
Received 6 June 2024, accepted 9 July 2024, date of publication 2 August 2024, date of current version 12 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3437663

An Accelerated FPGA-Based Parallel CNN-LSTM
Computing Device
XIN ZHOU , WEI XIE, HAN ZHOU, YONGJING CHENG, XIMING WANG ,
YUN REN, SHANDONG YUAN, AND LIUWEN LI
College of Information and Communication, National University of Defense Technology, Wuhan, Hubei 430000, China

Corresponding authors: Xin Zhou (13165323626@163.com) and Wei Xie (xiewei197466@163.com)

This work was supported by the National Natural Science Foundation of China under Grant 62201581.

ABSTRACT Recently, the combination of convolutional neural network (CNN) and long short-termmemory
(LSTM) exhibits better performance than single network architecture. Most of these studies connect LSTM
networks behind CNNs. When operating on hardware, the current design of CNN-LSTM is similar to
a pipeline architecture. However, the classic structure lead to a feature loss when data is sent to LSTM
since CNN is not good at extracting temporal features. At the same time, as the depth and scale increases,
it will bring a huge amount of computation, which makes hardware implementation difficult. Based on that,
a parallel CNN-LSTM architecture is proposed, in which two networks extract features from the input data
synchronously, being proven to be more effective than classical CNN-LSTM. This paper designs a parallel
CNN-LSTM computing device based on FPGA. The device is divided into control unit and operation unit.
Control stream and data stream transport between the two units, ensuring the proper running of the device.
A highly parallel multi-channel convolution layer and pooling layer are designed to improve the calculation
efficiency. A 4-stage pipeline structure is adopted to implement the LSTM part. This paper makes full use
of on-chip BRAM to design a look-up table for activation function approximation, reducing the resource
consumption by 95% compared with the traditional polynomial approximation. Finally, we verify our device
under cooperative spectrum sensing (CSS) and handwritten classification scenarios. Proposed device reaches
higher accuracy in two scenarios compared with classic CNN-LSTM structure as well as faster calculating
speed, and the overall project power is limited below 2W. The scalability and limitation of this computing
device are also discussed.

INDEX TERMS CNN-LSTM, field programmable gate array (FPGA), hardware acceleration, deep learning.

I. INTRODUCTION
Deep learning (DL) includes a number of well-established
algorithms such as convolutional neural network (CNN),
long short-term memory (LSTM) and generative adversarial
network (GAN) etc. Each of them has its own application
scenarios. Among them, CNN is mainly used for visual
tasks [1]. By using different types of neural network layers,
CNN can extract relative features from input and being
applied to tasks like image classification etc [2].While LSTM
is a special kind of recurrent neural network (RNN), can solve
the problem of gradient vanishing and easily learn long-term
dependent information [3]. Compared to CNN, LSTM is

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

good at extracting time features from 1D data, and is often
used in tasks such as time series prediction. To take advantage
of two different networks, recent studies have proposed
a variety of hybrid CNN-LSTM structures by combining
two networks for more complex feature extraction. In the
classic CNN-LSTM structure, the data first feed the CNN
module, and after the CNN completes the calculation,
the result is passed to the LSTM module for subsequent
operation. References [4], [5], [6], [7], [8], [9], and [10] apply
hybrid CNN-LSTM in virtual machine workload forecasting,
activity recognition, air quality prediction and wind speed
retrieval etc. Unlike the classical structure, [11] connects
CNN and LSTM in parallel, in which CNN can capture
special features while LSTM can capture temporal feature
from input synchronously. The results show that the parallel

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 106579

https://orcid.org/0009-0008-4422-1020
https://orcid.org/0000-0003-2216-9352
https://orcid.org/0009-0000-8167-9315
https://orcid.org/0000-0003-0618-7454

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

connection has a better detection effect than that of the classic
CNN-LSTM. In the specific applications, the combination of
CNN and LSTM is proven to be more robust and efficient
than single network.

Despite a variety of algorithms have been proposed, their
huge computational requirement have led to the difficulty
of implementation on resource-limited hardware [12]. Field-
programmable gate arrays (FPGAs) are considered to be one
of the most reliable and lightweight platform for implement-
ing computationally intensive algorithms nowadays. With
its product term structure, parallel computing properties,
and the large number of configurable compute resources
and memory blocks, FPGAs have better performance and
lower power consumption than GPUs, and higher flexibility
than ASICs [13]. In recent years, many researchers have
deployed DL algorithms on FPGAs for different purposes.
References [14], [15], [16], [17], [18], [19], [20], [21],
and [22] use FPGA-based CNN architecture for object
detection, image classification and edge computing. There
are also many researchers focus on the acceleration of DL
algorithms on FPGA, which are divided into two directions:
quantization and weight reduction [23]. The quantization
method reduces the size of the weights or the input and output
data to accelerate hardware. While the weight reduction
works on pruning redundant connections and allowing
multiple connections to share the same weights to achieve
acceleration. Reference [24] summarizes the requirements
for memory, computational resources and system flexibility
for mapping CNNs on embedded FPGAs, proposing a
programmable and flexible CNN accelerator architecture
‘‘Angel Eye’’ as well as a data quantization strategies
and compilation tools, which can reduce the bit width to
8 bits with little loss of accuracy. Reference [25] designs
a hardware-oriented CNN compression strategy by dividing
a deep neural network into ‘‘nopruning layers (NP-layers)’’
and ‘‘pruning layers (P-layers)’’ to improve its computing
efficiency.

Based on current research, considering the superiority
of parallel CNN-LSTM and the characteristics of FPGA,
we design a generalizable parallel CNN-LSTM computing
device for different tasks. The device is deployed on
FPGA and get accelerated with different ideas. The main
contributions of this paper are summarized as follows:

1) A parallel CNN-LSTM computing device is designed
on the FPGA platform. The device is divided into
control unit and operation unit. Control unit makes
sure the proper running of device, while the operation
unit controls CNN and LSTM calculating input data
parallelly as well as the subsequent calculations.

2) A highly parallel multi-channel convolution layer and
pooling layer are designed to improve the calculation
efficiency. A 4-stage pipeline structure is adopted to
implement the LSTM part. This paper makes full
use of on-chip BRAM to design a look-up table to
fit activation function, saving on-chip resources and
improving the computing speed.

3) The modular design idea is used to realize the comput-
ing device. The network scale can be reconfigurable to
apply different tasks.

