IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 3 June 2024, accepted 24 July 2024, date of publication 2 August 2024, date of current version 13 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3437746

== RESEARCH ARTICLE

Auxiliary Decision Method for Power Dispatching
Based on Flexible Super-Capacitors and Proximal
Policy Optimization Algorithm

SHENG YANG ™, JINGLONG HE, AND JINMING LIU

Power Dispatching Control Center, Guangxi Power Grid, Nanning 535000, China
Corresponding author: Sheng Yang (ys202403 @163.com)

ABSTRACT To reduce power waste and improve the operational safety of renewable energy grids, this study
proposes an auxiliary decision-making method for power dispatching based on flexible super-capacitors and
proximal policy optimization algorithms. The results demonstrated that the impedance of Mn&Ni-based
composite electrodes was small, about 118 €2, and when the current density was 1A/g, the constant current
charging and discharging time could reach 128 seconds, with a specific capacitance of 39F/g. In addition,
when the power density of the capacitor was 8500W/kg, the energy density could reach up to 125Wh/kg.
As for the auxiliary decision-making model for power dispatching, the reward value of the proximal policy
optimization algorithm began to converge after approximately 50,000 iterations, at which point its reward
value was approximately 257. The reward value of the one-step scheduling strategy gradually stabilized at
around 1.0 after the number of scheduling steps reached 560,000. When the energy output rate of renewable
energy units was high, the consumption rate of renewable energy was 90.1%. The above results indicate
that the power scheduling method combining flexible super-capacitors and proximal policy optimization
algorithms can effectively achieve the storage of electricity and improve the consumption rate of renewable
energy.

INDEX TERMS Flexible super-capacitors, composite materials, proximal policy optimization, power
dispatch, assisting decision-making.

I. INTRODUCTION

The current energy structure of the world is still dominated
by Fossil Fuels (FFs). According to statistics, the total annual
energy consumption worldwide is about 13.4 billion tons of
standard coal, of which FFs account for 85%, and most of
the electricity also relies on FFs. The above situation has
also led to the depletion of FFs and exacerbated pollution.
Therefore, to alleviate the energy crisis and protect the eco-
logical environment, it is crucial to increase the utilization
of Renewable Energy (RE). The use of the RE power grid
can greatly alleviate the dependence of electricity on FFs
and help alleviate the problem of energy scarcity [1], [2].
However, RE owns strong volatility and randomness, and the
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generated electricity relies on power electronic devices con-
nected to the grid. The low anti-interference, weak support,
and zero inertia features of power equipment make the safety
and stability of the power grid increasingly prominent. The
accumulation of quantitative changes can lead to a qualitative
change in the characteristics of the power grid operation [3].
Therefore, it is necessary to develop a scheduling com-
plex decision-making method suitable for RE power grid to
alleviate its impact on the safety of power grid operation.
Tang H et al. put forward a scheduling strategy built
on Deep Q-learning (D-QL) for the dynamic optimiza-
tion scheduling problem of ultra-short-term wind-power
prediction. This method first established a dynamic opti-
mization scheduling model with the target of minimizing
the operating cost of the basic power system and trans-
formed the optimal scheduling problem into a Markov
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decision process. Finally, this method used D-QL to opti-
mize the scheduling strategy, which had high feasibility [4].
Huang Y et al. designed a scheduling method grounded
on improved stochastic dual dynamic integer programming
for multi-stage distributed robust power generation schedul-
ing optimization problems. This method fully considered
the independent uncertainty of wind power and conven-
tional loads, and combined the advantages of multi-stage
DRO models and non-competitiveness into power genera-
tion scheduling. This method had better scheduling perfor-
mance compared to other methods [5]. Anandam PV et al.
established a multi-objective reactive power management
method that considers the uncertainty of real-time generation
and load for reactive power management in power systems.
This method utilized index-based evolutionary techniques to
schedule reactive power and extracted the optimal compro-
mise solution of the scheduling scheme using an ““S-shaped”’
fuzzy membership function. Its scheduling performance has
been proven to be superior to other methods [6].

