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ABSTRACT In industry, cutting various irregular pieces from a large raw material plate of a given size
is often necessary to minimize the number of raw material sheets used. This problem is known as the
two-dimensional irregular bin packing problem (2DIBPP). An iterative compression algorithm is proposed
to address the irregular packing problem in the sheet metal industry, considering lead lines to maximize
raw material sheet utilization. Firstly, three methods of lead lines pre-processing are proposed to effectively
transform lead lines constraints into non-overlapping constraints between pieces. Secondly, an improved
greedy heuristic, incorporating the sticking-edge and insertion-space strategies, is designed to obtain an
initial solution for compact packing. Finally, through the iterative compression strategy, the occupied space
of the pieces is continuously contracted to further enhance raw material sheet utilization. The efficiency of
the proposed algorithms is demonstrated through testing and analysis of real-world instances from industry.
The lead lines processing strategy and algorithm presented in this paper effectively resolve the irregular
packing problem associated with lead lines, demonstrating their utility in industrial production.

INDEX TERMS Sheet metal industry, irregular packing, lead lines, iterative compression algorithm.

I. INTRODUCTION packing and reduced sheet utilization arising from the

The irregular packing problem [1] is widespread in industries
such as apparel manufacturing and sheet metal cutting,
where raw material sheets need to be cut into different
pieces to maximize material utilization. In large equipment
manufacturing companies, it is often necessary to cut a given
lot of irregularly shaped pieces from a defined size of raw
material sheet with the goal of minimizing the number of
raw material sheets used. The problem is known as the
two-dimensional irregular bin packing problem (2DIBPP).
However, in the actual production process, not only is it
crucial to efficiently utilize raw material sheets, but also
the constraints of the cutting process must be taken into
full consideration. Among these, the issues of inconvenient
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inclusion of lead lines are particularly prominent. In the
production process, large cutting machines usually use flame
cutting and plasma cutting technology. To prevent piece
defects resulting from the melting of the material at the
tool cutting starting point due to high temperature, the
processor will add lead lines to each piece to ensure that
the position of the tool cutting starting point does not
directly touch the edge of the piece. Therefore, the constraints
imposed by the lead lines must be considered during the
nesting process. Fig. 1 provides a detailed example of
lead-in and lead-out lines. Fig.1(a) illustrates a single piece
featuring these lines, while Fig.1(b) shows the result of
piece packing. In this process, the cutting tool enters at
the tail of the lead-in line and exits at the arrow of the
lead-out line, adhering to the constraints imposed by the
lead lines.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

106695


https://orcid.org/0009-0008-0524-5724
https://orcid.org/0000-0002-8018-1774

IEEE Access

C. Tang et al.: Iterative Compression Method for the Two-Dimensional Irregular Packing Problem

lead-in

”

lead-out

(a) Lead lines of piece (b) packing of lead lines

FIGURE 1. Lead lines cases.

When the lead-in and lead-out lines are integrated into
the piece contour, the problem aligns with the 2DIBPP.
The irregular packing problem that includes lead lines is a
variant of 2DIBPP, as most 2DIBPP methods are applicable to
solving the 2DIBPP with lead lines. In recent years, research
on 2DIBPP has predominantly focused on the finite-rotation
case [2]. Lopez-Camacho et al. [3] employed the Djang and
Finch heuristic to achieve better results for convex polygon
instances than previously possible. Liu et al. [4] introduced
a heuristic that combines a first-fit diminishing strategy for
assigning irregular pieces to sheets with a swapping-piece
method to enhance solutions for finite rotation 2DIBPP.
Based on this, Zhang et al. [5] proposed a waste minimization
strategy for piece assignment, alongside a hot-start and itera-
tive doubling strategy to expedite the search process, resulting
in significant improvements on classical cases. Additionally,
numerous other methods have been utilized to address this
problem, including scanline-based algorithms [6], genetic
algorithms [7], hybrid heuristics [8], and hyper-heuristics [9].

