have a detrimental effect on the growth and productivity of
wheat. Furthermore, these occurrences lead to a rise in the
occurrence and intensity of diseases, which in turn impair
the inherent defenses of plants and diminish their output.
Wheat is a staple crop that requires control from many
diseases through breeding resistance, insecticides, or other
techniques. Out of the 31 pests and pathogens recorded in
wheat, fungal diseases such as leaf and stripe rust, Fusarium
head blight, Septoria leaf blotch, spot blotch, tan spot, and
powdery mildew cause the most significant losses [5]. Yellow
rust is easily detected by orange/yellow uredinial pustules on
leaves, while Septoria occurs on the leaf as necrotic yellow-
to-brown lesions confined by veins with little black pycnidia.
Confusion can emerge at two stages: early yellow rust and
Septoria both show as elongated patches of chlorosis and
later yellow rust and Septoria lesions can be confused. Brown
or leaf rust, another common wheat leaf disease, generates
orange/brown pustules on leaves, making it difficult to
identify from yellow rust and Septoria [6]. Traditional
procedures for diagnosing and managing wheat crop diseases
are concentrated on pathologists, making them subjective,
time-consuming, and labor-intensive. Given a scarcity of
experience andmanpower, researchers continue to investigate
computer vision algorithms for effectively detecting disease
occurrences on specific plots of land used for agricultural
tasks [7]. Leveraging the transformative power of deep
learning models, image-based plant disease detection has
emerged as a promising solution to safeguard these wheat
crops, as evidenced by the works of in the literature review,
Navale and Basapur [8] showcased significant enhancements
in the accuracy by using the (Convolutional Neural Network)
CNN models. Additionally, Ceyhan et al. [9] proposed an
image-based deep learningmethod that uses reflection data to
classify wheat varieties accurately. This method offers a more
effective and affordable substitute for wheat classification in
the agricultural and industrial sectors. A noteworthy issue in
this regard has been the limited ability to properly address
unknown diseased wheat image data linked with distinct
diseases by utilizing advanced computer vision computation
in a global scale approach. By using this approach, the
decision-making skill of the model would be more effective

and informative as known by different classes with different
variants of diseases of wheat. The purpose is to develop
algorithms that can fast and reliably classify previously
unknown data, ensuring precise findings on a worldwide
scale, thus boosting the total accuracy of classification tasks.

The present algorithms still exhibit a notable discrepancy
in effectively classifying unknown photos of damaged wheat,
particularly when confronted with a wide range of diseases
worldwide. This difficulty emerges because thesemodels rely
significantly on pre-established disease categories and lack
the adaptability to distinguish novel or rare disease variations.
It is crucial to address this gap for multiple reasons.
Initially, the agriculture sector is becoming more globalized,
with the cultivation of wheat taking place in diverse
climatic conditions and countries, each presenting distinct
disease challenges. Effective disease management requires
models that can generalize across multiple environments
and accurately detect diseases not included in the training
data. Presently, existing models cannot generally apply
their knowledge to varied settings, resulting in decreasing
precision and reliability in practical scenarios. Additionally,
the ever-changing nature of disease development offers a
substantial hurdle. Pathogens can undergo genetic alterations,
leading to new disease strains. Current models may not
have the capacity to recognize and interpret these new
strains, underlining the need for strong models that can
adapt to fresh data and continuously learn from new disease
occurrences. Without this adaptability, models’ decision-
making abilities remain limited, leaving crops vulnerable
to emerging dangers. Furthermore, climate change and
extreme climatic events are projected to increase agricultural
challenges and disease prevalence [10]. Federated learning
tackles the difficulties presented by unpredictable weather
patterns and the spread of wheat leaf diseases by facilitating
decentralized, ongoing, and adaptable training of models.
This method enables various stakeholders to provide local-
ized data without disclosing sensitive information, ensuring
that models stay up-to-date and strong under multiple
circumstances. Therefore, federated learning gives a solution
to this challenge. By allowing models to be trained on
decentralized data from varied sources without sharing
raw data, federated learning boosts the models’ ability to
generalize across different settings and adapt to new disease
variants. This strategy harnesses the aggregate knowledge
from different nodes, boosting the models’ resilience and
accuracy in recognizing and managing wheat leaf diseases
globally.

The primary motivation for implementing federated learn-
ing in the context of wheat leaf disease identification lies in
its ability to improve data privacy and security while utilizing
distributed data sources. Conventional centralized machine
learning methods necessitate aggregating all data in one
place, which raises significant privacy concerns, particularly
when dealing with sensitive agricultural data [11], [12],
[13]. Federated learning solves this issue by facilitating
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model training over multiple distributed nodes, granting each
participating node control over its data. This decentralized
approach not only guarantees the confidentiality of data
but also fosters collaboration among various parties without
the need for sharing data. Furthermore, federated learning
improves the ability to handle big amounts of data and
increases efficiency by utilizing local computing resources.
FL approach eliminates the requirement for transferring
large amounts of data, resulting in reduced latency. This
is especially crucial in agricultural settings where internet
connectivity can be limited or unreliable.

Therefore, in our FL architecture, we employ our proposed
transformer model architecture with its improved ability to
capture complicated patterns in picture data and enhance the
accuracy and robustness of disease classification. Therefore,
FL offers a promising technique for model training, allowing
the integration of input from multiple sources without
compromising privacy. This decentralized strategy not only
boosts the model’s ability to generalize across diverse areas
and situations but also ensures continual learning from new
data, making the systemmore adaptable to emerging diseases
and changing climatic conditions. Additionally, we have
introduced weight pruning in federated learning systems
that provide an efficient approach. Weight pruning includes
lowering the number of parameters in a model by deleting
less important weights and layers, hence reducing model
complexity without severely sacrificing performance. This
strategy is particularly advantageous in federated learning
contexts where computational resources and bandwidth
are potentially constrained. By performing weight pruning
with the advanced method, we have reduced the overall
model size, making it more viable to deploy and update
models across different decentralized nodes. This strategy
not only reduces the computing requirements but also boosts
the efficiency and scalability of the federated learning
system.

Our main contributions therefore,
• We use a four-layered preprocessing pipeline in our
datasets that includes Canny Edge Detection, Gaussian
Blur addition, Laplace Transformation, and High-Pass
Filtering. Gaussian and Laplace noise transformation
strengthen the model, and High-Pass Filtering sharpens
images, making it simpler to retrieve disease-related
characteristics. These methods, taken together, improve
the accuracy alongside effectiveness of our wheat leaf
disease categorization in an FL-based system.

• Our study introduces an advanced vision transformer
architecture aimed at achieving enhanced perfor-
mance with reduced parameterization in the FL dis-
tributed System. This architectural innovation com-
bines the strengths of CoAtNet and the improved
Swin Transformer version 2, leveraging a Local
Attention (LA) mechanism. Compared to standard
high-parameterized neural network models such as Con-
vNeXtBase, ConvNeXtLarge, EfficientNetV2L, Incep-
tionResNetV2, ResNet152, and NASNetLarge, our

proposed method demonstrates superior performance,
particularly in FL scenarios.

• In addition, we propose an identifiable FL archi-
tecture for interactive model training across clients
with different datasets which enables the storage age
of local updates, allowing for dynamic interactions
between local and global model instances and promoting
efficient model update transmission with advanced
weight pruning method.

• In our evaluation of model effectiveness, we apply
multiple essential metrics and visualizations, including
accuracy curves, loss curves, classification reports,
confusionmatrices, GPUutilization, and inference times
through our training.

Following is a synopsis of the remainder of this paper.
In Section II, we introduce our connected work with the
previous studies comparing our proposed technique in this
domain. In Section III, we address the approach we suggest
for documenting our data collection, preprocessing networks,
and proposed model while defining our overall system
architecture and its usefulness. In Section IV, we describe
our assessment metrics for the performance measure of our
model. Afterward, we provide the experimental components
and frameworks required to train our models in the envi-
ronment. After putting our model strategies into practice,
we study our outcomes and insights in Section VI to assess
the efficacy of our models. In section VIII. we consider
the practical considerations of our proposed system. Finally,
in section IX. we conclude our work by describing the
importance of our work.

II. RELATED WORK
Agriculture crops such as rice, wheat, and soybean are staple
foods for many countries and because of this sustainable
agricultural practices have allowed these crops to be both
inexpensive and a reliable source of food security. However,
plant-based ailments have put this at risk. When bacteria or
fungi infect plant tissue growing above ground, lesions occur
on the leaves, stems, and panicles of the plants. Image-based
plant disease detection systems are developed by integrating
deep learning models to process photos of sick leaves.
Shoaib et al. [14], explored recent advancements in using
Machine Learning (ML) and Deep Learning (DL) techniques
for plant disease proof of identity, illustrating improved
accuracy and efficiency, while addressing challenges and
limitations, offering valuable insights for researchers, practi-
tioners, and industry professionals. However, the authors did
not apply to handling vast amounts of data with an advanced
model architecture on a large scale. The applications of image
preprocessing of images also exhibited the lack of their study.
Moreover, transformer models are becoming increasingly
important due to the development of specialized quantization
methods adapted to these models.

Qin et al. in [15] proposed BiBERT, a completely
binarized iteration of the BERT model that aims to substan-
tially decrease computational and memory expenses while
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TABLE 1. Overview of the existing related studies.

preserving performance. The main advancements include
the Bi-Attention mechanism, which reduces information loss
during binarization by maximizing information entropy and
replacing softmax with Bitwise-Affine Matrix Multiplication
(BAMM), and the Direction-Matching Distillation (DMD)
method, which enhances optimization accuracy by aligning
the optimization directions of binarized and full-precision
models through upstream distillation and similarity pattern
matrices.

Chen et al. in [16] introduced DB-LLM (Dual-Binarization
for Large Language Models) as a method to improve
computing performance by using ultra-low bit quantization.
The key innovations consist of Flexible Dual Binarization
(FDB), which divides 2-bit quantized weights into two
binary sets to enable efficient operations without sacrificing
accuracy, and Deviation-Aware Distillation (DAD), which
modifies the distillation loss to prioritize ambiguous samples.
The experiments conducted on LLaMA-1 and LLaMA-2
models provide evidence that DB-LLM surpasses existing
quantization approaches in terms of perplexity and accuracy,
resulting in a 20% decrease in computing expenditure.