Although effective scheduling of RE grids can reduce
power differentials, there is still a significant amount of
electricity wasted. If the aforementioned electricity can be
stored, it can effectively alleviate the problem of energy
waste. Flexible Super-capacitors (FSCs) have the advantages
of high capacitance, long lifespan, and high Energy Density
(ED), making them suitable as energy storage devices in
the power grid to reduce power waste. Ojeda L et al. pro-
posed a preparation method on the grounds of expired drugs
to address the issue of FSCs indicators. This method used
expired drug powders of diclofenac and ibuprofen deposited
on the electrodes of super capacitors to assemble capacitors.
After adding drug powder, the capacitance of the capaci-
tor increased by 2.5-6.3 times, and the highest ED value
could reach 103.5Wh/kg [7]. Macherla N et al. proposed
a nanocomposite material based on Naphthalene Sulfonic
Acid (NSA) doped Polyaniline (PANI)/sulfur-doped reduced
graphene oxide (RGO) to improve the performance of FSCs.
This material was grown and arranged on sulfur-doped RGO
nanosheets, using NSA as a doping agent for PANI and soft
templates. At a Current Density (CD) of 1A/g, the Specific
Capacitance (SC) of this material was as high as 347.5F/g,
and after 2500 cycles, its initial capacitance only lost 11% [8].
Wang S et al. proposed an electrolyte based on MXene
crosslinked organic gel to optimize the electrolyte perfor-
mance of FSCs. The MXene polyacrylic acid N-hydroxyethyl
acrylamide hydrogel network of the electrolyte was replaced
by a mixture of LiCI and ethylene glycol solvent. This elec-
trolyte had good conductivity and operated at a temperature
of —20°C-80°C [9].

In summary, current research on the scheduling of RE
power grids and FSCs has been quite effective, but there are
relatively few studies on the simultaneous application of both
in the power grid. Research in this field often focuses on
one aspect while neglecting the interaction between the two.
Therefore, to improve the storage and utilization efficiency
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of electrical energy in the power grid, achieve scheduling
optimization of renewable power grids, and reduce power
differences in the power grid, this paper proposes a power grid
scheduling Assisted Decision-Making (ADM) method based
on FCS and Proximal Policy Optimization (PPO) algorithm.
This method innovatively constructs FSCs based on Mn&Ni-
based Composite Electrode Materials (Mn&Ni-CEM) and
introduces them into the power grid. At the same time, the
PPO algorithm is used to optimize the scheduling of the
power grid to achieve a balance between the two.

Il. METHODS AND MATERIALS

In response to the problem of energy waste in high propor-
tion RE power systems, this study proposes a power storage
method based on FSCs and a power dispatch ADM model
based on PPO algorithm to reduce power deviation in the
power system and ensure safe and economical operation.

A. PREPARATION OF Mn&Ni-CEM-BASED FSCs
Experimental materials and equipment. FSCs are composed
of flexible substrates, Electrode Materials (EMs), and solid
electrolytes. The EM can simultaneously store energy and
collect current, while the solid electrolyte can simulta-
neously act as an electrolyte and a separator. Compared
with traditional super-capacitors, FSCs are good at safety,
lightweight, low production cost, and environmental protec-
tion. To improve the energy storage performance of FSCs,
this study proposes FSCs based on Mn&Ni-CEM, and the
required materials for their preparation are shown in Table 1.

In Table 1, the required reagents include AcB (particle size:
35-45 nm), polytetrafluoroethylene, foam nickel (porosity:
95%~98%, thickness: 2 mm), polyvinyl alcohol, sodium
hydroxide, etc. Table 2 shows the required experimental
instruments.

In Table 2, the required equipment includes an electronic
balance, VDO, electrochemical workstation, constant tem-
perature heating magnetic stirrer, vacuum filter, tablet press,
slicer, and ultrasonic cleaner.

Preparation of FSCs: Before preparing FSCs, it is neces-
sary to first prepare active materials. The preparation method
for Mn-doped Ni-based active materials is as follows: First,
weigh an appropriate amount of nickel chloride and man-
ganese chloride, and prepare them into solutions of 0.6mol/L,
respectively. Next, mix the nickel chloride solution and man-
ganese chloride in a certain proportion and stir. The stirring
speed is 200r/min and the stirring time is 1h. Then add 10ml
of 0.2mol/L sodium carbonate solution to a mixed solution
of nickel chloride and manganese chloride, and stir at room
temperature for 2h. Next, transfer the obtained mixed solution
to a hydrothermal reactor and react for 12h in a VDO. The
temperature of the VDO is set to 50 °C. Finally, wash and
filter the obtained material using anhydrous ethanol.

Preparation of FSCs EMs: First, the prepared Mn doped
Ni-based active material is mixed with AcB and tetrafluo-
roethylene in the ratio of 80:10:10 and anhydrous ethanol, and
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TABLE 1. Materials needed for the experiment.