In the realm of packing problems constrained by specific
processes, researchers have dedicated their efforts to explor-
ing the irregular packing problem associated with rectangular
raw material sheets of varying sizes. Abeysooriya et al. [10]
have introduced efficient local search heuristics to tackle
the packing problem, achieving notable advancements.
Additionally, they devised a heuristic algorithm based on
algorithm of Jostle specifically tailored for the arbitrary
angle problem. This algorithm includes a mechanism to
identify promising subsets of angles based on the current
arrangement of pieces within partial solutions. Yao et al. [11]
proposed an iteratively doubling binary search strategy aimed
at optimizing the utilization of differently shaped sheets
over successive iterations. Their approach has demonstrated
significant efficacy in real-world production. In addition
to this, Yaoetal. [12] conducted study on the 2D non-
guillotine cutting problem with defect constraints. They
applied decomposition of combinatorial benders to address
the problem and achieved good results. Han et al. [13] and
Martinez-Sykora et al. [14] extended their research to
incorporate free rotation and guillotine constraints, address-
ing specific applications within the glass industry with
innovative methodologies. Furthermore, Bennell et al. [15]
raise a beam search heuristic to solve the packing
problem. In this approach, each node represents a partial
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solution, focusing on efficient arrangement strategies for
raw sheets.

Given the current state of research, a significant portion
of the literature focuses on the 2D irregular packing problem
without incorporating process constraints. Among the studies
that do consider process constraints, the examination of free
rotation angles and guillotine constraints is more prevalent.
However, there is a relative scarcity of research addressing
the introduction of cutting process constraints, particularly
those related to lead-in and lead-out lines. The presence of
these process constraints poses a unique challenge, as existing
methods for irregular packing cannot be readily applied to
scenarios involving lead-in and lead-out lines. Moreover,
the inclusion of these lines directly impacts the quality of
the produced pieces. If these constraints are overlooked or
mishandled, it can result in defective pieces or pieces that
are aligned but not feasible for cutting. To address these
challenges and ensure high-quality pieces while optimizing
raw material utilization, it is imperative to develop an efficient
algorithm for row sample placement that accounts for these
critical process constraints.

The rest of this paper is organized as follows. Section II
provides a formal description of the problem and details the
calculation of utilization. Section III describes the geometric
tools used in this paper. Section IV presents the piece lead
lines handling methods. Section V explains the method and
process of overlap minimization from pieces. Section VI
introduces the proposed generating initial solution and
iterative compression algorithm. Section VII details the
experiments conducted, and Section VIII concludes the paper.

Il. PROBLEM DESCRIPTION

The irregular packing problem in two dimensions considering
lead lines are defined as follows: given a set of irregular
pieces to be cut P = {p1, ..., p,} and a raw material sheet
of length L and width W. The irregular packing problem is
defined as follows. For piece p; consists of a contour Cj,
a lead-in line [;, and a lead-out line O;, where the contour,
the lead-in line, and the lead-out line are represented using a
point set. This is shown in Fig.1(a), where the arrow of the
lead-in line points to the piece and the arrow of the lead-out
line points to the piece. The piece is allowed to rotate by four
angles during the packing process, where the set of angles
at which the piece rotates is A = {0°,90°, 180°, 270°}.
It is necessary to pack all the pieces in the set P into the
raw material sheets to maximize the utilization of the raw
material. The following conditions need to be met during the
packing process: (1) The pieces must not exceed the layout

FIGURE 2. An example of sheet layout.
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(a) Pieces A and B (b) B around A

FIGURE 3. No-fit-polygon(NFP) for two irregular pieces A and B.

area of the raw material sheet; (2) No two pieces may overlap;
(3) A certain distance must be maintained between pieces
to ensure their integrity during cutting; (4) The edges of the
pieces must maintain a certain distance from the boundaries
of the raw material sheet to avoid defects; (5) The lead-in and
lead-out lines of the pieces must not intersect with any other
pieces to prevent compromising the integrity of other pieces
during the cutting process.

During the packing process, the last sheet is often not
completely filled. Calculating the average utilization solely
based on the number of sheets can obscure the actual
differences between algorithms. To more accurately measure
the effectiveness of the algorithms, this paper calculates the
utilization of the sheet as follows. In Fig.2, the used area of
the last sheet is Syjusr = S —S., where S is the total area of the
last sheet, S, is the area of the rightmost endpoint of all the
pieces further to the right, and the area of the pieces in the last
sheet is Spiasr = Spa+Spp+Spe, which defines that the area of
the first n-1 sheets is (n—1)S, and that of the pieces on the first
n-1sheetsis Sp. Ry = (Spiast +Sp)/(n—1)S +Suiast), Where n
is the number of raw sheets utilized. This utilization prevails
not only considers the complete use of sheets, but also fully
considers the utilization of the last sheet in rows. Thus, the
performance of the algorithm can be fully reflected.