Qin et al. [17] presented IR-QLoRA, an innovative
approach to enhance the precision of quantized large
language models (LLMs) by LoRA finetuning. The sys-
tem employs two primary methodologies: Statistics-based
Information Calibration Quantization, which effectively
preserves the original information in quantized parameters,
and Finetuning-based Information Elastic Connection, which
enables versatile representation of information. The exper-
iments demonstrate that IR-QLoRA greatly enhances the
accuracy of the LLaMA and LLaMA2 models when using
2-4 bit-widths. This improvement in accuracy is achieved
with only a slight increase in time consumption, showcasing
the efficiency and versatility of IR-QLoRA.

Qin et al. in [18] introduced BiBench, a benchmark
designed to examine network binarization holistically.
It mainly evaluates the prerequisites for viable binarization,
sets evaluation metrics, and assesses milestone binarization
algorithms. Key findings include the crucial importance
of binarized operators on performance and deployability,
large accuracy variations across jobs and architectures, and
promising efficiency on edge devices despite hardware limits.
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Huang et al. in [19] introduced BiLLM, a revolutionary
1-bit post-training quantization approach for LLMs. BiLLM
discovered salient weights and minimized compression loss
by binary residual approximation, while accurately binarizing
non-salient weights using an optimal splitting search. BiLLM
produced high-accuracy inference (e.g., 8.41 perplexity on
LLaMA2-70B) with 1.08-bit weights, greatly surpassing
state-of-the-art quantization approaches.

Zhu et al. [20] proposed MSCVT, a lightweight hybrid
transformer model for crop disease detection that combines
features of CNN and Transformer via multiscale self-
attention (MSSA) modules, demonstrating high recognition
accuracies on practical disease data. Nevertheless, the authors
did not implicit any preprocessing network for measuring the
robustness and flexibility of the model in the real-life data.
Zeng et al. [21] developed the Squeeze-and-Excitation Vision
Transformer (SEViT) model for large-scale and fine-grained
plant disease classification, combining ResNet with a channel
attention module for preprocessing and ViT for feature
classification but yielded a lower accuracy under a field
background, indicating the difficulty of field identification.
However, the authors weren’t interested in constructing this
design in real-world environments while retaining the scale
and effectiveness of the service.

Pang et al. [22] established a novel approach called Dense
CNNs and Transformer Network (DCTN) for accurate field
crop disease detection, utilizing a multi-head self-attention
mechanism, on their dataset and a publicly available dataset,
respectively, showcasing its reliability against background
interference in real-field environments. Consequently, it is
vital to highlight the utility of the novel computer vision
algorithms that improve model efficiency in a decentral-
ized federated network setting that was missing in these
works. Traditional transfer learning methods may not be
as efficient in today’s world because they rely on a wide
number of characteristics, which, while their abundance,
may offer less precise categorization competencies. Addi-
tionally, Arshad et al. [23] constructed a novel deep learning
framework for precise and efficient detection leveraging
two well-established models (VGG19 and Inception-V3)
under the PLDNet framework designed to automatically
predict potato leaf diseases. However, this study misses
the promise of retaining the standard for making that
deep learning system lightweight as VGG19 comprises
143.7M parameters. Öğrekçi et al. [24] applied deep learning
approaches, specifically DenseNet121, Vision Transformers
(ViT), and a ViT + CNN combination, for the categorization
of illnesses in sugarcane leaves, attaining high precision rates.
However, the comparative study might not account for the
varying nature of datasets, which can significantly impact the
performance of vision transformers and CNNs.

Wang et al. [25] proposed the novel ECA-ConvNeXtmodel
for the identification of six categories of rice leaf diseases
and healthy rice leaves, combining the Efficient Channel
Attention (ECA) module and utilizing transfer learning,
achieving an impressive accuracy on the rice leaf disease

identification dataset. Aggarwal et al. [26] proposed the
federated transfer learning (F-TL) approach for rice-leaf
disease categorization, using both IID and non-IID datasets,
with EfficientNetB3 and MobileNetV2 showing comparable
results, demonstrating the advantages of the F-TL framework
for cost-effective, data-privacy-assured paddy leaf disease
identification in resource-constrained edge devices. Though
the use of FL showed a promising approach to handling
large amounts of data is vital for fast and efficient learning
throughout the system, the comparative analysis of diverse
VIT models is missing in this study. Also, the noise addition
process for the robust performance of the model is missing in
this paper.

Haridasan et al. [27] proposed an automated computer
vision-based approach utilizing image processing, machine
learning, and deep learning, incorporating support vec-
tor machine classifier and convolutional neural networks,
to accurately identify and categorize rice plant diseases,
achieving the finest validation accuracy of 0.9145 and offer-
ing predictive remedies for diseasemanagement in Indian rice
fields. However, for handling large sets of data, the traditional
approach for deep learning with the assistance of a machine
learning classifier would not be suitable. Liu et al. [28]
proposed a NanoSegmenter model based on the Transformer
structure, integratedwith lightweight technologies, to achieve
high-precision tomato disease detection, with a precision of
0.98, a recall of 0.97, a mIoU of 0.95, and a computational
efficiency of 37 FPS, providing a viable option for this
crucial agricultural application on tomato disease detection.
Idoje et al. [29] investigated the application of FL in
smart farming, utilizing the federated averaging model for
crop classification with climatic parameters as independent
variables and crop types as labels, with decentralized models
converging faster and achieving higher accuracy. However,
all these efforts lack the application of FL approaches that
principally handle the broad dispersion of data for multiple
locations or organizations for more detailed findings for one
or several types of plant diseases. This is a notable constraint
that necessitates the requirement of development. Table 1
has been prepared to present an overview of the strategies
that have been employed for accurate diseased plant picture
categorization.

Upon a detailed evaluation of existing works, it becomes
obvious that these efforts generally revolve around boosting
system efficiency. Yet, there are considerable gaps in
addressing the essential topic of guaranteeing real-time
analysis in a decentralized environment with multiple clients.
Therefore, integrating FL into the domain of wheat crop
disease detection could offer several key benefits. Firstly,
it would enhance collaborative learning and updating by
ensuring that sensitive agricultural data, such as images of
infected crops, remains localized and is never shared in
its raw form. Secondly, it allows for collaboration among
researchers, practitioners, and industry professionals. More-
over, our advanced FL enables the development of a more
robust and accurate global model by aggregating knowledge
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from diverse sources, potentially improving the efficiency
and reliability of disease identification. By incorporating
secure aggregation techniques, the model updates would
be maintained efficiently during the collaborative learning
process between the local and global clients.

III. METHODOLOGY
Our working methodology includes a four-layer preprocess-
ing pipeline for data gathering, improving model correctness
by using Canny Edge Detection, Gaussian Blur addi-
tion, Laplace Transformation, and High-Pass Filtering. The
advanced vision transformer architecture combines CoAtNet
with Swin Transformer V2, enhanced by a Local Attention
mechanism, to deliver superior performance with fewer
parameters in federated learning (FL) systems. Furthermore,
we employ the deep ensembles technique to get higher pre-
cision and dependable uncertainty estimations. This entails
the process of training these models and then calculating
the average of their predictions. This method effectively
captures both the uncertainty related to knowledge and the
uncertainty related to chance. Nevertheless, this process
needs large computer resources because of the necessity to
train and keep multiple models. To mitigate this issue, we put
pruning strategies into the network. Moreover, this federated
learning architecture allows for dynamic interactions between
local and global model instances, which enables the efficient
transmission of model updates. Our pruning approaches are
used to further enhance optimization across the FL system.
The overall strategy of this approach is depicted in Figure 1.

A. DATA COLLECTION
We collected two datasets from Kaggle to meet the distinct
needs of our clients in our federated global network for
aggregate results. The first dataset, ‘‘Plant Disease Classi-
fication Merged Dataset’’ was captured in the uncontrolled
environment of Holeta wheat farm, Ethiopia [31]. The second
dataset, ‘‘Wheat Nitrogen Deficiency and Leaf Rust Image’’,
was obtained from a controlled experiment at the IARI
field during the 2019 − 20 rabi season, using an RGB
camera [32]. These datasets serve as an extensive basis
for our research, meeting the needs of both real-world and
controlled scenarios. The folders are organized into train, test,
and validation sets, with an 80:10:10 ratio with 112 × 112,
128 × 128 and 224 × 224 image sizes. Table 2 gives a
brief description of the total distribution of those datasets
containing 4230 images.

Table 3 displays summary statistics for two datasets,
with variables such as mean, standard deviation, minimum,
maximum, median, and quartiles. Dataset 1 has lower values
across most parameters compared to Dataset 2, which often
has higher values, indicating probable differences in the
distributions of the two datasets.

B. IMAGE PREPROCESSING
To increase our model’s efficacy in our FL system of wheat
leaf diseases, we conduct four levels of image preprocessing

steps into our datasets as shown in Figure 2. These methods
categories include Canny Edge Detection, Gaussian noise,
Laplace noise, and High-Pass Filtering.

1) DATA AUGMENTATION
We first apply data augmentation techniques, including
horizontal flipping, and slight shifts in height and width,
but excluding vertical flips. These augmentations simulate
variations in the positioning and orientation of the subjects
within the images, further enhancing the model’s ability to
recognize patterns regardless of their orientation or alignment
in the input data.

2) CANNY EDGE DETECTION
The Canny edge detection algorithm is a cornerstone in image
analysis [33]. Its execution on the grayscale image provides
an edge map that delineates the significant edges within the
visual content. By picking lower and upper thresholds for
100 and 200 instances, we apply the Canny algorithm to
effectively find edges, which are crucial in activities such
as object identification and feature extraction for our disease
images.

3) GAUSSIAN BLUR
A Gaussian filter, often referred to as Gaussian blur, serves
as a smoothing filter that is vital in image processing for
the objective of softening images, therefore decreasing fine
features and undesirable noise [34]. This filter involves the
usage of a Gaussian function, which has a close connection
to the normal distribution in statistics, to determine how each
pixel in the image should be adjusted. To introduce noise
and fine-scale deviations in the edge map, we utilize the
Gaussian blur method. This smoothing operation is carried
out with a Gaussian kernel of size (5, 5), and tries to eliminate
high-frequency components that may interfere with further
processing steps. The blurred images preserve the most
important edges while lowering noise, resulting in a cleaner
and more solid basis for later research.

4) LAPLACIAN TRANSFORMATION
In our study, laplacian sharpening is done using the
OpenCV library. Laplacian function, adds a level of detail
enhancement to the image. The Laplacian operator increases
the high-frequency components inside the image, hence
accentuating edges and tiny details [35]. The sharpened
image is formed by subtracting a fraction (0.5) of the
Laplacian of the original image from the image itself. The
outcome is a visually more effective image, keeping essential
visual cues.