Chemical Purity
Name formula quotient Manufacturer
Acetylene
Black (AcB) C ) Henan Ruibo
(Size 35-45 Chemical Co., LTD
nm)
Chongging New
Analytical Fluorine
PTFE (C2F4)n reagent Technology Co.,
LTD
Foam nickel Kunshan Tengerhul
. . Electronic
(Porosity Ni / Technology Co
0/ QRO >
95%~98%) LTD
Jinan Century
Absslc“;}f(f]thyl CH3CH20H 100% Tongda Chemical
Co., LTD
Baoding Fsay
Nickel . . . Cobalt and Nickel
dichloride NiCI2-6H20 High-purity 1o\ Material Co.,
LTD
X . Tianjin Kio
Sodium Na2CO3 Analytical Chemical Reagent
carbonate reagent
Company
Tianjin Hengxing
. Chemical Reagent
0,
Caustic potash KOH 85% Manufacturing Co.,
LTD
Deionized o
water H20 100% Self prepared
Baoding Fsay
Manganese . o Cobalt and Nickel
chloride LS 9% New Material Co.,
LTD
. . Tianjin Kio
Sodium NaOH Analytical Chemical Reagent
hydrate reagent LTD
Polyving Analytical Henan Yuheng
akohol (CH2CHOH)n reagent Chemical Co., LTD

TABLE 2. Instruments required for the experiments.

Name Type Manufacturer
Beijing Zhongyi Electric
Electronic balance ME104E Measurement
Technology Co., LTD
Vacuum Drying Oven Shanghai Qixin Scientific
(VDO) DZF-6020 Instrument Co., LTD
Electrochemical Shanghai Chenhua
workstation CHI760E Instrument Co., Ltd
. . Shijiazhuang Yangxing
Th:nr:lisgggcs t}ilreriltrlng DF-1018 Instrument Trading Co.,
& LTD
Tianjin Otseens
Vacuum filter AP-9925N Instrument Co., Ltd
. Hangzhou David
Bead machine PC-15 Instrument Co., Ltd
Kejing Zhida Technology
Flaker MSK-T10 Co., LTD
Ultrasonic cleaner KQ22000E Kunshan Ultrasound

Instrument Co., LTD

foam nickel is treated with detergent activator. The obtained
active material mixture is then coated on the surface of foam
nickel with a thickness of 10 mm and dried in a VDO. Then,
the EM of FSCs can be obtained by slicing and pressing using
a slicer and tablet press.

Preparation of FSCs: Firstly, mix the prepared EM,
polyvinylidene fluoride, and AcB in an 80:10:10 ratio with
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anhydrous ethanol. Coat the obtained mixture onto a carbon
cloth and dry it to obtain Mn-NiOOH@C flexible electrodes.
Next, mix polyvinylidene fluoride, Activated Carbon (AcC),
and AcB in an 80:10:10 ratio with anhydrous ethanol and coat
them on a carbon cloth. After drying, the negative electrode
of the capacitor can be obtained. The ratio of the positive
electrode active material to the negative electrode mass of
FSCs is equation (1) [10].

mt G x AV~

m- Gt x AV*

In equation (1), m™ and m™ are the mass of AcC in the
Positive and Negative (P&N) EMs. AV* and AV~ are the
voltage testing range between the P&N electrodes. CT and
C~ represent the SC of the three electrode test for the P&N
electrodes.

Preparation of alkaline gel electrolyte: Firstly, weigh 1.5 g
of polyvinyl alcohol and 15 ml of distilled water, and let
it stand at room temperature for 10 minutes. Next, mix the
two and heat them in a water bath while stirring at a heating
temperature of 90 °C. After the polyvinyl alcohol solution
appears clear, add Sml of 6M potassium hydroxide solution
and stir for one hour before cooling the solution to room
temperature. Finally, the prepared P&N electrodes and alka-
line gel electrolyte are assembled according to the sandwich
structure to obtain FSCs.

Performance testing methods. The performance testing
of the active composite electrode of FSCs includes Cyclic
Voltammetry (CV) testing, Constant Current Charge Dis-
charge (CCCD) testing, and Electrochemical Impedance
Spectroscopy (EIS) testing. The CV method involves repeat-
edly scanning a triangular waveform at different rates by
controlling the electrode potential. The potential range is to
enable diverse reduction and oxidation reactions to occur
alternately on the electrode, reflecting the microscopic reac-
tion process on the electrode surface and the reversibility of
electrode reactions. The SC of the tested electrode can be
calculated through the CV curve, and the calculation formula
is equation (2) [11].