Ill. GEOMETRIC TOOLS

A. NO-FIT-POLYGON

No-fit-polygon (NFP) serves as a fundamental geometric tool
in addressing overlap detection between polygons within the
irregular packing problem. Specifically, if the reference point
of one polygon lies inside the critical polygon of another
polygon, it indicates overlap between the two polygons;
otherwise, no overlap exists.

Taking Fig.3 as an example, the process of generating
NFP(A, B) between two polygons A and B can be described
as follows. Polygon A is considered a fixed polygon, while
polygon B is treated as a tracking polygon allowed to slide
along the outer contour of polygon A. Throughout this
sliding process, polygon B maintains contact with the outer
contour of polygon A, and the trajectory of reference point of
polygon B is recorded. These trajectories of reference point of
polygon B are then compiled to form polygon C, denoted as
NFP(A, B). For a detailed description of the NFP generation
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FIGURE 4. Inner-fit-polygon(IFP) for two irregular piece A and bins.

process, refer to the work of Bennell et al. As depicted
in Fig.3, if the reference point of polygon B lies within
NFP(A, B), polygons A and B overlap; otherwise, they do not
overlap.

To ensure the piece remains within the sheet during the
overlap removal process, an Inner Fit Polygon (IFP) is
defined for both the piece and the sheet. The IFP helps
determine if the piece stays within the packing area of the
sheet. If the reference point of the piece is not inside or on
the IFP, it indicates the piece extends beyond packing area
of the sheet. Conversely, if the reference point is inside or
on the /FP, the piece remains within the packing area of the
sheet. The process of generating the IFP is depicted in Fig.4.
Initially, a reference point is selected from the piece. The
piece is then moved along the inner edge of the sheet in
a circular path. The region traced by the movement of the
reference point of the piece forms the /FP. This polygon
serves as a boundary to ensure the piece stays within the sheet
during operations such as overlap removal.

B. OVERLAP DEPTH
In this paper, achieving a viable layout plan necessitates that
pieces neither overlap nor protrude beyond the boundaries of
the sheet. The concept of overlap depth is employed to assess
the feasibility of the packing scheme. Overlap depth refers
to the minimum distance required to separate two intersecting
pieces or to fully accommodate a piece within the sheet
when it extends beyond the interior of the sheet. For further
elaboration on overlap depth, interested readers are referred
to the works of Agarwal et al. [16], Abramson et al. [17] and
Kim et al. [18]. Here are the definitions for clarity:
Definition 1: A polygon is represented by a set of points p.
Given a polygon p and a translation vector v = (vy, vy),
denote the translation function by @, so the translation
process of p can be defined as: p ® v = {(psx + vy, psy +

vy)lps € p}.

106697



IEEE Access

C. Tang et al.: Iterative Compression Method for the Two-Dimensional Irregular Packing Problem

PD(4,B)

FIGURE 5. Overlap vectors and overlap values.

Definition 2: Given a polygon p and a rotation angle r,
with the coordinate origin as the center of rotation, the
rotation function of the polygon can be defined as: p(r) =
{(psy x cos(r) + psy x sin(r), —ps, x sin(r) + ps, x
cos(r))lps € p}.

For a given piece a and piece b, the overlap distance
between them can be denoted by P(p,, pp) = min{||v|| | pa N
(pp ®v) = @,v € R2).If P(p,, pp) = O, it means that
pieces p, and pp, are non-overlapping. Similarly, the overlap
distance between piece b and sheet p can be expressed using
p(b, p) = min{||v|| | (p@®v) € b, v € R?}, which indicates that
piece b is completely placed inside sheet p if p(b, p) = 0. The
overlap depth can be calculated from the overlap distance.
The overlap vectors and overlap depths of the pieces are
represented in Fig.5. This represents the relationship between
the pieces, PD(A, B) represents the piece overlap vectors, and
D(A, B) represents the overlap depths; and Fig.5 represents
the relationship between the pieces and the sheet, P?E(B)
represents the overlap vectors, and E(A, B) represents the
overlap depth.