4) The device’s scalability is verified under cooperative
spectrum sensing (CSS) and handwritten classification
scenario. The detection results show better accuracy
than classic structure. The versatility is also tested by
deploying computing device on different platforms.

II. RELATED WORK
A. CNN-LSTM
CNN can extract and process significant features of input
data to fulfill tasks like computer vision, speech processing,
face recognition and other fields by applying the weights
in each layer [26]. A typical CNN has three types of
layers: convolution layer, pooling layer and fully connected
layer [27].

Convolution layers are used in CNNs for feature extraction.
During the computing, the convolution layer accepts feature
graph XW ,H ,D, and uses the convolution kernel (or filter)
FFw,Fh,D,K to generate a new feature graph YW ,H ,K through
convolution operation, and the calculation formula is written
as [25]:

Y (i, j, k) =
D∑
d=1

Fw∑
q=1

Fh∑
p=1

F(p, q, d, k)X (i

× s+ p, j× s+ q, d) (1)

whereW and H represent the width and height of the feature
map. Fw and Fh denotes the size of the convolution kernel.
Normally, Fw = Fh when the input is 2D. D, K denotes
the number of input and output channels. s denotes the
convolution step.

The pooling layer reduces the size of the data by computing
a local area of the feature map to output one pixel. Commonly
used pooling methods include average pooling and maximum
pooling, where average pooling calculates the average value
of local fields, and maximum pooling selects the maximum
value of local fields as output. The fully connected (FC) layer
is often used as the last few layers of a CNN. All input
neurons are fully connected to each neuron in the next layer
by weights.

LSTM networks can selectively remember important
features and discard some relatively unimportant features for
a long time during network propagation, which is often used
to solve the problem of long sequence modeling [28]. (2)
describes the calculation of the four gates of a classical LSTM
network as well as the method for generating the cell state and
the cell output [14].

it = sigmoid(Wxixt +Whiht−1 + bi)
ft = sigmoid(Wxf xt +Whf ht−1 + bf)
ot = sigmoid(Wxoxt +Whoht−1 + bo)
gt = tanh(Wxgxt +Whght−1 + bg)
ct = ft ⊙ ct−1 + it ⊙ gt
ht = tanh(ct)⊙ ot

(2)

106580 VOLUME 12, 2024

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

i, f , o, g, c and h are, respectively, input gate, forget gate,
output gate, updating gate, cell state and cell output with the
same width. The subscript t denotes the current time step
and t − 1 denotes the previous time step. W∗ denotes the
weight matrix, the magnitude of which is determined by the
number of inputs and outputs. b∗ denotes the bias vector.
The + denotes element-wise addition and the ⊙ denotes
the Hadamard product. Eight pairs of matrix multiplication
shown in (2) can be replaced by the transpose formula of

the matrix
(
xT hT

) (
W T
x∗

W T
h∗

)
to facilitate the operation of the

matrix by the circuit. That is, x and h can be concatenated into
an single input vector to fulfill later calculation.

1) HYBRID CNN-LSTM
In current research, hybrid CNN-LSTM mostly refers to a
serial connection of CNN and LSTM. Figure 1 gives the
common structure of hybrid CNN-LSTM. It could be seen
that the network input is directly sent to the CNN. After
multiple rounds of convolution layers, activation functions
and pooling layers, results from CNN are flattened to
1D and sent to LSTM for subsequent calculating. When
implementing this structure using a hardware description
language, it is common to use a pipeline architecture,
in which first data is processed by CNN and thenmoved to the
LSTM, in the meantime, new data feed the CNN and so on.
However, since CNN is not good at extracting time features,
it will lead to the loss of features in the previous rounds of
convolution and pooling, leading to a decrease in the network
fitting effect.

2) PARALLEL CNN-LSTM
Based on the problems with the serial connection, a parallel
CNN-LSTM structure is proposed to solve CSS under
cognitive radio [11]. By connecting CNN and LSTM
parallelly, the structure manages to extract the temporal and
relevant features at the same time. As shown in Figure 2,
The parallel CNN-LSTM structure starts with CNN and
LSTM processing input data synchronously. After both parts
finishing their calculation, Their outputs will be flattened to
1D for subsequent data stitching operations so as to fuse the
features extracted by two networks. The stitched data will be
calculated through fully connected layer, activation function
and softmax layer to get the final output.

Parallel structure design avoids the loss of characteristic
information that occurs when a serial connection is made.
At the same time, the parallel processing method also short-
ens the time delay of computing data and provide convenience
for subsequent hardware implementation. Reference [11]
has proven that parallel CNN-LSTM is better than classic
CNN-LSTM and single network in terms of sensing effect
and convergence speed.

B. FPGA-BASED CNN-LSTM IMPLEMENTATION
Table 1 compares several recent FPGA-based CNN-LSTM
design architectures. As it shows, [29] proposes a 1D

FIGURE 1. Classic hybrid CNN-LSTM structure.

FIGURE 2. Parallel CNN-LSTM structure.

CNN-LSTM implementation architecture based on FPGA.
The front end of this architecture is a 1D CNN. After the
CNN module completes the calculation, the data is sent to
the LSTMmodule. The block circulant weight matrix is used
to assign the cell value for LSTM cell, and this paper uses this
architecture to achieve a highly accurate electrocardiography
(ECG) classification. The CNN-LSTM architecture designed

VOLUME 12, 2024 106581

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

TABLE 1. Comparison of FPGA-based CNN-LSTM design architectures.

in [19] uses DSP to accelerate network operations, and also
realizes the pipeline operations of CNN-LSTM. In the design
of CNN, the data of the feature map is divided into four DSP
groups and calculate at the same time, which can realize the
fast convolution of single channel. In the design of LSTM,
the time-sharing multiplexing strategy is adopted, dividing
the operation into three cycles. Reference [30] proposes a
high-throughput and resource-efficient classic CNN-RNN
fusion accelerator on FPGA with commercial OpenCL.
Multi-channel convolution is used to improve the speed when
CNN is designed, and resource utilization is improved by
mapping LSTM operations to the convolution engine when
designing LSTM. Reference [13] uses depthwise convolution
instead of standard convolutions for embedded platforms
based on FPGA. That is, factorizing the standard convolution
into a depthwise convolution plus a pointwise convolution,
reaching high-speed convolution operations with little loss
of accuracy. Reference [25] proposes a hardware-oriented
CNN compression strategy, which divides the deep neural
network (DNN) models into ‘‘nopruning layers (NP-layers)’’
and ‘‘pruning layers (P-layers)’’ and process separately
according to its characteristics to improve the calculation
speed. Reference [14] designs a 5-stage pipeline architec-
ture for LSTM implementation, and a fast approximate
matrix multiplication technique is used to reduce the delay
encountered in the layer calculation of LSTM network.