2 2
Qz/’u@mzfiwww¢
¢ ¢ )

ey

Ci= ———
2AV -m

In equation (2), Q is the total amount of charge. ¢; and
@2 represent the starting and ending voltages of the CV test.
i () represents the current at the current voltage ¢. ¢ repre-
sents time. s is the scanning rate. Cy is SC. AV represents
the voltage testing interval. m is the active mass. Through
CCCV testing, not only can the SC of the tested electrode
be calculated, but also its SC retention rate can be calculated.
The formula is shown in equation (3) [12].

AC = ’Clow - Chigh’

AC

o= —— x 100% 3)
Chigh

B=1—-«
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In equation (3), AC and « represent the difference in SC
and the rate of change of SC at different voltages. Cj,, and
Chign tepresent the SC at —0.4 V and 0.4 V. B represents
the capacitance retention rate. EIS testing refers to applying
small amplitude Sine Wave Disturbance Signals (SWDS) of
different frequencies to an Electrode System (EcS), obtaining
the electrode impedance from the correlation between the
response of the EcS and the disturbance signal, and infer-
ring the equivalent circuit of the electrode. Furthermore, the
dynamic processes and mechanisms contained in the EcS can
be analyzed, and the dynamic parameters of the EcS can be
estimated from the parameter values of relevant components
in the equivalent circuit. The connection between the excita-
tion signal and response signal of EIS testing is equation (4).

Y=GWX “4)

In equation (4), Y represents the response signal. w repre-
sents angular frequency. X represents the excitation signal.
If G and X are the sine wave current/voltage signal, then
Y represents the impedance of the system. If X and Y are
the sine wave voltage/current signal, then G represents the
admittance of the system.

B. POWER DISPATCH ASSISTED DECISION-MAKING
BASED ON PPO ALGORITHM

Although the above-mentioned FSCs can achieve energy
storage in the power system and reduce power waste, the
randomness and volatility of RE make it difficult to predict
energy output. This will lead to significant uncertainty in
power dispatch, thereby increasing the power deviation of
the grid. Given this, this study develops a PPO-based Power
Dispatch Auxiliary Decision-Making (PDAM) method based
on the introduction of FSCs. When constructing the PDAM
model, to reduce the operating cost of the power grid and
the consumption rate of RE, this study first constructs the
minimum objective function, as shown in equation (5) [13].

F = wcostFeost — WeonFeon — @limFlim (5)

In equation (5), F means that the minimum goal is achieved
in the dispatch cycle when taking into account the grid opera-
tion security, RE consumption efficiency, and operation cost.
Feos: and wcos; respectively represent the Unit Operating
Cost (UOC) function and its weights. F,,, and w.,, represent
the RE absorption function and its weights, respectively. Flim
and wyiny, represent the line crossing function and its weights,
respectively. The so-called consumption of RE refers to the
process of effectively utilizing RE, and line exceeding the
limit refers to the current in the line exceeding the rated value.
The UOC function is equation (6) [14].

N

Fcosl,t = Z (aiP,'zJ + biPi,t + Ci) + C()n,()ﬂ 6)

i=1
In equation (6), Fcosr,; represents the UOC of period .
N represents the quantity of units. a;, b; and ¢; repre-
sent the power generation cost coefficients of the i-th unit.

VOLUME 12, 2024

P;; represents the active output of the i-th unit during the ¢
period. Cop of Tepresents the start-up and shutdown cost of
the unit. The RE absorption function is equation (7).

Nre Npe

Fcon - Zpre,i,t Zpre,i,t (7)
i=1 i=1

In equation (7), N,, represents the number of RE units.
P, and I_Jre, ;¢ are the actual and maximum active outputs of
the i-th RE unit during the ¢ period. The line crossing function
is equation (8).

1 ) I )
Fiim = min ( —, 1 (3)
m Niine ; Ii,t + X

1

In equation (8), Fiim,; represents the line exceeding the
limit during period ¢. Ny, represents the amount of branches
in the power grid. /; ; represents the current flowing through
i branches during period ¢. I; max is the max-current allowed
for i branches to pass through. x represents a constant, with
a value of 0.001. For high proportion RE power grids, the
constraint conditions are shown in equation (9).

Nye N, Nioad

ZPcon,i,t + Zpth,i,t +Pbal,t - Z Pload,i,t =0
i=1 i=1 i=1

Pth,i,min =< Plh,i,t =< Pth,i,max, 0 =< Pcon,i,t =< Pcon,i,max

0-9Pba1,min =< Pbal,t < 1'1Pbal,max

®

In equation (9), Pcopn,i; and Py, ;, are the active output
of the i-th RE unit and Thermal Power Unit (TPU) during
period ¢. Ny, represents the quantity of TPUs. Pp,; ; represents
the active output of the balancing unit during period ¢. Njpaq
represents the number of loads. Pjyqq,;,; represents the active
power consumed by the i-th load during the ¢ period. Py, ; min
and Py, i max represent the min and max active output of the
i-th TPU. Pon.imax represents the max active output of the
i-th RE unit. Ppg/ min and Ppar max denote the min and max
active power output of the balanced unit. Due to the presence
of a certain number of TPUs in a high proportion of RE power
grid, the output adjustment value of TPUs needs to satisfy the
climbing constraint, as shown in equation (10).