After the overlap depth is obtained, the overlap value
between two pieces can be further calculated, and in this
paper, the overlap value is expressed by using the Euclidean
Vander number de square of the overlap depth. The overlap
value of two pieces py and p; is expressed as (1). where R
is a rotation angle vector storing the displacements of all the
pieces; v; = (x;, y;) denotes the translation of piece p; from
the original coordinates of the reference point to the right by
x; and to the upward by y;; p;(r;) denotes the rotation of piece
pi by r; degrees, and the new coordinates of the points after
the rotation of each point of piece p; by r;; and |C;] is the set
of contour points of p; the number of points of p;.

fu(R, V) = |PD(pi(ri) @ vie, pi(r1) ® vp)|%,
1l<k<l<n (1)

gu(R, V) = |PE@pi(re) @ vi, MW, L))|*, 1 <k <n (2)

Similarly, the overlap of piece p; with the raw material
is expressed as (2), with M denoting the principle sheet,
W denoting the width of the sampling area for the raw
material sheet, and L denoting the length of the sampling area.

IV. PIECE LEAD LINES HANDLING METHODS

In this paper, three methods are proposed to deal with
lead lines, namely, the shape expansion method, the local
deformation method and the lead removal method of
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lead lines. The first two methods optimize by transforming
the piece shape from one with lead lines to a standard
irregular polygon. The third method involves removing
overlaps between lead lines and the piece through translation.

A. SHAPE EXPANSION METHOD

The shape expansion method combines the lead line points
with the contour of piece to enlarge its shape in Fig.6(a).
This transforms polygon A with lead lines into a simpler
polygon A’, similar to solve a standard irregular packing
problem. Without flaring, piece B can be placed closer
to piece A in Fig.6. However, using the flaring strategy
(creating A”), piece B must be positioned farther away, leading
to increased material wastage.

- A

(a) Shape expansion (b) Effects

FIGURE 6. Shape expansion and effects.

B. LOCAL DEFORMATION METHOD

The piece local deformation method simplifies handling
lead lines by covering them with two envelope rectangles
that merge with the rest of the piece. These rectangles are
considered part of the piece during packing. If piece B
intersects the envelope rectangles of lead lines in piece A, the
packing scheme is deemed invalid. In Fig.7(a), the method
uses the two smallest envelope rectangles to cover the lead
lines of piece A, transforming it into A’. This process can
be optimized to reduce the area of the envelope rectangles.
Firstly, the rectangles are aligned parallel to the lead lines
in Fig.7(b). Then, a small extension is added to the adjoining
portion of the piece to ensure the outline of the envelope
rectangles completely overlaps the piece. Finally, the two
piece contours are merged to form a new polygon for packing.
This method is less wasteful than piece flaring, as using the
merged piece for packing minimizes the impact of lead lines
on packing utilization.

g A X=>

(a) Local deformations (b) Effects

FIGURE 7. Local deformations and effects.

C. LEAD REMOVAL METHOD
The lead removal method directly substitutes lead lines
constraints into the piece overlap calculation and consists of
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three steps. The steps are as follows. Firstly, during piece
processing, add the set of lead-in line points to the outline
of the piece properties. Then, before placing a piece into
the packing area, check if the lead-in lines of the current
piece intersect with any already placed pieces. Finally, if an
intersection is found, perform an overlap removal operation.
Piece B overlaps the lead lines of piece A in Fig.8. Before
eliminating the overlap, it is necessary to determine the
shortest vectors that move the lead-in and lead-out lines out of
the piece, respectively. The shortest vectors PX, PY and PZ
indicate the three directions in which the lead-in line moves
out of piece B, with the shortest length of PX used as the
overlap vector of the lead-in line and piece B. And the shortest
vectors QE QF and QG indicate the three directions in which
the lead-out line moves out of piece B, with the shortest length
of QE used as the overlap vector of the lead-out line and
piece B. The lead-in line and lead-out line are finally moved
out of piece A separately. The overlap vectors of the lead-in
line and the lead-out line with piece B are vectorially summed
to obtain the total overlap depth PﬁQ. If a line segment in the
lead lines does not intersect with other pieces, the overlap
depth corresponding to that vector is (0,0). Finally, (3) is used
to calculate the overlap value of the lead-in lines for py and p;.
This overlap value accounts for not only the overlap value of
the lead lines of piece py with piece p;, but also the overlap
value of the lead lines of piece py with piece p;.

ha(R, V) = PO (1) ® vk, pi(r)) & v

+ 1POi(r) ® w1, pr (k) ® vio) 1%,
l<k<l<n 3)

FIGURE 8. Lead removal method.