III. PARALLEL CNN-LSTM COMPUTING DEVICE AND KEY
MODULES DESIGN
Although the current CNN-LSTM design is a pipeline
structure in terms of hardware implementation, CNN and
LSTM can also work ‘‘parallelly’’ after a period of time.
However, the data calculated by LSTM is not the original
data but the data processed by CNN, so it will inevitably
bring about the loss of features. At the same time, because
the back-end LSTM is good at processing timing signals,
some design architectures are based on 1D data, which is not
conducive to application in multiple scenarios. In this paper,
a parallel 2D CNN-LSTM architecture is designed to extract
features from the input synchronously. In the design of CNN,
the idea of multi-channel convolution is drawn to achieve the
parallel convolution of all channels. An optimized 4-stage
pipeline structure is proposed in the design of the LSTM.

A. OVERALL ARCHITECTURE
So as to design a general parallel CNN-LSTM computing
device on FPGAs, the implementation architecture we

propose is shown in Figure 3. It is evident that the computing
device is divided into control unit and operation unit.
The function of control unit is generating control stream,
including enable signal, reset signal of different modules and
synchronization signal. Especially, the synchronization signal
calculates the running time of different modules, making
sure that modules are ready when data is exchanged between
them. The control stream transmits between two units and
ensure the proper running of the whole device.

The operation unit is responsible for the operation, storage,
stitching and output of data. The operation module mainly
transmits the data stream, including the address information
of the on-chip BRAM and the calculation results of each
unit. Especially, to improve the speed of calculation and
resource utilization, this paper take advantage of the on-chip
BRAM resources to store the large amount of data used for
computation. The BRAM is divided into different sections,
separately storing the network input, network output, the
weight data obtained from training and the function value
used for activation function approximation. During the
calculation, on-chip BRAM outputs the data to the buffer and
then send them to corresponding modules. Figure 3 shows
the basic parallel CNN-LSTM deployment framework on
hardware, where the CNN and LSTMmodules calculate input
data read from on-chip BRAM simultaneously. The detailed
design of key modules is given in the following sections.

B. MULTI-CHANNEL CONVOLUTION WITH A HIGH
DEGREE OF PARALLELISM
In this paper, the design idea of convolution layer is to design
a general-purpose convolution circuit with high flexibility
and high parallelism, so that the parameters like depth, height,
width and number of channels can be modified according to
specific task without designing new convolution circuits.

The schematic diagram of the convolution layer is shown
in Figure 4. Assuming that the network input parameter is
W × H × D, the convolution kernel parameter is Fw ×
Fh × D × K as described in Section II. Data is stored as a
16-bit floating-point number. When the convolution stride is
1, during convolution, the convolution window needs to slide
to the rightW −Fw+ 1 times and down H −Fh+ 1 times on
the feature map, for a total of (W − Fw + 1)× (H − Fh + 1)
convolution operations for one single channel.

In this paper, during the process of sliding right W −
Fw+ 1 times for convolution kernel on the feature map of all
channels, all the data in the convolution window is defined

106582 VOLUME 12, 2024

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

FIGURE 3. The architecture of parallel CNN-LSTM computing device.

FIGURE 4. Architecture of convolution layer.

as the ‘‘Conving Zone’’. We use on-chip BRAM to store
Conving Zone by address and read them sequentially when
operating convolution.

In order to prevent insufficient BRAM storage space
when the amount of data is too large, Conving Zone is
divided into two parts and store separately. To improve
the speed of operation, this paper chooses the strategy of
exchanging area for speed, generating D × (W − Fw + 1)
convolution units (CUs) to calculate the data stored in two
Conving Zones. All these CUs work at the same time to
realize the convolution of multi-channel feature map with
a high degree of parallelism. NCU denotes the number of
clock consumed by one convolution operation on CU. After
the convolution of current Conving Zone is completed, the
Conving Zone shifts down for the second round of convolu-
tion. In this high-parallelism computing mode, it takes total
K × (H − Fh + 1)× NCU to finish convolution.
An example is given with the input feature map as 6×6×8

and the convolution kernel as 3 × 3 × 8 × 8 to verify the
function of convolution module. The calculation process of
CU is shown in Figure 5. Z represents the data stored in

the Conving Zone as shown in Figure 4, C represents the
kernel data of the same channel as the convolution data, and b
represents the output produced by single CU. Depending on
the kernel size, it takes 9 times for single CU to complete a
convolution operation. During the calculation, Conving Zone
outputs 9 data to the CU at a time and multiplies them with
the corresponding kernel data. The data processed by the
two adjacent CUs needs to be shifted 9 times. Under the
current 2 Conving Zones, there are D× (W − Fw + 1) same
CUs parallel operations. After the calculation is completed,
Conving Zone is updated for the nextmoment. Corresponding
data calculating process and timing diagram are shown in
Figure 6. It can be seen that when the convolution starts,
the filter data is divided into 9 × 16 = 144 bits since the
data is stored in float16 format. The Conving Zone of the
eight channels store the data sequentially in the BRAM and
each channel divides the data into 6 − 3 + 1 = 4 blocks
of 144 bits according to the size of the filter. These data are
multiplied by the filter at the same time, that is, convolution
operations of the filter shifting right 4 times on the 8 channels
are completed. At the next time slot, Conving Zone moves
downward, the stored data is updated and convoluted with the
current filter.

Compared with FPGA-based depthwise separable convo-
lution proposed in [13] and single channel convolution in [19]
and [29], the design of convolution layer in this paper ensures
the high parallelism of convolution unit while realizing multi-
channel convolution, and ensures that it has a faster operation
speed when performing large-scale convolution. In order to
prove the effect of the convolution module designed in this
paper, a feature map of 36×36×8 is taken as input, the
size of the convolution kernel is 4×4×8, and the step size
is 1. As shown in Table 2, the consumption of the module
resources designed in this paper is slightly increased due to
the high parallelism, but the computing speed is significantly
improved.

TABLE 2. Resource usage comparison between different design idea of
convolution layer.