5) HIGH-PASS FILTERING
A high-pass filter allows high frequencies to flow through
while reducing or suppressing sounds below a specific cutoff
frequency [36]. In our dataset, we apply sharpening which
is merely a frequency-domain high-pass operation in the
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TABLE 2. Main classes with number of images in both datasets.

FIGURE 1. The proposed methodology involves data collection to a four-layered preprocessing pipeline incorporating canny edge detection, gaussian
blur addition, laplace transformation, and high-pass filtering to enhance model accuracy. The advanced vision transformer architecture combines
CoAtNet and Swin transformer V2 with a local attention mechanism, designed for high performance with reduced parameterization in federated
learning (FL) systems. Additionally, the identifiable FL architecture supports dynamic interactions between local and global model instances,
facilitating efficient model update transmission.

TABLE 3. Summary statistics for two datasets.

context of image processing. Here diseased images are
sharpened when the contrast between adjacent areas with
little fluctuation in brightness is increased.

C. THE EXISTING DEEP LEARNING MODELS FOR LEAF
DISEASE RECOGNITION
To construct a precise model for the identification of
wheat leaf diseases in real-world agricultural settings, our
study delves into state-of-the-art models noted for their
fair performance across varied datasets in recent years.
Among them, we test important convolutional neural network
(CNN)-based models, including ConvNeXtBase, ConvNeXt-
Large, EfficientNetV2L, InceptionResNetV2, ResNet152,
andNASNetLarge [25], [37], [38], [39], [40], [41]. In Table 4,
we give a complete analysis of these reference models, defin-
ing their different properties and their respective applicability
for diverse application situations within the domain of leaf
disease identification.
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FIGURE 2. Four levels of image preprocessing methods are added to the image samples.

D. PROPOSED MODEL
In this study, we propose our model architecture for the
difficult issue of wheat leaf disease classification in our
FL system for handling large amounts of data, expertly
combining the numerous characteristics of two foundational
essential models: Swin Transformer and CoAtNet [42], [43].
We use these two models as feature extractors combining a
fusion of layers in their model architecture shown in Figure 3.

The mechanism of vertically stacking convolution layers
and attention layers in a logical method is effective in
enhancing generalization, capacity, and efficiency in our
CoAtNet model. On the other hand, The Swin Trans-
former V2 model features three essential strategies to
boost its performance and adaptability. Firstly, it utilizes
a residual-post-norm method coupled with cosine attention
to improve training stability, solving major concerns faced

in large-scale transformer models. Secondly, it proposes
a log-spaced continuous position bias technique, enabling
seamless transfer of pre-trained models from low-resolution
to high-resolution tasks, hence boosting adaptability across
multiple resolution settings. Lastly, the model employs a
self-supervised pretraining strategy known as SimMIM,
which drastically reduces the dependency on labeled data
during training, allowing for more efficient exploitation of
available resources. These strategies collectively contribute
to the Swin Transformer V2 model’s efficacy, efficiency,
and adaptability across numerous applications and tasks. The
whole model architecture is for the two datasets with different
output shapes shown in Tables 5 and 6.

A =
√

π

2e

(
N∑
i=1

f1i +
N∑
i=1

f2i

)
. (1)
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TABLE 4. Important description of different existing model types in leaf disease recognition.

FIGURE 3. Our proposed model architecture for wheat leaf disease classification: leveraging the power of CoAtNet and Swin transformer as feature
extractor applying LA mechanism in the classification phase.

In our proposed model architecture, we perform feature
fusion to combine the outputs of these two network models
which acted as the backbone of this proposedmodel as feature
extractor, denoted as f1 and f2, representing the results of
CoAtNet and Swin, respectively. Both f1 and f2 are N × 768
matrices, where N is the number of samples. The feature
fusion is achieved by computing the element-wise average,
resulting in a new matrix A written in (1). Feature fusion has
been mainly utilized for feature extraction which performs as

the main backbone of this model.

D(Q,K ,V ) = A(QKTW )V . (2)

We further use the linear attention layer for classification.
The LA layer makes the model more computationally
efficient, reduces the danger of overfitting, and provides a
more compact representation of the information by lowering
the dimensionality of the feature vector from 768 to 64 aiding
model interpretation. Q is the query matrix, K is the key

109136 VOLUME 12, 2024



M. Fahim-Ul-Islam et al.: Comprehensive Approach Toward Wheat Leaf Disease Identification

TABLE 5. Our proposed model architecture with feature extractor and classifier components experimenting with three input image dimensions with
4 classes and weight pruning (Freezing last 30 layers for each two models) for plant disease classification merged dataset where TP denotes trainable
parameters and NTP denotes Non-Trainable parameters.

TABLE 6. Our proposed model architecture with feature extractor and classifier components experimenting with three input image dimensions with
2 classes and weight pruning (Freezing last 30 layers for each two models) for wheat nitrogen deficiency and leaf rust image dataset where TP denotes
trainable parameters and NTP denotes Non -Trainable parameters.

matrix, V is the value matrix, W is a learned weight matrix,
and D denotes the number of input dimensions shown in (2).

1) PRUNING METHOD
The weight pruning method utilized in this study is
Layer-wise Weight Freezing. This method involves freezing
the weights of specific layers within the neural network to
reduce the number of trainable parameters. In our approach,
we freeze the last 30 layers of each of the feature extractor
models (CoAtNet and Swin V2). The last 30 layers of
CoAtNet are frozen, reducing the number of trainable
parameters from approximately 22 million to 14,407,301.
Similarly, the last 30 layers of Swin V2 are frozen, decreasing
the trainable parameters from approximately 27 million to
17, 689, 560. An average pooling layer combines the outputs
of the feature extractors. This layer has 147, 456 trainable
parameters. The output layer, is a dense layer with 4 output
classes, having 130 trainable parameters. Freezing layers
significantly reduces the number of parameters that need
to be updated during training, lowering computational and
memory requirements. With fewer parameters to optimize,
the training process is accelerated, enabling faster model
iterations and tuning. This method effectively utilizes pre-
trained weights, which stabilizes the learning process for
new tasks, particularly beneficial when the new dataset is
limited in size. By limiting the model’s complexity through

frozen layers, overfitting is mitigated, enhancing the model’s
generalization capabilities on unseen data. This method
leverages the robustness of pre-trained models, offering
advantages in terms of computational efficiency and regular-
ization while requiring careful selection of layers to balance
efficiency and performance. Determining which layers to
freeze requires careful consideration and experimentation
in the model architecture of our local and global nodes in
FL architecture. Freezing too many layers might hinder the
learning process. Conversely, freezing too few may not yield
significant computational benefits [44]. Therefore we keep
the freeze of the last 30 layers. In this pruning strategy,
the same deep ensemble process of that proposed model
combining the model average predictions is employed to
obtain high accuracy and robust uncertainty estimations and
averaging their forecasts. Therefore, this approach effectively
captures both evidential and algorithmic uncertainty.

2) PTQ INTEGRATION
We further employ post-training quantization into federated
learning. The workflow consists of four main steps: initial
model training, optimization at the central server, model
distribution, and model aggregation.
• At the central server, an initial model is trained on
available centralized data. This step serves as the starting
point for subsequent optimization techniques.
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• Following initial training of the local nodes, layer-
wise weight pruning is applied to the proposed model
to remove redundant or less informative parameters.
After this, that is followed by post-training quantization,
which reduces the precision of model weights and acti-
vations, thereby reducing memory and computational
requirements.

• Our optimized model comprising pruned and quantized
parameters is distributed to all federated nodes for
further local training.

• After local training on each node, model updates in the
form of weights and gradients are shared with the central
server. The central server aggregates these updates
applies necessary optimization techniques including
pruning and quantization and distributes the updated
model back to the nodes.

After completing full training in the global model,
we reduce neural network complexity using the Post-training
quantization (PTQ) pruning strategies. We utilize the
post-training quantization (PTQ) [45] method that optimizes
and compresses trained models to reduce memory footprint
improving inference speed. We implement PTQ to convert
model weights and activations from higher precision (e.g., 32-
bit floating point) to lower precision (e.g., 8-bit integers) after
training. This technique reduces model size and enhances
computational efficiencywithout significantly compromising
performance. The benefits of PTQ include substantial reduc-
tions in model size, making them suitable for devices with
limited storage, and faster inference due to lower precision
computations. Additionally, quantized models consume less
power, beneficial for battery-operated devices and large-scale
data center deployments. However, PTQ can lead to accuracy
loss, especially in models sensitive to precision changes.
To address this, we carefully calibrate and fine-tune our
models.

IV. PROPOSED FEDERATED LEARNING MODEL FOR
WHEAT LEAF DISEASE IDENTIFICATION

Here, we use our proposed model in the distributed FL
system for effective data transfer. We apply our own FL
architecture for reducing dynamic allocation applying more
efficient utilization of our global server device.

For the local training, the process starts with individual
participants methodically training their local models which
can be referred to as node devices of each region, deriv-
ing significant insights and patterns from their particular
datasets. On the other hand, central servers incorporate
high-performance hardware and software components suited
for efficient data processing and storage, ensuring the
system’s usefulness and scalability in the context of our
wheat leaf disease detection. The central server functions as
a specialized computing device specifically tailored for the
role. It operates as a center for collecting, analyzing, and
aggregating the model weights and disease categorization
results submitted by all participants.

Algorithm 1 Proposed Federated Learning for Wheat Leaf
Disease Identification Using FedMax Principle
1: Input:
2: θg: Initial global model parameters
3: R: Number of communication rounds
4: D: Dataset containing clients
5: K : Number of clients selected in each communication

round
6: η: Learning rate
7: T : Number of local training iterations
8: Output:
9: θg: Final global model parameters

10: Initialize θg
11: for r ← 1 to R do
12: Select K clients from D
13: for each k ∈ K do
14: Split k into (Tk ) and (Vk )
15: Initialize θk
16: for t ← 1 to T do
17: Train Tk (local):
18: Pclassn =

ezi∑N
j=1 e

zj (L ∗Wo + bo)

19: θkt ← wkt
20: wkt+1← wkt − η∇wLoss(wkt , Tk )
21: bkt+1← bkt − η∇bLoss(wkt , Tk )
22: end for
23: end for
24: On Each Client:
25: Initialize Xk
26: θ r+1←

1
K

∑K
k=1 θk

27: V ←
∑K

k=1 score(Xk )× θk
28: On Global Server:
29: V ←

∑K
k=1 V × θk

30: θg← GlobalUpdate(θg,V)
31: end for

Regarding the data storage, the main server efficiently
manages (Hierarchical Data Format version 5) HDF5 format
files, allowing for various data kinds and architectures.
Common data types include integers (8, 16, 32, and
64-bit), floating-point numbers (single and double precision),
complex numbers, strings, arrays, matrices, and compound
kinds for structured data. These data weights go to the
metadata entry creation for keeping data categorization.
For each uploaded HDF5 file, a metadata item is created
following the defined format. This entry is essentially an
organized set of metadata that describes the file and its
content. Our advanced proposed architecture of this data
management pipeline with the central server at its core,
is presented in Figure 4. The global server, responsible
for the model aggregation of the local combined weights,
successfully updates the global model with the model
weights. The global server takes up a correct classification
for the disease images with the secured model weights from
the 1 to N number of clients with their selected classes. This
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comprehensive solution, coupled with the FedMax algorithm
for local model weight selection, aligns with the strengths
of the data management process in a more structured
manner.