D; < Py i1 < Ui
D; = max ((Pu,i,min — Pihit) » rate x Py i max) (10)
U; = min ((Pth,i,max - Pth,i,t) , rate x Pth,i,max)

In equation (10), D; and U; are the max-downhill and
max-uphill values allowed for adjustment of the i-th TPU.
rate represents the climbing rate of TPUs. After constructing
the objective function and constraints of the high proportion
RE power grid, the auxiliary decision-making model can be
constructed. The interaction mode of the PDAM model is
Figure 1.

In Figure 1, the Power Dispatch System (PDS) will deter-
mine the next action based on the current environmental
state, and after executing the action, the updated state will
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Requlrerpent Auxiliary decision-
analysis ) making model
Determine

1Update status,
return rewards
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| scheduling plan

Power dispatch
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Environment
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Objective function conditional constraints

FIGURE 1. Square interaction mode of the PDAM model.

be returned to the system. Therefore, in PDS, state and
action spaces, and return functions are the main components.
Considering that the state space needs to contain dynamic
changes and environmental information, which have a signif-
icant impact on algorithm performance, it is necessary to fully
consider the return function when constructing the state space
to ensure the reliability of generated decisions [15], [16]. The
state space design is shown in Figure 2.

. Related infi ti
Old state —>| Task Analysis » edin ormation
filtering
A
v
! e alizati
New state —> Effect verification [« Gengr 1za. on
considerations

FIGURE 2. State space design process.

In Figure 2, the old state will obtain a large amount
of relevant information after task analysis. To reduce the
amount of information and computational complexity, it is
necessary to filter relevant information. Then, by combining
the filtered relevant information, the generalization of the
algorithm is considered, and the effectiveness is verified to
obtain the corresponding new state. By doing so, a reasonable
state space can be constructed. In high proportion REPDS,
considering the correlation between the output state of RE
and the consumption reward, the constructed state space is
equation (11) [17].

St = {Pth,ts Pcon,tv Pbal,ts rhoy, Pload,t—Hv Pcan,max,t+l}

Y

In equation (11), s; represents the state. Py, ; and Peon ¢
represent the active output of TPUs and RE units at schedul-
ing time ¢. rho; represents the branch power load rate. For
action space, it must have the characteristics of complete
timeliness and functionality, and can improve the efficiency
of intelligent agents exploring the environment. Given this,
the constructed action space is equation (12) [18], [19].

ar = {al‘h,l‘7 Acon,t» abal,t} (12)

In equation (12), a, is the action. a1, dcon,r and ag, ¢ rep-
resent the active output adjustment values of TPUs, RE units,
and balance units at time 7. For the return function, it is
necessary to reduce its sparsity and ensure its correspondence
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with the state space. In view of this, the constructed return
function is equation (13) [20], [21].

R=ay*xr +axxr;+az*xr;+as*rs;
+as*rs; +ag * e (13)

In equation (13), R represents the return function. a; to
ae represent the dimensions of the return term. ry; to re;
represent the normalized value of the return term at time R.
When conducting PDAM, considering the continuous action
control problem of intelligent agents, this study chose the
PPO algorithm as the ADM. The PPO algorithm, as a policy
gradient algorithm, can handle problems in high-dimensional
continuous action spaces and nonlinear policy functions and
has high accuracy and stability [22], [23]. Unlike traditional
policy gradient algorithms, the PPO algorithm constrains the
update amplitude of policies by restricting the mechanism
of policy function changes to limit the step size and ensure
the stability of the optimization process. At the same time,
it utilizes the Actor-Critic structure to explore and improve
the environment and improve the efficiency of sample utiliza-
tion [24], [25]. The proximal strategy objective optimization
function of the PPO algorithm is equation (14).