C. FULLY PARALLEL POOLING LAYER
During pooling operation, the size of input feature map is
D × H × W , and the feature map is ‘‘scanned’’ by a filter
with the size ofM ×N . The value is calculated and output to
the next layer. The architecture of pooling layer is shown in
Figure 7. Similar to the convolution layer implementation, the
pooling layer reads data from the output register of previous
layer, then generates D × H×W

M×N pooling units for parallel
pooling. We also use an output register to store the pooling
result. The architecture of average-pooling unit (PU) is shown
in Figure 8. The adder adopts a pipeline structure: previous

VOLUME 12, 2024 106583

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

FIGURE 5. Architecture of convolution unit (CU).

adding result is used as the input of the next adder, and a
multiplication (averaging) operation is performed to obtain
the result after the accumulation is completed.

Figure 9 illustrates the calculation timing of average
pooling layer when H = W = 4 and M = N = 2. When
pooling, four identical pooling units are generated in parallel,
and each pooling unit costs one pooling period (decided by
the size of filter) to obtain the result.

D. 4-STAGE PIPELINE FOR LSTM IMPLEMENTATION
Due to the special structure of LSTM as shown in Figure 10,
the calculation within and between LSTM cells can only start
after the previous module completing its calculation. Thus it
is difficult to design an implementation architecture with a
high degree of parallelism. To minimize the clock resources
consumption, we use a 4-stage pipeline architecture to deploy
LSTM cell as shown in Figure 11. The LSTM cell input
includes ct−1 and ht−1 from last LSTM cell, network input
Xt , weights and bias matrix for four gates:Wh∗,Wx∗ and bias.

Stage 1 consists of two blocks for splicing weights and
input, two ‘‘4 to 1’’ multiplexors to select the weights and
bias matrix corresponding to four gates and an adder to
calculate the data prepared for subsequent sigmoid and tanh
functions. The prepared data is stored in buffer for stage 2.
Stage 2 includes a ‘‘1 to 2’’ demultiplexor to send the input
to sigmoid or tanh separately and a block for computing the
output of four gates: it , ft , gt and ot . Stage 3 is used for
the data preparation and calculation for Hardeman product as
given in (2). Hardeman product requires the value of tem3,
ct−1 and output of gates as shown in Figure 10, while ct
is needed through another tanh block to obtain tem3, thus a
buffer block is synthesized for storing the output of four gates
to synchronize the pipeline between stage 2 and stage 3. After
completing the Hardeman product and storing the result in
buffer, stage 4 consists an accumulator for ht and a ‘‘1 to 2’’
demultiplexor to divide ct and ht of current cell. The timing
diagram of LSTM cell is shown in Figure 12.
Between two adjacent cells, the latter cell set the ct−1 and

ht−1 from previous cell as the driving signal, ensuring that

the data is instantly transferred and calculated, which saves
clock resources to the greatest extent.

We verify the LSTM module designed in this paper by
entering an input of 16×16×8, and the resource consumption
is given in the Table 3. It could be seen that compared with
the 5-stage pipeline structure proposed in [14], the 4-stage
pipeline structure in this paper reduces the waiting latency
of data. And the stability of the operation is improved by
storing data in the buffer between different stages compared
with [19].

TABLE 3. Resource usage comparison between different design idea of
LSTM cell.

E. LUT-BASED ACTIVATION FUNCTION APPROXIMATION
Activation functions are used in neural networks to introduce
nonlinearity and improve the fitting ability of the network.
Common activation functions include tanh, sigmoid, relu,
leaky relu, etc. The computing device proposed in this paper
uses three activation functions: tanh, sigmoid and relu. The
common implementation method of activation functions in
hardware description language is polynomial approximation.
This method divides the function into several intervals.
In each interval, the polynomial approximation formula is
used to convert the nonlinear calculation into polynomial
calculation, eliminating the higher-order terms and retaining
low-order terms required to ensure accuracy. This process
requires multiple operations on each value to obtain a single
result, consuming loads of logic and clock resources.

Therefore, this paper uses the look-up table (LUT)
method instead of the polynomial approximation method.
Specifically, we use FPGAs’ on-chip BRAM to store the
corresponding activation function values of all possible
values under the 16-bit floating-point number in a certain
range, then designs a two-level mapping from input to address
and address to function output. The activation function value
can be obtained in only two clock cycle and the obtained
data can be accurate to 5 decimal places. Algorithm 1
demonstrates the LUT fitting method of sigmoid functions
as an example.

According to Algorithm 1, when the input is greater than
8 or less than −8, the output of the sigmoid function is
considered to be 1 or 0, and when the input range is [−8,8],
the data output range is [0,1], which are symmetrical with
(0,0.5) as the center. In this paper, two BRAM data storage
segments are constructed. The operation first determines
the positive and negative input to correspond to different
BRAMs, then compare the data exponential bit (2 to 6 bits
of the input signal) with the binary code ’10010’, and then
uses the last 15 bits of the 16-bit floating-point number as the
address code (input) of BRAM. This BRAM look-up table-
based design takes only two clock cycle from input to output.

106584 VOLUME 12, 2024

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

FIGURE 6. The timing diagram of the proposed Convolution Layer.

FIGURE 7. Architecture of pooling layer.

FIGURE 8. Architecture of Average-Pooling unit.

FIGURE 9. The timing diagram of the pooling layer.

The implementation of the tanh is similar to the idea of
sigmoid. Since the tanh function is symmetrical with the
origin, it only needs to construct the BRAM of the positive
part. When the input is negative, the address code is the same
as the positive part, and the output only needs to replace the
first bit with ’1’.

According to its expression, the Relu activation function
does not need to build a LUT to store its data, but only needs
to zero the part less than 0 and keep the part greater than zero.

FIGURE 10. Architecture of LSTM cell.

Algorithm 1 Sigmoid Approximation Using LUT
Input: x in float16
Output: y in float16
1: if x[1] = 0 then
2: BRAM ← BRAM_pos ▷ select BRAM storing

positive data
3: if x[2 : 6] >′ 10010′ then
4: y←′ 0011110000000000′ ▷ if x > 8 set y = 1
5: else
6: address← x[2 : 16]
7: y← output of BRAM
8: end if
9: else
10: BRAM ← BRAM_neg ▷ select BRAM storing

negtive data
11: if x[2 : 6] >′ 10010′ then
12: y←′ 0000000000000000′ ▷ if x < −8 set y = 0
13: else
14: address← x[2 : 16]
15: y← output of BRAM
16: end if
17: end if

Figure 13 gives the approximate activation functions of
Tanh and Sigmoid obtained by LUT method. It can be seen
that the approximate function designed in this paper has great
fitting effect to the same as the original function. In order to
compare the LUT and the polynomial approximationmethod,

VOLUME 12, 2024 106585

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

FIGURE 11. 4-stage pipeline architecture for LSTM implementation.