The incorporation of the HDF5 (Hierarchical Data Format
version 5) data management pipeline with our proposed
model improves the system’s practical use and ability to
handle huge datasets needed for deep learning tasks in
wheat leaf disease identification, making it more scalable.
HDF5 is a flexible file format specifically created for
effective storing and organization of large amounts of data,
with a hierarchical structure similar to a file system. This
architecture enables the organization of complicated datasets,
such as annotated photos of different variants of wheat
leaf diseases, into datasets grouped that are conveniently
accessible during model training and inference. The ability
of HDF5 to enable quick access to specific portions of the
dataset without requiring the complete file to be loaded
into memory is a notable benefit. During the training phase,
mini-batch processing can take advantage of this capability,
enabling the model to efficiently obtain batches of images
and their accompanying labels from the HDF5 file. This
modification reduces the impact of input/output bottlenecks,
hence improving the overall efficiency of the training
process into our FL system architecture. HDF5 files are
well-suited for federated learning environments because of
their portability and flexibility. In our FL system, every node
has the capability to store its own local data in HDF5 files,
which can be utilized for local training without the need for
substantial modifications to the data management process.
The inclusion of local storage functionality guarantees the
confidentiality and protection of data, in accordance with
the principles of federated learning, which maintains data
decentralization and only shares model changes. Machine
learning frameworks like TensorFlow and PyTorch offer
built-in support for HDF5, permitting smooth integration
with data loaders that handle batching and shuffling of data
during training. In our FL system, each node keeps its local
HDF5 files holding the training data. The local model weights
are trained on these datasets, and only the model weight
updates not taking raw data are transmitted to the central
server.

The objective of the FedMax algorithm is to minimize
the global loss function g(w), where w represents the global
model parameters [46]. This global loss function is defined
as follows:

min
w
g(w) =

m∑
k=1

pk ∗ gk (wk ), (3)

where, gk (wk ) mainly defines the local objective, which
usually is utilized to make the predictions that are made
with the local model parameters wk . The system involves
m devices or nodes selected for each communication round,
where (m = C ∗ M ), with C defining the ratio of selected
devices. In our case this is our datasets gathering from
each organization and M represents the total number of

devices/nodes attending as local client-server. The notable
consideration is the pk match the condition for (

∑M
k=1 pk =

1), with (pk =
nk
n ), where (nk ) sample data(images)

available on device or node k , and (n =
∑M

k=1 nk ) is the
total number of samples across the local clients. Recurrent
development and the constant update of model weights
from the central model to the local model considerably
enhance interpretation while ensuring the correctness of
our proposed model’s effectiveness. The weighted average
approach efficiently addresses this difficulty by applying a
feature selection strategy for local model updates, giving
weights based on their accuracy. As a result, multiple
entities, such as farmers or organizations, can transmit and
receive highly accurate categorization results through this
strategy, which is strengthened by the centralized aggregated
results.

A. INCORPORATING WEIGHTED AGGREGATION
In the FedMax algorithm, we address the issue of underper-
forming local models by applying a weighted aggregation
strategy. Each client’s contribution to the global model is
weighted based on its validation performance. Specifically,
the weight wk for client k is determined by its validation
accuracy ak , normalized across all participating clients:

wk =
ak∑K
j=1 aj

. (4)

This ensures that clients with higher performance have
a greater influence on the global model update, thereby
reducing the impact of underperforming clients.

Our proposed Algorithm 1 for wheat leaf disease involves
representing different entities and operations. The federated
learning algorithm aims to collaboratively train a global
model for wheat leaf disease detection across multiple
clients while preserving data privacy. The process begins
by initializing the global model parameters, denoted as
θg,0. In each iteration, a subset of clients is selected from
the overall dataset D. For each selected client, its data is
split into a training set (Tk ) and a validation set (Vk ). The
local model parameters (θk,0) are then initialized providing
an iterative training process that occurs over T iterations.
During training, the local model parameters are updated
along with ∇wLoss, ∇bLoss gradients of the loss function
with respect to the weights and bias. After completion, they
are aggregated across all clients to update the global model
(θ r+1). Each client computes local scores on its validation
set using the updated global parameters using the feature
selection principle of the FedMax algorithm. These local
scores are then aggregated on the global server with weights
assigned to each client resulting in updated global model
parameters (θg).

We conduct our FL approach with two datasets for wheat
leaf disease classification where in the local server, we feed
our pruned proposed transformer model into the system for
the training in a non-independent and identically distributed
(non-iid) manner.
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FIGURE 4. Schematic representation of the proposed data management pipeline, emphasizing the central server’s role in aggregating model weights
and disease categorization results from local nodes, facilitated by the FedMax algorithm for optimal global loss minimization in wheat leaf disease
detection.

V. PERFORMANCE EVALUATION
The efficacy of eachmodel has been scrutinizedwith a variety
of performance evaluationmetrics. To ensure that themodels’
proficiency is meticulously examined, evaluation metrics
include accuracy curves, confusion matrices, classification
reports, and Area under the ROC Curve(AUC) scores, Cohen
Kappa, and inference times of all models. The accuracy
curve shows the model’s best attainable accuracy, and its
linearity indicates its capability as a classification model.
If the line is seamless, the classifier is more appropriate.
By comparing the actual labels with the anticipated class
identifiers, the confusion matrix makes it easy to monitor the
models’ accuracy and mistakes. Later the inference time is
calculated for the computational efficiency.

The precision (P) is here defined as the proportion of
accurately predicted outcomes compared to the number
of positive instances. In other words, it measures forecast
accuracy and can be expressed mathematically as follows.

P =
Tp

Tp + Fp
. (5)

The recall (R) measure is calculated by dividing the number
of desired results by the number of initial class evaluations.

R =
Tp

Tp + Fn
. (6)

The F1-score is an individual metric computed by
averaging precision and recall.

F1 =
2× P× R
P+ R

, (7)

where Tp = is the true positive, Fp is the false positive, Fn is
the false negative, and Tn is the true negative.
The Cohen Kappa result can be explained as follows:

values 0 denote no agreement, 0.01-0.20 indicate no to

little agreement, 0.21-0.40 indicate reasonable agreement,
0.41- 0.60 indicate moderate agreement, 0.61-0.80 indicate
substantial agreement while 0.81-1.00 denote almost perfect
agreement.

κ =
Po − Pe
1− Pe

, (8)

where the observed agreement, or P0, is the percentage
of instances in which both raters concur and the expected
agreement, or Pe, is the percentage of occurrences in which
both raters would be anticipated to agree purely by chance.

The AUC score indicates the area under the Receiver
Operating Characteristic (ROC) curve, which is a graphical
representation of the model’s performance as the dis-
crimination threshold is modified. It assesses the model’s
overall ability to discriminate between the two classes
(positive and negative) across different threshold levels.
AUC of 0.5 implies random performance, whereas AUC of
1.0 represents perfect discrimination.

In the above set of equations, Tp is True Positive,Fp is False
Positive, Fn is False Negative, and Tn is True Negative.

Here inference time defines as T (also known as inference
latency or prediction time) is the amount of time it takes
a machine learning model to process input data and make
predictions. It assesses the model’s computational efficiency
throughout the inference phase. In the context of deep
learning models, such as neural networks, the inference time
formula is as follows:

T =
1
S

, (9)

where:
• Here S denotes as Inference Speed. The model’s ability
to process input data and make predictions at a rapid
pace. It is the inverse of inference time and is usually
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measured in frames per second (FPS) or inferences per
second (IPS).

GPU utilization is defined as U depicts the ratio of the
workload or tasks allocated to the GPU to its full capacity.

U =
Tb
Tt
× 100%, (10)

where:

• Time GPU is busy computing (Tb): The duration
the GPU is actively processing data or performing
computations.

• Total time interval (Tt ): The total duration of
observation.

VI. EXPERIMENTAL SETUP
All computations in our experimental setup are performed
within a Windows 11 environment, harnessing the process-
ing capabilities of two GPU accelerators: the NVIDIA®
GeForce RTX 3060 Ti and the Tesla T4 with 16GB of
dedicated memory. Our CPU contains an AMD RyzenTM
9 having 5900X , which ensures fast processing. TensorFlow
version 2.11.0, a popular choice in the deep learning
community recognized for its stability and versatility, is used
for our training. TensorFlow Federated (TFF), an open-
source framework, is used to build up and run our federated
runtime environments. We set the total number of training
epochs to 50 to handle the training process efficiently,
while simultaneously implementing early stopping measures.
This choice helps to prevent overfitting and directs the
model toward optimal generalization. We have tried different
batch size variations and finally choosing a batch size
of 32 is prompted by a desire to strike a compromise
between training speed and memory use. We include a
global average pooling layer in the network architecture
to minimize the spatial dimensions of the feature maps
before connecting to the fully linked layers. A dropout rate
of 0.4 is added as well to reduce overfitting and promote
model robustness. To control model complexity and enhance
the learning of critical characteristics, both L1 and L2
kernel regularization techniques are used for regularization.
In terms of optimization, we utilize the Adaptive Gradient
Algorithm (Adagrad) optimizer, which is well-known for
its success in training deep neural networks [47]. through
learning rate changes in each training parameter The learning
rate, which was set at 0.00001, is essential to the model’s
convergence and overall performance. This fine-tuning of
the learning rate is vital for achieving the optimal balance
of convergence speed and stable training dynamics. The
details are shown in Figure 7. Our study assesses the
statistical significance of our method in contrast to others
by analyzing performance measures using a one-sided paired
t-test. Before undertaking this investigation, we assessed
the normality of the data using the D’Agostino-Pearson
test.