. 7o (ar|st)
Lo (0) =E ~ mn-——-
clip @) (st,at)~my |: Touy (a |St)

clip( o (@ |si) 1—6¢,1+ 8) Ax (s, a):|

TTOp1a (at |St ) '
= E(st,at)~m, [min (p; (0) Az (s, a)),
clip(pr (0), 1 —¢e,1+€)Ax (s, a)] (14)

In equation (14), Ly, (0) represents the optimization func-
tion of the proximal strategy objective. E(y,ar)~n, represents
the expected value. 7g (a; |s; ) and 7g,,, (a; |s;) are the prob-
ability of selecting action a; in state s, and after the last
policy optimization. A, (s, a) is the advantage value of select-
ing action a; in state s;. & represents a hyper-parameter.
pr (0) represents the ratio of the probability of selecting the
same action between the new and old strategies in state s;.
The calculation of the advantage value is equation (15) [26].

Az (s,a) = Qr (s,a) — Vz (s)
= Ey~p(s|s,a) [V ) +yVe (S/) —Vx (S)] (15)

In equation (15), Oy (s, a) and V7 (s, a) are the action and
state value functions. r (s) represents reward. y is the dis-
count factor. The network update method of PPO algorithm
is shown in Figure 3.

In Figure 3, after interacting with the intelligent sports
environment, the information is input into the New Strategy
Network (NSN), and the actions are sampled based on the
distribution of action strategies. Then, the obtained actions
are input into the environment to obtain new states and
rewards, and stored in the experience library. The new states
are input into the evaluation network, their state and action
value functions are calculated, and the network parameters
are updated through the dominance function. All state com-
binations in the experience base are input into the new and

Aﬂ (Sv (1) ’
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Action strategy | . . | . |
State —>| NSN '—> distribution —>| Action sampling Environment
Storage
| Evaluate network updates
Objective P Dominance . Evaluation .
function function State value Action value Network Experience base
Probability o.f old strategy O.ld gtratfegy Old Strategy
actions distribution Network
Objective Probability
function ratio ST -
robability oA new strategy c.:w .stratAegy NSN |
actions distribution
Action Network Update T
FIGURE 3. Network update mode of the PPO algorithm.

old policy networks, and their action probabilities are calcu- L70K
lated based on the distribution of the new and old policies.
The action probability ratio of the new and old strategies is 136K |
calculated, and the NSN is updated based on the objective =
function. At the same time, the parameters of the NSN are \“; 1.02K
used to update the old strategy network. The above operation 2 0.68K
is repeated until the algorithm converges. g

0.34K |
Ill. RESULTS ‘
To verify the performance of high proportion RE power grid 0.00K ¢ s — > 5

scheduling schemes based on FSCs and PPO algorithms, this
study tested FSCs and PPO-based power grid scheduling
ADM methods.

A. EVALUATION OF FSC PERFORMANCE

To verify the performance of the proposed Mn&
Ni-CEM-based FSCs, this study tested Mn&Ni-based Active
Composite Materials (Mn&Ni-ACM) and electrodes sep-
arately. Figure 4 shows the EDS and XRD patterns of
Mné&Ni-ACM.

In Figure 4 (a), Mn&Ni-ACM mainly contains Ni, Mn, O,
and Cl elements, with their respective proportions of 32.9%,
3.5%, 56.0%, and 7.6%. The Ni and Mn elements have a
relatively low and significant impact on the electrochemical
performance of the material, while the Cl element enhances
the performance. In Figure 4 (b), compared with the standard
XRD spectra of NiIOOH and MnO, Mn&Ni-ACM exhibit a
difference of 20 MnO crystal phase appeared at both 20.2 and
21.6, and at 20 NiOOH crystal phase appeared at positions
28.2 and 37.8. Therefore, the prepared Mn&Ni-ACM is
Mn-NiOOH. The CV curves of Mn-NiOOH at various reac-
tion times and temperatures are shown in Figure 5.

In Figure 5 (a), under the condition of 50 °C, as the
reaction time increases, the Peak Current of the Electrode
(PCE) first decreases and then increases. When the reac-
tion time is 12 hours, 30 hours, and 48 hours, the PCE
is 0.21A, 0.08A, and 0.05A, respectively. In Figure 5 (b),
when the reaction time is all 12 hours, PCE first grows and
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FIGURE 4. EDS and XRD plots of the Mn&Ni-ACM.

then lowers with the growth of reaction temperature. When
the temperatures are 50 °C, 125 °C, and 200 °C, the PCE
is 0.20A, 0.09A, and 0.18A, respectively. Therefore, when
the reaction temperature and time are 50 °C and 12 hours,
the electrochemical performance of the Mn-NiOOH is the
best. In addition, Figure 5 also indicates that the Mn-NiOOH
electrode mainly stores energy through redox reactions. The
CCCYV curves of Mn-NiOOH electrodes at different reaction
times and temperatures are shown in Figure 6.
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FIGURE 5. Circular voltammegram of the Mn-NiOOH electrode.