FIGURE 12. The timing diagram of the proposed LSTM model.

FIGURE 13. Proposed activation function approximation.

we list the logic and clock resources cost by both methods
and method proposed in [14] in Table 4. It can be seen that
compared with the polynomial approximation, LUT method
reduces the resource consumption of the device to a great
level. Taking the tanh function as an example, the LUT and
FF resources in the FPGA are reduced by 92.5% and 96.0
% respectively. Compared with the [14], which also uses the
LUT-based method, this paper uses float16 to represent the
data, expanding the accurate range, simplifing the process of
data comparison before querying, and can directly use a part
of the data as address code, which effectively improves the
calculation speed.

F. FULLY CONNECTED LAYER
The fully connected (FC) layer integrates the feature map
obtained from previous convolution and pooling layer

TABLE 4. Resource usage comparison between approximation method.

calculations into a single value, reducing the influence of
feature locations on the classification results and improving
the robustness of the whole network. It operates in the
same way as a convolution operation when implemented on
hardware. According to the CNN-LSTM architecture shown
in Figure 2 in this paper, the data size processed by the
fully connected layer is 1D. The FC design architecture is
shown in Figure 14. M and N denotes the number of input
and output data. When calculating, N processing elements
(PE) are generated in parallel. The input of each PE is the
weight data read from BRAM and data of M input nodes.
The architecture of PE is similar to that of CU in section I.
Multipliers and adders in each PE complete the calculation
obtain one pixel of data of the output layer.

G. SOFTMAX
Finally, the parallel CNN-LSTM network proposed in this
paper uses the softmax function to realize classification. The
softmax function is defined by the formula [31]:

softmax(z)i =
exp(zi)
K∑
j=1

exp(zj)

for i = 1, . . . ,K (3)

Softmax is to map each input element to real numbers
between 0 and 1, and to normalize the guaranteed sum to
1 by dividing by the sum of all the exponentials. Since after
multiple rounds of convolution, pooling, and fully connected
layers, the last layer of the parallel CNN-LSTM tends to
have a small amount of data. We argue that it is acceptable
to use the polynomial approximation method for softmax.
Taking binary classification for example, we use 7 taylor

106586 VOLUME 12, 2024

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

FIGURE 14. Architecture of FC layer.

FIGURE 15. Proposed Taylor series unfolding fitting method.

FIGURE 16. Calculation process of Softmax.

series expansions to fit the exponential function as shown
below. The derivation of the formula is given in [32].

ex ≈ 1+ x +
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
(4)

In this paper, 6 coefficients used (1, 1/2, 1/3, 1/4,
1/5, 1/6) are sequentially stored in the coefficient register.
When calculating, the register is shifted to the right by
16 bits (corresponding to 16 floating-point numbers), and the
calculation is completed when the registers are all 0. Two
buffers are used to store the multiplication result and the
accumulation result. As shown in Figure 15, the output of
buffer1 is the coefficients before x and the output of buffer2
is the fitting result corresponding to the input value after the
operation is completed. The implementation structure is given
in Figure 16.
Table 5 gives the effect of proposed polynomial approxi-

mation method for different input situations. Take the second
row as an example, given 0000 (corresponding to decimal 0)

TABLE 5. Polynomial approximation verification.

and 3265 (corresponding to decimal 0.2) two sets of float16
data as input, the calculation results according to the softmax
formula are about 0.450 and 0.650 respectively. The output of
the softmax module designed in this paper is 3737 and 3866,
which is converted to 0.451 and 0.549 in decimal system.
Since we only need to compare two values to classify, the
fitting works well.

IV. VERIFICATION UNDER COOPERATIVE SPECTRUM
SENSING SCENARIO
In previous section, a FPGA-based computing device for the
parallel CNN-LSTM has been proposed, and the implemen-
tation method of each layer has been elaborated in detail.
In order to verify the proposed device, this section applies
it in cognitive radio (CR) by using the device to achieve
cooperative spectrum sensing(CSS).

A. BACKGROUND OF COOPERATIVE SPECTRUM SENSING
CSS is the key technology of CR. The communication
scenario for centralized CSS is shown in Figure 17, which
consists of a primary user (PU), N secondary users (SU) and
a fusion center. Primary user, also known as licensed user,
is the user who has access to transmit information within
a certain frequency band during spectrum allocation. While
SU, also known as unlicensed user, needs to perceive the
current ‘‘spectrum holes’’ that PU is not using to dynamically
access the available frequency bands. In centralized CSS,
SUs use its own spectrum detection algorithm to complete
local spectrum sensing and sends the sensing result to the
fusion center through reporting channel. After receiving the
local sensing results from all sensing nodes, the fusion center
processes all perception information to obtain unified sensing
results: whether there is PU signal in frequency band. In this
section, we use the proposed parallel CNN-LSTM computing
device as the data processing method for the fusion center.

We use simulation tools to generate dataset and divide
them into training part and test part. Weight data is obtained
through training on the software platform with training part
and loaded into the on-chip BRAM. Then we load the test set
into the BRAM as well and the result could be observed by
running the device on FPGAs.

B. DATA GENERATION
We set the PU’s position as the coordinate origin and set
different locations for SUs. Assuming that the power of
the noise and the distance between SU and PU remained
unchanged during spectrum sensing. The dataset is generated
using 10000 Monte Carlo methods under SNR in the range
of [−20 10]db. The parameters of the dataset are shown in

VOLUME 12, 2024 106587

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

FIGURE 17. Cooperative spectrum sensing scenario for this paper.

TABLE 6. Parameters for data generation.

Table 6. The noise is additive Gaussian white noise with
an average value of 0 and the noise power is −143dbm/Hz.
By changing the transmit power of the PU from 0 to 100 with
the step of 5, different SNRs are obtained. The received signal
of SUs varies according to the distance from the PU.

The generated signal is a complex data with real part and
imaginary part. In order to save computing space, the signal
is ABS processed before calculation. Figure 18(a) shows the
waveform of the transmit signal from PU. When there is no
PU signal in sensing channel, the sensing signal is given in
Figure 18(b), which is the superposition of channel noise
sensed by multiple SUs. When sensing channel is occupied
by PU signal, the sensing result is the superposition of the
PU signal perceived by SUs and channel noise as well as
shown in Figure 18(c) and Figure 18(d). It can be seen that
farther the SU is from the PU, themore serious the attenuation
of the received signal, the smaller the received signal power,
and the smaller the difference between the PU signal and the
noise signal. The superimposed value of the sensing data from
multiple SUs is converted to floating-point number as parallel
CNN-LSTM network input after sampling.