VII. RESULT ANALYSIS
Our study focuses on evaluating our performance in
non-independent and identically distributed (Non-IID) sce-
narios. This emphasis arises from the basic character-
istics of agricultural datasets, as we have two datasets
with multiclasses in separate places. Agricultural data
frequently demonstrates spatial heterogeneity, with different
regions of a field having distinct features that influ-
ence crop health. Soil composition, solar exposure, and
moisture levels can all vary dramatically throughout a
field. Furthermore, temporal variability is common, influ-
enced by factors such as weather patterns and seasonal
variations.

We evaluate the performance of our model within our
global FL architecture by locally running two datasets. The
first dataset focuses on wheat leaf illness and has five
separate classes, whereas the second dataset similarly focuses
on wheat leaf disease but only includes two classes. Both
datasets’ performance metrics are computed, and the results
are shown below.

A. PLANT MERGED DISEASED DATASET
A comparative analysis is conducted to evaluate the proposed
model against various pre-trained models for the three
input dimension testing 112x112,128x128,224x224, utilizing
performance metrics such as accuracy, precision, recall,
F-1 score, AUC, and Cohen’s Kappa. Among the pre-trained
models, ConvNeXtBase stands out with a 0.92 accuracy,
closely followed by ConvNeXtLarge at 0.94 with an
improved score, EfficientNetV2L at 0.89 − 0.92 range, and
NasNetLarge at 0.86-0.88, demonstrating their competence.
In contrast, InceptionResNetV2 displays lower accuracies
for all input dimensions than other models, signifying
limitations in handling the dataset effectively. The proposed
model emerges as the top performer, achieving a remarkable
accuracy of keeping a range of 0.96− 0.98 for all three input
dimensions, consistently high precision, recall, and F-1 score,
a strong AUC of 0.94− 0.97, and a Cohen’s Kappa score of
0.95. Table 8 shows this analysis by utilizing all class values
in a combined state for this dataset.

Additionally in the confusionmatrices, the proposedmodel
outperforms its counterparts by consistently achieving true
positive for all classes demonstrated in Figure 5, which other
models struggled with. This highlights the robustness of the
proposed model in classifying all classes effectively, making
it a standout choice for our system framework. The loss curve
for this data shows a trend among the six pre-trained models.
All six pre-trained models show a consistent convergence
phenomenon to a plateau, starting with rather high initial loss
values and progressively dropping. Still, they are never above
a specific threshold, which results in continuous variations
during training. This pattern highlights their inability to make
major progress. The proposed model, on the other hand,
shows impressive properties. It begins with a much lower
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FIGURE 5. Confusion matrix of plant disease classification merged dataset for wheat leaf disease classification for global server for (a) ConvNeXtBase
(b) ConvNeXtLarge (c) EfficientNetV2L (d) InceptionResNetV2 (e) ResNet152 (f) ResNet50V2 (g) Proposed models.

initial loss value and quickly converges to a much lower
loss level as displayed in Figure 10 (a). Throughout the
training phase, this behavior maintains a consistent variation
around this lower value, which can be characterized as quick
convergence to a lower loss. Regarding the accuracy curves
for the dataset, the proposed model consistently maintains
accuracy levels higher than most of the pre-trained models
by the end of the training as shown in Figure 9 (a). This
trend indicates that the proposedmodel’s learning capabilities
extend to accuracy as well. The proposed model, while not
displaying any exceptional behavior, consistently maintains
accuracy levels higher than most of the pre-trained models
by the end of the training as shown in Figure 9 (a). This
trend indicates that the proposedmodel’s learning capabilities
reflect its accuracy as well. Figure 7 depicts the ROC curves
of all models where our proposed model 7 (g) performs
better than other models in the FL system. We also perform
ablation study experiments on this dataset with different
dropout and batch size variations where dropout 0.2 with
batch size 32 giving better results in terms of accuracy shown
in Figure 17 (b).

TABLE 7. Experimental setup summary.

B. WHEAT NITROGEN DEFICIENCY AND LEAF RUST
IMAGE DATASET
In another dataset (Wheat Nitrogen Deficiency and Leaf Rust
Image), a comprehensive comparative analysis is conducted
to assess the proposedmodel in contrast to various pre-trained
models, using the same metrics in the global FL sys-
tem. Notably, ConvNeXtLarge and ConvNextLarge emerge
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FIGURE 6. Confusion matrix of wheat nitrogen deficiency and leaf rust image dataset for wheat leaf disease
classification on the global server for (a) ConvNeXtBase (b) ConvNeXtLarge (c) EfficientNetV2L (d) InceptionResNetV2
(e) ResNet152 (f) ResNet50V2 (g) Proposed models.

TABLE 8. Comparison of models on wheat nitrogen deficiency and leaf rust image for wheat leaf disease classification for plant merged diseased dataset
on global server.

good performance by achieving a range of 0.89− 0.91
considering all input dimension sizes. Following closely,
EfficientNetV2L exhibits an accuracy span of 0.89 − 0.94.
Furthermore, other metrics show fair results for these models.

Conversely, InceptionResNetV2 yields a relatively lower
accuracy of 78%, suggesting certain limitations in handling
this dataset too for all these dimensions. Furthermore,
ResNet152 andNasNetLarge keep a good accuracy limitation
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FIGURE 7. ROC curves with plant merged diseased dataset with four classes on the global FL server for (a) ConvNeXtBase (b) ConvNeXtLarge
(c) EfficientNetV2L (d) InceptionResNetV2 (e) ResNet152 (f) ResNet50V2 (g) Proposed models.

of 0.90-0.95 scope. Other metric also performs better in terms
of assessing the performance of each model. However, the
proposed model shows the best results in its counterparts
with remarkable accuracy of 0.97-0.99 -and consistently high
precision, recall, F-1 score, AUC, and a Cohen’s Kappa score
of 0.94-0.97. The detailed information of all selective model

results on various models in three input sizes of training
are shown in Table 11. Additionally among the transfer
learning models, both ConvNeXtBase and ConvNeXtLarge
exhibit the highest true positives (TP) for the classes,
reflecting their relatively strong classification performance.
In contrast, the other models fail to attain the same level
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FIGURE 8. ROC curve with the wheat nitrogen deficiency and leaf rust image dataset with two classes on the global FL server assessment for
(a) ConvNeXtBase (b) ConvNeXtLarge (c) EfficientNetV2L (d) InceptionResNetV2 (e) ResNet152 (f) ResNet50V2 (g) Proposed models.

of near-perfection in TP. However, when considering the
proposed model, its confusion matrix shows near-perfect
TP for both classes shown in Figure 6, setting it apart
from the rest. When coupled with its comprehensive clas-
sification report, the proposed model demonstrates superior
performance in accurately identifying both ‘‘diseased’’ and
‘‘control’’ instances. Moreover, observing the loss curves
illustrated in Figure 10 (b), we notice a comparable pattern in

the loss curves of all six pre-trained models. Similarly, the six
pre-trained models in this training data show convergence to
a plateau phenomenon, starting with somewhat large initial
loss values and progressively declining. Moreover, shifting
our focus to this accuracy curve is shown in Figure 9 (b),
a similar pattern has also emerged. The proposed model’s
persistent superior performance highlights its applicability to
this dataset as well. Besides, Figure 8 depicts the ROC curves
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FIGURE 9. Validation accuracy curves with all the TL models along with proposed model on plant merged diseased dataset (a) and wheat
nitrogen deficiency and leaf rust image dataset (b) in the global FL server.

FIGURE 10. Validation loss curves with all the TL models along with proposed model on plant merged diseased dataset (a) and wheat
nitrogen deficiency and leaf rust image dataset (b) in the global FL server.

FIGURE 11. GPU utilization measurement over the training epochs of all models where proposed model performs
better than other transfer learning models in this distributed federated learning system plant merged diseased
dataset (a) and wheat nitrogen deficiency and leaf rust image dataset (b).

of all models where our proposed model 7 (g) performs better
than other models in the FL system. Also in this dataset,
we conduct ablation study tests on this dataset with different
dropout and batch size changes where dropout 0.2 with
batch size 32 produces better outcomes in terms of accuracy
displayed in Figure 17 (b).

C. OVERALL ACCURACY AND INFERENCE TIME AND GPU
UTILIZATION MEASUREMENT
In our global FL setup, we compare the overall performance
of selected models across many parameters as shown in
Figure 16, including accuracy, precision, recall, F1 score,
AUC, and Cohen’s Kappa. Notably, our proposed model
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TABLE 9. Comparison of models on wheat nitrogen deficiency and leaf rust image dataset for wheat leaf disease classification for wheat nitrogen
deficiency and leaf rust image dataset on global server.

TABLE 10. Ablation study on our proposed model of wheat nitrogen deficiency and leaf rust image dataset for wheat leaf disease classification on global
server through Post-Training Quantization (PTQ).

TABLE 11. Ablation study on our proposed model on plant merged diseased dataset for wheat leaf disease classification on global server through
Post-Training Quantization (PTQ).

excels in most measures, with the best accuracy, precision,
F1 score, and Cohen’s Kappa values, making it a strong
choice for accurate centralized diseased class identification.
Besides, Table 12 displays the performancemetrics of various
models on the final global federated model. The proposed
model surpasses others in accuracy and inference time,
obtaining top-5 accuracies of 99.12%, 99.04%, and 98.09%
for input dimensions 112, 128, and 224, respectively. With
the reduced weight, with 32 million parameters, it displays
the lowest inference speeds on both GPU setups giving a fair
performance in the global FL system. Besides, we calculate
the GPU utilization percentage throughout the training

process of our model in the FL system over 50 epochs.
Our proposed model performs better than other models
maintaining a lower range between 6-9 % range in both
datasets shown in Figure 11.

D. PTQ QUANTIZATION ON OUR SYSTEM MODEL
The ablation evaluation of our proposed model on the
Wheat Nitrogen Deficiency and Leaf Rust Image Dataset
for Wheat Leaf Disease Classification is being followed by
Post-Training Quantization (PTQ), on a global server. The
results are summarized in Tables 8 and 11. The ablation study
on our proposed model for wheat leaf disease classification
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TABLE 12. Performance metrics of various models on the final global federated model calculating overall accuracy and inference time calculation.

using Post-Training Quantization (PTQ) across two datasets
indicated continuous performance gains as input dimensions
increased. For the Wheat Nitrogen Deficiency and Leaf Rust
ImageDataset, ourmodel has attained 82% accuracy for input
dimensions 112 and 128, increasing to 84% for 224, while
precision and AUC remained steady at 82 − 83%. For the
Plant Merged Diseased Dataset, accuracy has reached 80%
for input dimensions 112 and 128, increasing to 82% for 224,
with precision and AUC continuously between 80 and 81%.
The model’s recall and F-1 scores improved slightly as input
sizes developed. However after training the PTQmechanism,
the performance loss has been observed however it reduces
our model complexity in the FL system.