In Figure 6 (a), when the reaction time is all 12 hours, the
CCCYV time of the electrode decreases first and then lifts with
the increase in temperature. When the reaction temperatures
are 50 °C, 125 °C, and 200 °C, the charging and discharging
times of the electrodes are 1450 s, 300 s, and 518 s, respec-
tively, and the charging and discharging times are basically
the same. In Figure 6 (b), when the reaction temperature is
all 50 °C, the CCCYV time first decreases and then increases
with the increase of reaction time. When it is 12h, 30h, and
48h, the CCCV time is 1461s, 200s, and 380s, respectively.
The above results indicate that the Mn-NiOOH electrode has
the longest service life when the reaction temperature is 50 °C
and the reaction time is 12 hours. The CCCV and SC curves
under diverse CDs are shown in Figure 7.

In Figure 7 (a), the CCCV time of the electrode gradually
reduces with the rise of CD. When the CD is 1A/g, the CCCV
time is 1455 seconds. When the CD is 2A/g, the charging
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FIGURE 6. CCCD curves of the Mn-NiOOH electrode.

and discharging time is shortened to 521s, a reduction of
64.2%. In Figure 7 (b), as the CD rises, the SC of the electrode
decreases. When the CD is 1A/g, the SC is 863F/g. When the
CDis 5A/g, the SC decreases to 353F/g, a decrease of 59.1%.
This indicates that the Mn-NiOOH electrode has excellent
rate characteristics. The cycling performance and EIS of the
Mn-NiOOH electrode are shown in Figure 8.

In Figure 8 (a), as the number of cycles increases or
decreases, the SC retention of the electrode slowly decreases.
When the number of cycles is 500, the SC retention rate is
80.2%. When the number of cycles is 700, the SC retention
rate decreases to 75.5%. After 1000 cycles, the SC reten-
tion rate is 72.3%. In Figure 8 (b), the impedance of the
Mn-NiOOH electrode is about 118 €2, which is relatively
small. This indicates that the Mn-NiOOH electrode has good
electrochemical performance. This is because the bimetallic
doping in the material has a synergistic effect, and foam
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nickel provides a suitable place for electrochemical reactions.
The CV and CCCV curves of FSCs are displayed in Figure 9.

In Figure 9 (a), as the scanning speed rises, the peak power
of the capacitor gradually increases. When the scanning speed
is SmV/s, the peak current is 0.009 A. In Figure 9 (b), as the
CD increases, the CCCV time of the capacitor gradually
decreases. When the CD is 1A/g and 5A/g, the CCCV time
is 128s and 10s respectively. FSCs have been proven to have
good rate characteristics. The SC and ED variation curves of
FSCs are exhibited in Figure 10.

In Figure 10 (a), as the CD increases, the SC of the capac-
itor decreases. When the CD is 1A/g, the SC is 39F/g. When
the CD increases to 10A/g, the SC is 13F/g, a decrease of
66.7%. In Figure 10 (b), as the power density increases, the
ED of the capacitor gradually decreases. When the power
density is 8,500W/kg, the ED is 125Wh/kg. When the power
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FIGURE 8. Circulation performance and electrochemical impedance
profiles of Mn-NiOOH electrodes.

density is 100,000W/kg, the ED is 41Wh/kg, a decrease of
67.2%. This indicates that FSCs have good energy storage
performance.

B. PDAM MODEL TESTING AND ANALYSIS

To ascertain the efficacy of the PDAM model in accordance
with the PPO algorithm, this study conducted a series of
tests. The test was conducted in a simulation environment,
with 126 nodes and 54 units in the simulated power grid,
including 18 RE units and 1 balancing unit. The number
of loads and proficiency in load lines were 91 and 185,
respectively. The data used in the experiment was sourced
from the Linyi City Power Grid in Shandong Province in
2022, containing 100,000 pieces of data. In the experiment,
the number of input and output neurons in the action network
of the PPO algorithm and evaluation network was 348 and
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108, 348 and 1, respectively. The discount factor and learning
rate of the algorithm were 0.95 and 0.0001, respectively. The
reward values of the PDAM model are shown in Figure 11.

In Figure 11 (a), the reward value of the PDAM model
based on the PPO algorithm begins to converge after approx-
imately 50000 iterations, at which point its reward value
is approximately 257. The reward value in Figure 11 (b)
increases with the number of scheduling steps. After the
number of scheduling steps reaches 560000, the reward
value gradually stabilizes at around 1.0. This indicates that
the PDAM model based on the PPO algorithm has good
ADM capability. The output situation under PPO algorithm
scheduling is shown in Figure 12.