The sensing channel is marked as ’1’ if it is occupied by PU
signal and ’0’ if available. ’0’ and ’1’ are used as the network
output for training. 70% of the generated dataset is used to
train the network by software to obtain the weights, and the
other 30% is used to test the results on FPGA. Before running
the network, the test data and weights files (after training) are
stored into BRAM so that CNN-LSTM can read out data by
address during operation.

C. NETWORK STRUCTURE
When there are 8 SUs, fusion center will receive signal from
the 8 users. The structure we select is shown in Table 7.We set

signals from 8 users as the eight channels of the input feature
map, CNN and LSTM will extract feature parallelly and
obtain the sensing result after combining two networks.When
the number of SU changes, the number of input channels
and LSTM cells change accordingly and the width of input
is determined by the sample size when generating dataset as
shown in Table 6.

FIGURE 18. Data generation.

D. RESULT
We used Vivado 2018.3 to give a comprehensive report of
our computing device. The FPGA platform used is the Xilinx
XCZU9EG as given in Figure 19. The available resources
on this device are shown in Table 8. Table 9 gives CSS
implementation result when there are 6, 8 and 10 SUs. As the
number of users increases, the network structure becomes
larger, which also brings greater resource consumption.
To illustrate the resource consumption in detail, we take the
number of users 8 as an example. It could be seen that the
maximum available quantities of BRAM, DSP, FF and LUT
on the used FPGA are 588.5, 103, 8352, 56955 respectively.
The utilization of on-chip BRAM reaches 588.5÷912 ≈
64.53% consists of input, output, weights, activation function
values as well as Conving Zone, which is about 2.56MB
on-chip memory consumption. Set the frequency to 10Mhz,
it can be seen that after loading the weights data obtained
from training, the accuracy of the CSS under 3 scenarios
reaches 96.32%, 96.54% and 94.86% and the project power
is limited at 0.717, 0.842 and 1.744W.

Figure 20 illustrates logic and time resources consumed
by individual layer with 8 SUs. Due to the large amount
of data operation and activation function approximation,
the convolution layer and LSTM module occupy 92.4% of
the LUT consumption, 86.7% of the DSP consumption and
99.7% of the FF consumption of the overall architecture.
It can be seen that with the 4-stage pipeline architecture,
compared with CNN part, the LSTM part is 12.3% faster,
and the resource consumption is 43.2% of the CNN part
with the heavy use of LUT and matrix multiplication.

106588 VOLUME 12, 2024

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

TABLE 7. Structure of parallel CNN-LSTM for CSS with 8 SUs.

FIGURE 19. XCZU9EG paltform for this paper.

FIGURE 20. Resource consumption of different layers.

However, due to the acceleration from multi-channel high-
parallelism convolution, in general, the computing speed
and resource consumption of the CNN part and the LSTM
part are of the same magnitude, which is convenient for
subsequent operations. With the network structure shown
in Table 5, when LSTM has completed calculation before
the CNN, the result of the LSTM would be saved in the
buffer and subsequent operations such as splicing and full

TABLE 8. Available resource on XCZU9EG.

TABLE 9. Implementation under different number of SUs on XCZU9EG.

TABLE 10. Comparison with the resource consumption with different
network structure (8 SUs) on XCZU9EG.

connection would be carried out after CNN part completing
its calculation.

In order to verify the superiority of the parallel
CNN-LSTM architecture proposed in this paper, we connect
LSTM behind CNN and compare the parallel CNN-LSTM
model with the classic CNN-LSTM under the same input
and output. The comparison results are shown in Table 10.
It can be seen that the optimized parallel structure and
classic structure are basically the same in terms of logical
resource consumption. However, the clock consumption of
CNN-LSTM in parallel structure is 82.1% of that of classic
structure and the sensing accuracy of parallel CNN-LSTM is
about 7% higher. With a classic structure, when calculation
starts, the subsequent LSTMmodule will wait for the CNN to
pass the computational data, which will have more delay than
the parallel structure, while the parallel structure compresses
the network depth and increases the speed of operation. At the
same time, parallel computing ensures that CNN and LSTM
extract different features directly from the input, which solves
the problem of feature loss caused by serial computing to the
greatest extent.

V. SCALABILITY AND LIMITATION
In order to verify the scalability of the computing device
designed in this paper, it is clear that it is not enough to verify
it only in the CSS domain and on only one FPGA platform.
At the same time, due to the different types of data that
CNN and LSTM are good at processing, the requirements for
input are high, which will affect the scalability of this device.

VOLUME 12, 2024 106589

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

TABLE 11. Resource consumption of parallel CNN-LSTM on different platforms with 8 SUs.

For these reasons, this chapter focuses on the scalability and
limitation of this computing device.

We deploy the network structure shown in Table 7
on another 3 different FPGA platforms: XCZU15EG,
XQKU060 and XQVU7P to verify the versatility of the
computing device. Resource consumption of each is given
in Table 11. It can be seen that the proposed computing
device can be successfully deployed on different platforms.
That is because the computing device designed in this
paper and the acceleration ideas adopted use common FPGA
components such as DRAM, BRAM, DSP, which do not
adopt technologies such as off-chip storage. So it can be
deployed on almost all common FPGA platforms. Depending
on different tasks, the appropriate platform should be selected
according to the resource consumption brought about by the
network structure.

To expand the versatility of the computing devices
designed in this paper, it is clear that verification in the CSS
domain alone is not enough. Therefore,We select handwritten
classification using the MINIST dataset to further validate
the computing device. The dataset includes a total of 70,000
grayscale handwritten digital images of 28×28, of which
60,000 are the training set and 10,000 are the test set. This
task implements a ten-class of handwritten data. After offline
training, we adjust the network structure of the computing
device according to the training model and load the weight
data into BRAM. We take 100 images from the test set
for classification testing. The network structure, resource
consumption and classification results are shown in Table 12
and Table 13 (we also compared it with the serial structure
to prove the superiority of the parallel structure). Table 13
illustrates that the classification accuracy of the parallel
structure is still better than that of the serial structure in
the new application scenario. Moreover, compared with the
CSS scenario, the input in the handwritten scenario becomes
2D and the network scale is expanded, leading to a greater
resource and power consumption. It could be seen that the
computing device designed in this paper has good results
under different data sets.