E. 2D DIMENSIONS VISUALIZATION INSIGHTS
We evaluate the performance of our global model of
two datasets of wheat leaf disease in 2D dimensions
using Principal Component Analysis (PCA), t-distributed
Stochastic Neighbor Embedding (t-SNE), and Isometric
Mapping (Isomap), to unveil the intrinsic structure and
discern any notable patterns that could elucidate underlying
disease classifications. PCA performs twice under separate
settings in Figure 12 (a) and (d). In the initial PCA 12
(a), a substantial separation has been observed along the
first main component. However, this distinction is less
obvious along the second primary component. In contrast,
the second PCA application 12 (d) has exhibited a denser

grouping, implying less distinction between data points
based on the top two principal components. The t-SNE
approach has identified clusters with high separation in
both applications in Figure 12 (b)(e). The initial application
Figure 12 (b) reveals unique clusters, whereas the subsequent
identified application Figure 12 (e) gives well-defined, non-
overlapping clusters. This indicates t-SNE’s skill in finding
local structures and potentially intricate groupings within the
dataset. Isomap’s first visualization 12 (c) shows groupings
largely distributed along the first dimension, with minor
distribution along the second, suggesting a fundamental
differentiating feature confined within one dimension. The
second Isomap depiction in Figure 12 (f) spreads the data
points more broadly, reflecting a more complex manifold
structure.

F. COMPARATIVE ANALYSIS OF PLANT DISEASE
RECOGNITION MODELS WITH OUR PROPOSED MODEL
Table 13 compares multiple models for plant disease
identification, highlighting their characteristics, Federated
Learning (FL) support, and performance on two datasets. The
models include CNN(general), DenseNet121(CNN) + ViT,
ECA-ConvNeXt, EfficientNetB0 + CBAM, Swin Model,
and a proposed Vision-Based model with LA Attention
Mechanism. Our proposed model stands out, supporting FL
and obtaining the maximum performance with an accuracy
of 98.99% and precision of 95.98% on the first dataset,
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FIGURE 12. Comparative visualization showcasing the application of dimensionality reduction techniques (PCA, t-SNE,
Isomap) on two wheat leaf disease datasets, depicted in 2D dimensions. Panels (a), (b), and (c) represent the techniques
applied to the plant merged diseased dataset, while panels (d), (e), and (f) correspond to the wheat nitrogen deficiency and
leaf rust image dataset. Each technique reveals distinct clustering patterns and structural insights, aiding in the
understanding of disease distribution and classification in wheat.

and accuracy of 9.50% (possibly a typo) and precision of
96.24% on the second dataset. In contrast, the other models,
such as CNN(general) and DenseNet121(CNN)+ ViT, show
lesser accuracy and precision, showing the proposed model’s
advantage in accuracy and FL support for plant disease
identification.

Our proposed model provides a unique vision-based
technique augmented with a Linear Attention (LA) mech-
anism, which considerably boosts its capacity to highlight
essential aspects inside input images. This complex pro-
cess, absent in standard convolutional architectures like
CNNs (e.g., CNN(general)) or hybrid models such as
DenseNet121(CNN) + ViT, equips the model to distinguish
nuanced patterns crucial for effective plant disease iden-
tification. While existing models have shown respectable
performance, they exhibit certain limitations. For instance,
CNN-based techniques generally struggle with identifying
intricate spatial linkages and long-range dependencies inher-
ent in complex plant diseases. This weakness might hamper
their capacity to appropriately recognize small visual clues
indicative of specific diseases. Additionally, conventional
models could meet difficulty in adjusting to various datasets
characterized by changes in lighting conditions, plant species,
and disease presentations. Furthermore, the computational

needs and resource-intensive nature of existing models
could provide hurdles, particularly in resource-constrained
environments where access to high-performance computing
equipment may be limited. Despite these challenges, our
proposed model wired with the use of the Linear Attention
process constitutes a considerable leap forward. By enabling
more nuanced feature extraction and adaptive attention
allocation, our method addresses the drawbacks of prior
approaches, boosting the model’s robustness and accuracy
in disease identification. Moreover, the model’s support
for Federated Learning (FL) not only enables scalability
across dispersed contexts but also facilitates collaborative
learning without compromising data privacy. In summary,
while existing models exhibit commendable performance,
the proposed model’s nuanced attention mechanism and
federated learning capabilities position it as a promising
solution for precise and scalable plant disease identification,
essential for bolstering agricultural resilience and food
security worldwide. Furthermore, In response to the current
focus on model accuracy without sufficient consideration
for real-time analysis in decentralized environments, our
proposed model proposes a novel approach that integrates
federated learning, facilitating collaborative learning across
diverse organizations and locations while safeguarding data
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FIGURE 13. Attention maps for pre-trained TL architectures (ConvNeXtBase, EfficientNetV2L, ResNet152) and the model we propose
in the FL system. Our model demonstrates a higher priority on critical diseased lesion spots with improved ROI selection in wheat.

privacy. Recognizing the limits of classic transfer learning
methods in managing big, diversified datasets due to
their high parameter counts, we offer for a lightweight
transformer-based model architecture specifically built to
perform efficiently in a federated scenario. Moreover,
to address the issues given by noise and unpredictability
in real-world agricultural data, we apply extensive image
preprocessing techniques such as edge recognition, noise
addition, and filtering, boosting the adaptability of our model.

G. ATTENTION MAPPING
Furthermore, Figure 13 presents a comparative visualization
of attention maps of the pre-trained TL architectures,
ConvNeXtBase, EfficientNetV2L, ResNet152, along with
our proposed model in the FL system. Our proposed model
appears to focus more effectively on the crucial portion of
the diseased lesions with better ROI (Region of Interest)
selections of the wheat than the other TL model shown in
Figure 13.
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FIGURE 14. Our novel method utilizes LIME (Local Interpretable Model-agnostic Explanations) techniques to interpret our
proposed model (a-d). By isolating super-pixels and employing explainable linear models, we provide transparent insights into
the classification reasoning of our model.

TABLE 13. Experimentation across reference models demonstrates the efficacy of our proposed technique, particularly in terms of accuracy and support
for Federated Learning (FL), positioning it as a promising solution for plant disease identification challenges.

Besides, we provide a novel method for interpreting our
suggested model utilizing LIME (Local Interpretable Model-
agnostic Explanations) techniques. Initially, the image data
is read and pre-processed to ensure compatibility with the
model that we propose. Subsequently, our model is applied
to estimate the class of the input image. Super-pixels are then
isolated from the image to aid local interpretation. Through

the application of random perturbations, new images are
generated, and the classes of these perturbed images are
predicted using our model. Distances between the original
image and each perturbed image are calculated, followed by
the generation of weights using a kernel function, indicating
the relevance of each perturbed image in the interpretation
process. Leveraging these perturbations, predictions, and
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FIGURE 15. Comparision of the models of our proposed and the reference existing models on both datasets based on their
aggregated inference time.

FIGURE 16. Overall performance comparison of our proposed and the existing models on both datasets in the FL system in
Accuracy, Precision, Recall, F1, AUC and Cohen’s kappa scores.

weights, we develop an explainable linear model to explicate
the decision-making process of the underlying classifier.
Finally, the top features, represented by super-pixels, are
computed to provide insights into the model’s classification
reasoning. This approach offers a more transparent under-
standing of our proposed model, boosting its interpretability
and dependability for stakeholders. Figure 14 shows the
whole process for better visualization of our wheat-diseased
images.

VIII. TECHNICAL IMPLEMENTATION OF THE PROPOSED
APPROACH
The proposed approach for wheat leaf disease detection
involves key technical steps: data preprocessing and aug-
mentation, and model architecture combining CoAtNets
and Swin Transformer V2 for enhanced feature extraction

and image classification. The federated learning framework
allows decentralized model training, preserving data privacy
and enhancing scalability by aggregating model updates from
multiple nodes. Weight pruning optimizes the model for
resource-constrained environments by reducing redundant
parameters, thus decreasing model size and computational
requirements while maintaining accuracy. This method is
particularly effective in federated learning settings with
limited bandwidth and storage. However,implementing this
approach infrastructure in real-world agricultural settings
involves several practical considerations:

A. PRACTICAL CONSIDERATIONS
Here our proposed model in the FL architecture in real-world
settings needs several careful considerations.
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FIGURE 17. Ablations experiments assessment of accuracy with applying different dropout rates (DR) and batch sizes.

1) Network design: Establishing a robust network design
is crucial for efficient communication between central
servers and local nodes, especially in rural areas where
connection may be unreliable. Therefore we can pro-
vide hybrid network solutions. Although wired internet
connections such as DSL or fiber optics are preferred
due to their reliability and speed, they are frequently
unavailable in rural places. Also, cellular networks,
such as 3G, 4G, and upcoming 5G technologies, can be
used as a reliable backup or primary connection option
in areas with sufficient signal strength. Using LTE/5G
routers helps ensure connectivity for edge devices.

2) Protocols for Data Communication: Now focusing
for the communication protocol with MQTT proto-
cols. Therefore utilizing Message Queuing Telemetry
Transport (MQTT) protocols for data transmission
minimizes latency and handles network disruptions
efficiently. MQTT is lightweight, making it suited
for applications with low bandwidth and inconsistent
access. It provides support for Quality of Service (QoS)
levels, ensuring the transmission of messages even
in the event of network outages. Also for securing
with integrating data flow from edge devices to cloud
servers is critical. This includes employing SSL/TLS
encryption for data transport to prevent interception
and unwanted access.

3) Edge Computing: For deploying system, edge devices
with high processing capacity enables for local data
processing, minimizing the requirement for constant
data transmission to central server. Therefore the ARM
Cortex-A Processors are energy-efficient and powerful
enough for various computational activities required
in agricultural applications. Also NVIDIA Jetson
Modules are designed for AI and machine learning
applications, providing the necessary GPU acceleration
for real-time data processing, local training, and
inference.

4) Cloud Infrastructure: Utilizing cloud-based servers
from platforms like AWS, Google Cloud, or Microsoft
Azure is critical for central data aggregation, model
training, and storage. These platforms offer high
availability and disaster recovery solutions, assuring
data integrity and service continuity. Cloud services
can effortlessly interface with edge devices, offering
a cohesive environment for data flow, model changes,
and remote management. Implementing robust security
measures, such as multi-factor authentication (MFA),
encryption at rest and in transit, and frequent security
audits, is crucial for protecting sensitive agricultural
data. For distributed storage options, such as Hadoop
HDFS or cloud-based services, are recommended for
handling huge datasets.