In Figure 12 (a), when the total load trend is decreasing,
the output changes of TPUs, RE units, and balance units are
basically consistent, all in line with the trend of active load
changes in the power system, and the total output is not signif-
icantly different from the total output. In Figure 12 (b), when
the total load trend is increasing, the output change trends of
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FIGURE 11. Reward value of the PDAM model.

the three units are basically consistent. When the load tends
to stabilize, due to small energy fluctuations, the output of
RE units significantly increases, which is in line with the
characteristics of active load changes in the power system.
The PDAM model based on the PPO algorithm can formulate
scheduling strategies according to the composite charac-
teristics of the power system, reducing power differences.
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The consumption of RE under PPO algorithm scheduling is
shown in Figure 13.

In Figure 13 (a), when the Energy Output Rate (EOR) of
the RE unit is low, there is not much difference between
its actual output and maximum output, with a fluctuation
range of 7SMW to 120MW, and the difference between the
two does not exceed 3MW. At this time, the absorption rate
of RE is relatively high, reaching 98.5%. In Figure 13 (b),
when the EOR of the RE unit is high, although the trend
of actual output and maximum output is consistent, there
is a significant difference. When the scheduling steps are
between 120-200, the difference between the actual and max
output of RE significantly increases, reaching a maximum of
150MW. At this point, the absorption rate of RE is 90.1%.
The comparison shows that as the EOR of RE units increases,
their consumption rate gradually decreases, but overall, it still
maintains a high level.

IV. DISCUSSION

This study proposed a power dispatch method based on
Mn&Ni-CEM FSCs and PPO algorithms for the scheduling
problem of the RE power grid. The experimental results
for FSCs based on Mn&Ni-CEM showed that the SC of
Mn&Ni-CEM material was 863F/g at a CD of 1A/g, which
was higher than that of flexible aluminum foil coated with
carbon nanotubes [27]. At a power density of 8,500W/kg,
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the ED of Mn&Ni-CEM material was 125Wh/kg, signifi-
cantly higher than that of FSCs based on FeCo-Ss [28]. This
is because Mn&Ni-CEM materials have a nano-layered struc-
ture. Among them, the Mn-NiOOH @Ni and Mn-NiOOH@C
appeared more doping levels near the Fermi level, provid-
ing more possibilities for carrier transfer and transition, and
increasing the material conductivity. For the PDAM method
based on the PPO algorithm, when the EOR of the RE unit
was low, the actual output and maximum output were not
significantly different, with a fluctuation range of 75SMW
to 120MW, and the difference between the two did not
exceed 3MW. At this time, the absorption rate of RE was
relatively high, reaching 98.5%. Compared to the compre-
hensive generation control and power scheduling methods
based on performance-based frequency regulation markets
and scheduling methods based on Coulomb and Franklin’s
law algorithms, it significantly reduced the power difference
of the power system [29], [30]. This is because the PPO
algorithm optimizes the parameters of the policy function by
limiting the amplitude of policy function updates and multiple
sampling, thereby achieving better performance and stability.

V. CONCLUSION

The scheduling of high-proportion RE power systems often
involves significant uncertainty, which affects the secure
operation of the power grid and leads to a waste of electricity.
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Given this, this study proposed a PDAM method based on
FSCs and PPO algorithms to reduce power waste and improve
the security of the power grid. The experiment verified that
under the optimal conditions, the peak current of the EM was
0.21A, the CCCV time was the 1450s, and the maximum
SC was 863F/g. The SC retention rate was 72.3% after
1,000 cycles. When the power density of FSCs with this
electrode was 8,500W/kg, the ED was 125Wh/kg. Therefore,
FSCs based on Mn&Ni-CEM materials had good energy
storage capabilities. For the PPO algorithm, when the EOR
of the RE unit was low, the actual output and maximum
output were not significantly different, with a fluctuation
range of 7SMW to 120MW, and the difference between the
two did not exceed 3MW. At this time, the absorption rate
of RE was relatively high, reaching 98.5%. The above data
indicates that the use of super FSCs can achieve storage of a
high proportion of RE electricity, and coupled with the PPO
algorithm, can well reduce the power difference of the power
grid and achieve efficient energy utilization. Due to limita-
tions in experimental conditions, only a simple and feasible
hydrothermal method was used to prepare manganese nickel
hybrid materials, which also has certain limitations in the
packaging and testing of FSCs based on nickel manganese
hybrid electrodes. Therefore, further optimization will be
carried out on the packaging of FSCs.
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