When it comes to the limitation, although the parallel
structure leads to a better effect. However, since the LSTM
module calculates the input data directly, there is no previous

TABLE 12. Structure of parallel CNN-LSTM for handwritten classification.

TABLE 13. Comparison of the resource consumption on XCZU9EG for
handwritten classification.

CNN pruning process compared to serial. At the same time,
the gate operation of each cell of LSTM involves four
activation functions and the corresponding matrix operation,
so the demand for computational resources is greater when
the network depth is high and the input sequence is long.
Therefore, similar to the CSS and handwriting classification
scenarios we give, the computing device designed in this
paper is better at processing short time-series-based sequence
or handling 2D data with smaller input sizes, but has limited
processing ability for high-depth spatial datasets or long
sequence issues.

VI. CONCLUSION
In this paper, a parallel CNN-LSTM computing device based
on FPGA is proposed. The device combines the advantages
of CNN and LSTM while being more suitable for hardware
implementation. The device is optimized with the idea of
high parallelism, pipeline and LUT-based acceleration, which
is designed for different deep learning tasks. We verify the

106590 VOLUME 12, 2024

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

device under CSS scenario, the results show that compared
with the classic CNN-LSTM, parallel structure has a higher
sensing accuracy and faster computation speed. We also
discuss the versatility and limitation of the device by applying
device on different platforms and expanding the scenario to
handwritten classification.

REFERENCES
[1] C. Zheng, C. Hu, Y. Chen, and J. Li, ‘‘A self-learning-update CNN model

for semantic segmentation of remote sensing images,’’ IEEE Geosci.
Remote Sens. Lett., vol. 20, pp. 1–5, 2023.

[2] S. Zhao, S. Gao, R. Wang, Y. Wang, F. Zhou, and N. Guo, ‘‘Acceleration
and implementation of convolutional neural networks based on FPGA,’’
Digit. Signal Process., vol. 141, Sep. 2023, Art. no. 104188.

[3] H. L. Leka, Z. Fengli, A. T. Kenea, A. T. Tegene, P. Atandoh, and
N. W. Hundera, ‘‘A hybrid CNN-LSTM model for virtual machine
workload forecasting in cloud data center,’’ in Proc. 18th Int. Comput.
Conf. Wavelet Act. Media Technol. Inf. Process. (ICCWAMTIP), Dec. 2021,
pp. 474–478.

[4] Y. Zhang, Y. Li, B. Liang, and R. Ma, ‘‘A prediction method for fuel cell
degradation based on CNN-LSTM hybrid model,’’ in Proc. 25th Int. Conf.
Electr. Mach. Syst. (ICEMS), Nov. 2022, pp. 1–5.

[5] L. Wensheng, W. Kuihua, F. Liang, L. Hao, W. Yanshuo, and C. Can, ‘‘A
region-level integrated energy load forecasting method based on CNN-
LSTMmodel with user energy label differentiation,’’ inProc. 5th Int. Conf.
Power Renew. Energy (ICPRE), Sep. 2020, pp. 154–159.

[6] S.-G. Lee, G.-Y. Kim, Y.-N. Hwang, J.-Y. Kwon, and S.-M. Kim,
‘‘Adaptive undersampling and short clip-based two-stream CNN-LSTM
model for surgical phase recognition on cholecystectomy videos,’’Biomed.
Signal Process. Control, vol. 88, Feb. 2024, Art. no. 105637.

[7] R. Bao, Y. Zhou, and W. Jiang, ‘‘FL-CNN-LSTM: Indoor air quality
prediction using fuzzy logic and CNN-LSTM model,’’ in Proc. 2nd Int.
Conf. Electr. Eng. Control Sci., Dec. 2022, pp. 986–989.

[8] C. Lu, Z. Wang, Z. Wu, Y. Zheng, and Y. Liu, ‘‘Global ocean wind
speed retrieval from GNSS reflectometry using CNN-LSTM network,’’
IEEE Trans. Geosci. Remote Sens., vol. 61, 2023, Art. no. 5801112, doi:
10.1109/TGRS.2023.3276173.

[9] W. Xiong, L. Han, and X. Qu, ‘‘Bus load forecasting based on maximum
information coefficient and CNN-LSTM model,’’ in Proc. IEEE Int. Conf.
Image Process. Comput. Appl. (ICIPCA), Aug. 2023, pp. 659–663.

[10] C. Nguyen, T. M. Hoang, and A. A. Cheema, ‘‘Channel estimation
using CNN-LSTM in RIS-NOMA assisted 6G network,’’ IEEE Trans.
Mach. Learn. Commun. Netw., vol. 1, no. 1, pp. 43–60, Jun. 2023.

[11] L. Li, W. Xie, and X. Zhou, ‘‘Cooperative spectrum sensing based
on LSTM-CNN combination network in cognitive radio system,’’ IEEE
Access, vol. 11, pp. 87615–87625, 2023.

[12] H. Li, L. Gong, C. Wang, and X. Zhou, ‘‘A flexible dataflow CNN
accelerator on FPGA,’’ in Proc. IEEE/ACM 23rd Int. Symp. Cluster, Cloud
Internet Comput. Workshops, May 2023, pp. 302–304.

[13] L. Bai, Y. Zhao, and X. Huang, ‘‘A CNN accelerator on
FPGA using depthwise separable convolution,’’ IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 65, no. 10, pp. 1415–1419,
Oct. 2018.

[14] D. He, J. He, J. Liu, J. Yang, Q. Yan, and Y. Yang, ‘‘An FPGA-based LSTM
acceleration engine for deep learning frameworks,’’ Electronics, vol. 10,
no. 6, p. 681, Mar. 2021.

[15] Y. Wang, Y. Liao, J. Yang, H. Wang, Y. Zhao, C. Zhang, B. Xiao, F. Xu,
Y. Gao, M. Xu, and J. Zheng, ‘‘An FPGA-based online reconfigurable
CNN edge computing device for object detection,’’ Microelectron. J.,
vol. 137, Jul. 2023, Art. no. 105805.

[16] S. Kala and S. Nalesh, ‘‘Efficient CNN accelerator on FPGA,’’ IETE
J. Res., vol. 66, no. 6, pp. 733–740, Nov. 2020.

[17] A. Baba and T. Bonny, ‘‘FPGA-based parallel implementation to
classify hyperspectral images by using a convolutional neural network,’’
Integration, vol. 92, pp. 15–23, Sep. 2023.