5) Power Supply and Environmental Considerations:
Reliable power supply is vital for ongoing operation.
Deploying solar panels with battery storage can supply
sustained power in remote regions. Also ensuring that
all gadgets, particularly those deployed in the field, are
waterproof and can resist extreme external conditions.

6) Maintenance and Support: Remote Monitoring and
Diagnostics: Implementing systems for remote moni-
toring and diagnostics enables preventive maintenance,
decreasing downtime and boosting system reliability.
Training local technicians or farmers in basic trou-
bleshooting and maintenance can provide a timely
reaction to issues and reduce dependence on distant
support teams.

IX. CONCLUSION AND FUTURE WORK
Our study proposed a unique approach for diagnosing
wheat leaf diseases by merging advanced transformer
models (CoAtNets and Swin Transformer V2) within a
federated learning framework. This combination utilized
the capabilities of both architectures for robust feature
extraction and classification, while preserving data privacy
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and security through decentralized training. Additionally,
the introduction of weight pruning and linear attention
processes enhanced the model for resource-constrained
contexts, making it a substantial contribution to the field
of agricultural disease detection. The major outcomes of
our research revealed that the proposed approach outper-
formed classic convolutional neural networks (CNNs) and
existing transformer models in terms of accuracy, precision,
recall, and F1-score. The results underlined the need to
combine advanced deep learning techniques with federated
learning to boost model performance while ensuring data
privacy.

Despite the optimistic results, our study had several
limitations. The model’s performance was heavily dependent
on the quality and diversity of the training data, which
varied across different geographical regions. Additionally,
the federated learning architecture required a powerful
communication infrastructure, which could be tough to
construct in isolated or rural places. Furthermore, the
process of weight pruning, while good for lowering model
complexity, resulted in the loss of some critical features,
affecting the model’s overall accuracy. Future research
should focus on overcoming the shortcomings found in this
study. This includes strengthening the federated learning
infrastructure to enable reliable communication in rural areas
and boosting the diversity of the training dataset to cover
a larger range of geographical differences. Additionally,
exploring more complex weight pruning approaches that
limit the loss of key features could further enhance the
model. Future studies could potentially investigate the
integration of additional data sources, such as environmental
and climatic data, to increase the model’s robustness and
accuracy.

REFERENCES
[1] H. Khan, G. Krishnappa, S. Kumar, N. B. Devate, N. D. Rathan,

S. Kumar, C. N. Mishra, S. Ram, R. Tiwari, O. Parkash, O. P. Ahlawat,
H. M. Mamrutha, G. P. Singh, and G. Singh, ‘‘Genome-wide association
study identifies novel loci and candidate genes for rust resistance in
wheat (Triticum aestivum L.),’’ BMC Plant Biol., vol. 24, no. 1, p. 411,
May 2024.

[2] T. Ben Hassen and H. El Bilali, ‘‘Conflict in Ukraine and the
unsettling ripples: Implications on food systems and development
in North Africa,’’ Agricult. Food Secur., vol. 13, no. 1, p. 16,
Apr. 2024.

[3] R. S. Khedwal, A. Chaudhary, V. K. Sindhu, D. B. Yadav, N. Kumar,
R. S. Chhokar, and S. Dahiya, ‘‘Challenges and technological
interventions in rice-wheat system for resilient food-ater-energy-
environment Nexus in North-western Indo-Gangetic Plains:
A review,’’ Cereal Res. Commun., vol. 51, no. 4, pp. 785–807,
Mar. 2023.

[4] M. Nadimi, E. Hawley, J. Liu, K. Hildebrand, E. Sopiwnyk, and J. Paliwal,
‘‘Enhancing traceability of wheat quality through the supply chain,’’
Comprehensive Rev. Food Sci. Food Saf., vol. 22, no. 4, pp. 2495–2522,
Apr. 2023.

[5] M. R. Simn, ‘‘Fungal wheat diseases: Etiology, breeding, and integrated
management,’’ Frontiers Plant Sci., vol. 14, pp. 1–3, Jul. 2023.

[6] M. Long, M. Hartley, R. J. Morris, and J. K. M. Brown, ‘‘Classi-
fication of wheat diseases using deep learning networks with field
and glasshouse images,’’ Plant Pathol., vol. 72, no. 3, pp. 536–547,
Apr. 2023.

[7] A. Ahmad, D. Saraswat, and A. El Gamal, ‘‘A survey on using deep
learning techniques for plant disease diagnosis and recommendations
for development of appropriate tools,’’ Smart Agricult. Technol., vol. 3,
Feb. 2023, Art. no. 100083.

[8] P. R. Navale and S. B. Basapur, ‘‘Deep learning based automated wheat
disease diagnosis system,’’ in Proc. Int. Conf. Advancement Technol.
(ICONAT), Goa, India, Jan. 2023, pp. 1–5.

[9] M. Ceyhan, Y. Kartal, K. Özkan, and E. Seke, ‘‘Classification of wheat
varieties with image-based deep learning,’’ Multimedia Tools Appl.,
vol. 83, no. 4, pp. 9597–9619, Jun. 2023.

[10] C. Chronis, I. Varlamis, Y. Himeur, A. N. Sayed, T. M. Al-Hasan,
A. Nhlabatsi, F. Bensaali, and G. Dimitrakopoulos, ‘‘A survey on the use
of federated learning in privacy-preserving recommender systems,’’ IEEE
Open J. Comput. Soc., vol. 5, pp. 227–247, 2024.

[11] A. Casu, M. C. Leggieri, P. Toscano, and P. Battilani, ‘‘Changing climate,
shifting mycotoxins: A comprehensive review of climate change impact
on mycotoxin contamination,’’ Comprehensive Rev. Food Sci. Food Saf.,
vol. 23, no. 2, Mar. 2024, Art. no. e13323.

[12] M. Aggarwal, V. Khullar, N. Goyal, and T. A. Prola, ‘‘Resource-efficient
federated learning over IoAT for rice leaf disease classification,’’ Comput.
Electron. Agricult., vol. 221, Jun. 2024, Art. no. 109001.

[13] Y. Qiu, L.Ma, andR. Priyadarshi, ‘‘Deep learning challenges and prospects
in wireless sensor network deployment,’’ Arch. Comput. Methods Eng.,
vol. 31, pp. 1–24, Mar. 2024.

[14] M. Shoaib, B. Shah, S. Ei-Sappagh, A. Ali, A. Ullah, F. Alenezi, T. Gechev,
T. Hussain, and F. Ali, ‘‘An advanced deep learning models-based plant
disease detection: A review of recent research,’’ Frontiers Plant Sci.,
vol. 14, pp. 1–22, Mar. 2023.

[15] H. Qin, Y. Ding, M. Zhang, Q. Yan, A. Liu, Q. Dang, Z. Liu, and X. Liu,
‘‘BiBERT: Accurate fully binarized BERT,’’ 2022, arXiv:2203.06390.

[16] H. Chen, C. Lv, L. Ding, H. Qin, X. Zhou, Y. Ding, X. Liu, M. Zhang,
J. Guo, X. Liu, and D. Tao, ‘‘DB-LLM: Accurate dual-binarization for
efficient LLMs,’’ 2024, arXiv:2402.11960.

[17] H. Qin, X. Ma, X. Zheng, X. Li, Y. Zhang, S. Liu, J. Luo, X. Liu,
and M. Magno, ‘‘Accurate LoRA-finetuning quantization of LLMs via
information retention,’’ 2024, arXiv:2402.05445.

[18] H. Qin, M. Zhang, Y. Ding, A. Li, Z. Cai, Z. Liu, F. Yu, and X. Liu,
‘‘BiBench: Benchmarking and analyzing network binarization,’’ in Proc.
Int. Conf. Mach. Learn., Jul. 2023, pp. 28351–28388.

[19] W. Huang, Y. Liu, H. Qin, Y. Li, S. Zhang, X. Liu, M. Magno, and X. Qi,
‘‘BiLLM: Pushing the limit of post-training quantization for LLMs,’’ 2024,
arXiv:2402.04291.

[20] D. Zhu, J. Tan, C. Wu, K. Yung, and A. W. H. Ip, ‘‘Crop disease
identification by fusing multiscale convolution and vision transformer,’’
Sensors, vol. 23, no. 13, p. 6015, Jun. 2023.

[21] Q. Zeng, L. Niu, S. Wang, and W. Ni, ‘‘SEViT: A large-scale and
fine-grained plant disease classification model based on transformer and
attention convolution,’’ Multimedia Syst., vol. 29, no. 3, pp. 1001–1010,
Jun. 2023.

[22] D. Pang, H. Wang, J. Ma, and D. Liang, ‘‘DCTN: A dense par-
allel network combining CNN and transformer for identifying plant
disease in field,’’ Soft Comput., vol. 27, no. 21, pp. 15549–15561,
Sep. 2023.

[23] F. Arshad, M. Mateen, S. Hayat, M. Wardah, Z. Al-Huda, Y. H.
Gu, and M. A. Al-Antari, ‘‘PLDPNet: End-to-end hybrid deep learning
framework for potato leaf disease prediction,’’ Alexandria Eng. J., vol. 78,
pp. 406–418, Sep. 2023.

[24] S. Ogrekçi, Y. Unal, and M. N. Dudak ‘‘A comparative study of
vision transformers and convolutional neural networks: Sugarcane leaf
diseases identification,’’ Eur. Food Res. Technol., vol. 249, Apr. 2023,
Art. no. 18331843.

[25] X. Wang, Y. Wang, J. Zhao, and J. Niu, ‘‘ECA-ConvNeXt: A rice leaf
disease identification model based on ConvNeXt,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Vancouver,
BC, Canada, Jun. 2023, pp. 6234–6242.

[26] M. Aggarwal, V. Khullar, N. Goyal, R. Gautam, F. Alblehai,
M. Elghatwary, and A. Singh, ‘‘Federated transfer learning for rice-leaf
disease classification across multiclient cross-silo datasets,’’ Agronomy,
vol. 13, no. 10, p. 2483, Sep. 2023.

[27] A. Haridasan, J. Thomas, and E. D. Raj, ‘‘Deep learning system for paddy
plant disease detection and classification,’’ Environ. Monitor. Assessment,
vol. 195, no. 1, pp. 1–28, Jan. 2023.

109154 VOLUME 12, 2024



M. Fahim-Ul-Islam et al.: Comprehensive Approach Toward Wheat Leaf Disease Identification

[28] Y. Liu, Y. Song, R. Ye, S. Zhu, Y. Huang, T. Chen, J. Zhou, J. Li, M. Li, and
C. Lv, ‘‘High-precision tomato disease detection using NanoSegmenter
based on transformer and lightweighting,’’ Plants, vol. 12, no. 13, p. 2559,
Jul. 2023.

[29] G. Idoje, T. Dagiuklas, and M. Iqbal, ‘‘Federated learning: Crop
classification in a smart farm decentralised network,’’ Smart Agricult.
Technol., vol. 5, Oct. 2023, Art. no. 100277.

[30] P. Alirezazadeh, M. Schirrmann, and F. Stolzenburg, ‘‘Improving
deep learning-based plant disease classification with attention
mechanism,’’ Gesunde Pflanzen, vol. 75, no. 1, pp. 49–59,
Feb. 2023.

[31] O. Getch. (2021). Wheat Leaf Dataset, Kaggle Dataset. [Online]. Avail-
able: https://www.kaggle.com/datasets/olyadgetch/wheat-leaf-dataset

[32] S. Arya and B. Singh, ‘‘Wheat nitrogen deficiency and leaf rust image
dataset,’’ ICAR-Indian Agricult. Res. Inst., New Delhi, India, 2020, doi:
10.17632/th422bg4yd.1.

[33] R. Song, Z. Zhang, and H. Liu, ‘‘Edge connection based Canny edge
detection algorithm,’’ Pattern Recognit. Image Anal., vol. 27, no. 4,
pp. 740–747, Dec. 2017.

[34] J. Flusser, S. Farokhi, C. Höschl, T. Suk, B. Zitová, and M. Pedone,
‘‘Recognition of images degraded by Gaussian blur,’’ IEEE Trans. Image
Process., vol. 25, no. 2, pp. 790–806, Feb. 2016.

[35] X. Ren and S. La, ‘‘Medical image enhancement based on Laplace
transform, Sobel operator and histogram equalization,’’ Academic J.
Comput. Inf. Sci., vol. 5, no. 6, pp. 48–54, 2022.

[36] A. Makandar and B. Halalli, ‘‘Image enhancement techniques using
highpass and lowpass filters,’’ Int. J. Comput. Appl., vol. 109, no. 14,
pp. 21–27, Jan. 2015.

[37] S. Gowrishankar, ‘‘ConvNeXt-based mango leaf disease detection: Differ-
entiating pathogens and pests for improved accuracy,’’ Int. J. Adv. Comput.
Sci. Appl., vol. 14, no. 6, pp. 1–11, 2023.

[38] M. H. K. Mehedi, A. K. M. S. Hosain, S. Ahmed, S. T. Promita,
R. K. Muna, M. Hasan, and M. T. Reza, ‘‘Plant leaf disease detection
using transfer learning and explainable AI,’’ in Proc. IEEE 13th Annu. Inf.
Technol., Electron. Mobile Commun. Conf. (IEMCON), Vancouver, BC,
Canada, Oct. 2022, pp. 166–170.

[39] M. Naveenkumar, S. Srithar, B. Rajesh Kumar, S. Alagumuthukr-
ishnan, and P. Baskaran, ‘‘InceptionResNetV2 for plant leaf dis-
ease classification,’’ in Proc. 5th Int. Conf. I-SMAC (IoT Social,
Mobile, Analytics Cloud) (I-SMAC), Palladam, India, Nov. 2021,
pp. 1161–1167.

[40] L. R. Burra, J. Bonam, P. Tumuluru, and B. N. K. Rao, ‘‘Fine-tuning
for transfer learning of ResNet152 for disease identification in tomato
leaves,’’ in Intelligent Computing and Applications. Springer, Nov. 2022,
pp. 295–302.

[41] G. Yang, Y. He, Y. Yang, and B. Xu, ‘‘Fine-grained image classification for
crop disease based on attention mechanism,’’ Frontiers Plant Sci., vol. 11,
pp. 1–15, Dec. 2020.

[42] Z. Dai, H. Liu, Q. V. Le, and M. Tan, ‘‘CoAtNet: Marrying convolution
and attention for all data sizes,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 34, Dec. 2022, pp. 3965–3977.

[43] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang,
L. Dong, F. Wei, and B. Guo, ‘‘Swin transformer v2: Scaling up capacity
and resolution,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 11999–12009.

[44] X. Geng, J. Gao, Y. Zhang, and D. Xu, ‘‘Complex hybrid weighted pruning
method for accelerating convolutional neural networks,’’ Sci. Rep., vol. 14,
no. 1, p. 5570, Mar. 2024.

[45] Y. Shang, Z. Yuan, B. Xie, B. Wu, and Y. Yan, ‘‘Post-training quantization
on diffusion models,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2023, pp. 1972–1981.

[46] W. Chen, K. Bhardwaj, and R. Marculescu, ‘‘FedMAX: Mitigating
activation divergence for accurate and communication-efficient federated
learning,’’ in Proc. Mach. Learn. Knowl. Discovery Databases, Eur. Conf.,
Ghent, Belgium, 2020, pp. 348–363.

[47] R. Anil, V. Gupta, T. Koren, and Y. Singer, ‘‘Memory efficient adaptive
optimization,’’ in Proc. 33rd Conf. Neural Inf. Process. Syst., Vancouver,
BC, Canada, 2019, pp. 1–10.

[48] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B.
Guo, ‘‘Swin transformer: Hierarchical vision transformer using shifted
windows,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 9992–10002.

MD. FAHIM-UL-ISLAM received the B.Sc.
degree in computer science and engineering from
Brac University, where he is currently pursuing the
master’s degree. His academic pursuits are com-
plemented by his active engagement in research.
He is also a Graduate Research Assistant with
Brac University. His research interests include
multiple fields, with a particular focus on deep
learning, machine learning, artificial intelligence,
natural language processing, computer vision, and

software engineering.

AMITABHA CHAKRABARTY received the M.Sc.
degree from the Department of Computer Science
and Engineering, University of Rajshahi, in 2004,
the M.Sc. degree in telecommunication engineer-
ing from Independent University, Bangladesh, and
the Ph.D. degree from the Faculty of Engineering
and Computing, Dublin City University, Dublin,
Ireland, in 2012. He is currently a Professor
with the Department of Computer Science and
Engineering, Brac University, Dhaka, Bangladesh.

He leads the IoT and Embedded System Research Group, Brac University.
He is also involved in active research having a number of graduate
and undergraduate research groups in different research projects. He has
published research papers in various national and international conferences,
journals, and book chapters. His research interests include the IoT, machine
learning, deep learning, vision transformers, embedded systems, and
switching theory. He is serving as a TCP member for various international
journals and conferences. He is also serving as a Senior Judge in various
national IT competition.

SARDER TANVIR AHMED received the degree
in computer science and engineering from Brac
University. He is currently an Engineer, deeply
interested in exploring how computers can mimic
human vision, focusing his efforts on understand-
ing and advancing the field of machine learning
with a touch of humility. He has contributed to
projects that range from enhancing agricultural
insights through disease detection in crops to
aiding in the early detection of lung diseases using

computer vision techniques. Through his work at Ether Technologies Ltd.,
and other experiences, he has demonstrated a commitment to applying his
knowledge practically, aiming for incremental progress and tangible results.
His journey reflects a blend of curiosity, dedication to learning, and a
pragmatic approach to solving real-world problems with technology.

RAFEED RAHMAN received the B.Sc. degree
in computer science and engineering from Brac
University, in 2020, where he is currently pursuing
the M.Sc. degree in computer science. He is
also a Lecturer with the Department of Computer
Science and Engineering. Brac University. His
research interests include artificial intelligence,
machine learning, natural language processing,
and computer vision.

VOLUME 12, 2024 109155

http://dx.doi.org/10.17632/th422bg4yd.1


M. Fahim-Ul-Islam et al.: Comprehensive Approach Toward Wheat Leaf Disease Identification

HYUN HAN KWON is currently a Full Professor
with Sejong University. He was formerly a Pro-
fessor of civil engineering with Chonbuk National
University. He has twenty years of experience
in stochastic hydrology, a data-driven approach
to geophysical data, especially in climate-based
applications. He has co-authored over 250 peer-
reviewed journal articles. He was involved in
integrates hydrology, stochastic systems, risk anal-
ysis, and climate variability to characterize key

dynamics in water systems and to identify the means to foster sustainability
in a changing world. He has been involved with projects directed at
understanding and predicting at a regional scale for sustainable water
resource management and development accounting for climate variability.
His research interests include enhance society’s capability to understand,
anticipate and manage the impacts of climate fluctuations to improve human
welfare, and the environment using advanced statistical approaches.

MD. JALIL PIRAN (Senior Member, IEEE)
received the Ph.D. degree in electronics and infor-
mation engineering from Kyung Hee University,
South Korea, in 2016. He was a Postdoctoral
Fellow with Kyung Hee University, until 2017.
He holds a distinguished academic background
and is currently an Associate Professor with
the Department of Computer Science and Engi-
neering, Sejong University, Seoul, South Korea.
He has made significant contributions to the field

of artificial intelligence and data science through his extensive research
publications in esteemed international journals and conferences. His areas
of expertise encompass machine learning, data science, big data, the Internet
of Things (IoT), and cyber security. In addition to his research endeavors,
he actively engages with scholarly journals as an Editor, including IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, textitEngineering
Applications of Artificial Intelligence (Elsevier), textitPhysical Communica-
tion (Elsevier), and textitComputer Communication (Elsevier). He represents
South Korea as an Active Delegate to the Moving Picture Experts Group
(MPEG). His outstanding research contributions have been recognized
internationally, as evidenced by the prestigious ‘‘Scientist Medal of the Year
2017’’ awarded by IAAM in Stockholm, Sweden. Moreover, he received
accolades from Iranian Ministry of Science, Technology, and Research,
as an ‘‘Outstanding Emerging Researcher’’ in 2017. His exceptional Ph.D.
dissertation was honored as the ‘‘Dissertation of the Year 2016’’ by Iranian
Academic Centre for Education, Culture, and Research in the Engineering
Group. He also serves as the Secretary for the IEEE Consumer Technology
Society on Machine Learning, Deep Learning, and AI. Furthermore,
he assumes the role of the Track Chair of Machine Learning, Deep Learning,
and AI in the CE (MDA) Track for the upcoming 2024 IEEE International
Conference on Consumer Electronics (ICCE). In 2022, he chaired the ‘‘5G
and Beyond Communications’’ Session at the prestigious IEEE International
Conference on Communications (ICC). His expertise as a reviewer extends
to leading journals and he actively participates in various conferences.

109156 VOLUME 12, 2024