[18] Y. Luo, X. Cai, J. Qi, D. Guo, and W. Che, ‘‘FPGA—Accelerated CNN
for real-time plant disease identification,’’ SSRN Electron. J., vol. 207,
Apr. 2023, Art. no. 107715.

[19] Y. Yang, F. Ge, D. Qiu, X. Yue, Z. Li, F. Zhou, andN.Wu, ‘‘Implementation
of reconfigurable CNN-LSTM accelerator based on FPGA,’’ inProc. IEEE
21st Int. Conf. Commun. Technol. (ICCT), Oct. 2021, pp. 1026–1030.

[20] V. R. S. Mani, A. Saravanaselvan, and N. Arumugam, ‘‘Performance
comparison of CNN, QNN and BNN deep neural networks for real-time
object detection using Zynq FPGA node,’’ Microelectron. J., vol. 119,
Jan. 2022, Art. no. 105319.

[21] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, ‘‘Performance modeling
for CNN inference accelerators on FPGA,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 4, pp. 843–856, Apr. 2020.

[22] D. T. Kwadjo, E. N. Tchinda, J. M. Mbongue, and C. Bobda, ‘‘Towards
a component-based acceleration of convolutional neural networks on
FPGAs,’’ J. Parallel Distrib. Comput., vol. 167, pp. 123–135, Sep. 2022.

[23] Z. Wang, H. Li, X. Yue, and L. Meng, ‘‘Briefly analysis about CNN
accelerator based on FPGA,’’ Proc. Comput. Sci., vol. 202, pp. 277–282,
Jul. 2022.

[24] K.Guo, L. Sui, J. Qiu, J. Yu, J.Wang, S. Yao, S. Han, Y.Wang, andH.Yang,
‘‘Angel-eye: A complete design flow for mapping CNN onto embedded
FPGA,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 1, pp. 35–47, Jan. 2018.

[25] T. Yuan, W. Liu, J. Han, and F. Lombardi, ‘‘High performance CNN
accelerators based on hardware and algorithm co-optimization,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 1, pp. 250–263, Jan. 2021.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based
learning applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[27] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolutional
networks,’’ in Computer Vision—ECCV. Cham, Switzerland: Springer,
2014, pp. 818–833.

[28] A. Sherstinsky, ‘‘Fundamentals of recurrent neural network (RNN)
and long short-term memory (LSTM) network,’’ Phys. D, Nonlinear
Phenomena, vol. 404, Mar. 2020, Art. no. 132306.

[29] S.-N. Tang, Y.-H. Chen, Y.-W. Chang, Y.-T. Chen, and S.-H. Chou,
‘‘Hybrid CNN-LSTM network for ECG classification and its software-
hardware co-design approach,’’ in Proc. 20th Int. SoC Design Conf.
(ISOCC), Oct. 2023, pp. 173–174.

[30] Y. Sun, B. Liu, and X. Xu, ‘‘An OpenCL-based hybrid CNN-RNN
inference accelerator on FPGA,’’ in Proc. Int. Conf. Field-Programmable
Technol. (ICFPT), China, Dec. 2019, pp. 283–286.

[31] X. Dong, X. Zhu, and D. Ma, ‘‘Hardware implementation of softmax
function based on piecewise LUT,’’ in Proc. IEEE Int. Workshop Future
Comput. (IWOFC, Dec. 2019, pp. 1–3.

[32] J. Wei, A. Kuwana, H. Kobayashi, and K. Kubo, ‘‘Divide and conquer:
Floating-point exponential calculation based on Taylor-series expansion,’’
in Proc. IEEE 14th Int. Conf. ASIC (ASICON), Oct. 2021, pp. 1–4.

XIN ZHOU received the B.S. degree in informa-
tion and communication engineering from the Col-
lege of Information and Communication, National
University of Defense Technology, Wuhan, Hubei,
China, in 2021, where he is currently pursuing the
M.S. degree with the College of Information and
Communication. His research interests include
cognitive radio, signal process, and the application
of artificial intelligence technology in the field of
communication.

WEI XIE received the B.S. degree in commu-
nication engineering from the College of Com-
munication Engineering, Army Engineering of
PLA University, Chongqing, China, in 1997, and
the M.S. degree in communication engineering
from Chongqing University, China, in 2003.
From 2003 to 2012, he was a Lecturer with
the College of Information and Communication,
National University of Defense Technology, where
he was an Associate Professor with the College of

Information and Communication, from 2012 to 2019. Since 2019, he has
been a Professor. His research interests include data link technology and
application, digital signal processing, network planning and management,
and the application of artificial intelligence in the field of communication.

VOLUME 12, 2024 106591

http://dx.doi.org/10.1109/TGRS.2023.3276173

X. Zhou et al.: Accelerated FPGA-Based Parallel CNN-LSTM Computing Device

HAN ZHOU received the B.S. degree in measure-
ment and control technology and instrumentation
from the School of Physics and Mechatronic
Engineering, Xiamen University, in 2010, and the
master’s and Ph.D. degrees in instrument science
and technology from the School of Intelligent
Science, National University of Defense Technol-
ogy, in 2012 and 2017, respectively. His research
interests include cognitive radio and datalink
technology.

YONGJING CHENG received the master’s degree
in computer application from Northeastern Uni-
versity, in 2013. He is currently a Lecturer with
the College of Information and Communication,
National University of Defense Technology. His
research interests include artificial intelligence and
natural language processing.

XIMING WANG received the Ph.D. degree in
information and communication engineering from
the School of Communication Engineering, Army
Engineering University, in 2020. He is currently
a Lecturer with the College of Information and
Communication, National University of Defense
Technology. His research interests include intel-
ligent anti-jamming communications, cognitive
radio, and multi-agent decision-making theory.

YUN REN received the Ph.D. degree in infor-
mation and communication engineering from
the National University of Defense Technology,
in 2018. He is currently a Lecturer with the School
of Information and Communication, National
University of Defense Technology. His research
interests include image intelligent recognition and
computer vision.

SHANDONG YUAN received the master’s degree
from the School of Computer Science and Tech-
nology, National University of Defense Technol-
ogy, in 2015, where he is currently pursuing
the Ph.D. degree in command with the College
of Information and Communication. His research
interests include natural language processing and
optimization algorithms.

LIUWEN LI received the B.E. degree in infor-
mation and communication engineering from
China Army Engineering University, in 2017.
He is currently pursuing the M.E. degree with
National Defense Technology University. His
research interests include cognitive radio net-
works, machine learning/deep learning for wire-
less networks, communication signal process, and
auto modulation classification.

106592 VOLUME 12, 2024