Fig.9 illustrates a simplified process for direct carry lead
lines packing. Knowing the positions of piece A and piece B
in the current legal solution, when placing piece C, piece C
will first find a legal position without considering the lead
lines using the conventional packing method. At this time,
piece C overlaps with the lead lines of piece A, and the lead
lines of piece C intersect with piece B in Fig.9(a). To resolve
these overlaps, the vector PQ can be computed based on
the parameters, and piece C is translated according to this
vector. After the translation, the legality of the new position
of piece C is verified. The result shown in Fig.9(b). In cases
where a feasible solution cannot be found, as illustrated
in Fig.9(c), piece D cannot find a suitable location near its
current position. When this occurs, the piece is removed, and

VOLUME 12, 2024

the upper right corner is re-traversed to find another feasible
placement area.

V. OVERLAP MINIMIZATION

All feasible solutions to the packing problem require that
there be no overlap between pieces and that the pieces
are located within the raw material sheet. If any overlap
exists between pieces, the packing solution is not feasible.
Therefore, pieces must be moved to eliminate overlaps
and achieve a feasible solution. In this paper, the total
overlap value is defined in (4), where fiy(R, V), gk(R, V)
and hy (R, V) are derived from (1), (2), and (3), respectively,
representing the overlap values of all pieces combined. It is
important to note that (3) does not need to be considered if
the lead lines of the pieces are managed using a method other
than that described in Section IV-C.

When Overlap(R,V) = 0 for the packing result, the
obtained solution is feasible. The process of removing overlap
does not consider angular rotation of the pieces but only
reduces the overlap value by moving the pieces. Therefore,
the only variable in the formula is the translation vector of
the V. Consequently, the process of removing overlap can
be converted into an unconstrained nonlinear programming
model to solve for the solution in (5).

> R VY+ D guRV)

1<k<l<n 1<k<lI<n

+ D R V) )

I<k<I<n

S WM+ D guvV)

1<k<l<n 1<k<l<n

+ D V) )
I<k<l<n

If the final result of O(V) = 0, it indicates that all overlaps
have been successfully removed, resulting in a feasible layout
solution. However, if the overlap value is not 0, it implies
that the current layout cannot be adjusted to achieve a
feasible solution solely by moving the pieces. In such cases,
it becomes necessary to either remove some pieces from the
current layout or modify the rotational state of the pieces
to resolve the overlaps and achieve feasibility. Algorithm 1

provides pseudo-code for overlap minimization.

Overlap(R, V) =

Minimize O(V) =

VI. ALGORITHM

In this paper, an algorithm is devised for addressing the
irregular packing problem with lead lines, which consists of
two main components. Firstly, an enhanced greedy search
algorithm is introduced to discover the initial solution for the
packing scheme. Subsequently, the initial solution generated
is refined using an improved piece exchange algorithm to
achieve further optimization of the packing solution.

A. GENERATION THE INITIAL SOLUTUIN
One commonly used heuristic strategy in the initial
solution generation phase of irregular packing is the
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(a) Initial deployment

FIGURE 9. The process of lead lines removal overlap.

Algorithm 1 OverlapMinimization
Input: P: the set of all pieces; V:
displacements;
Output: Overlap the overlapped values after removal and
update V;
L Vige <V, Vot < V;
2: maxiter = 3;
3: min_overlap = Overlap(R, Vias);
4: while (maxiter > 0) do
5 Viast < V;
6: overlap_temp < L_BFGS(O(Vigs), Vigst); //this
O(V) is equation (5).

the set of piece

7. if overlap_temp == 0 then

8 Voest < Viast

9: min_overlap < 0;

10: break;

11:  endif

12:  if overlap_temp < min_overlap then
13: V < Vigsts

14: min_overlap < overlap_temp;

15:  endif

16:  maxiter < maxiter — 1;

17: end while
18: V <« Viuer
19: return min_overlap;

bottom-left algorithm. This algorithm proceeds by traversing
the set of points where pieces can potentially be placed,
starting from the bottom-left corner and moving towards the
top-right corner. It makes legality decisions sequentially until
it finds the first legitimate placement point, which is then
used as the initial position for the piece. Despite its speed
in placement, the bottom-left algorithm often results in a
disorderly layout, which can hinder further optimization of
the subsequent packing scheme.

To enhance the effectiveness of the bottom-left algorithm,
this paper introduces two strategies: the sticking-edge
strategy and the piece-insertion strategy. The core of the
sticking-edge strategy involves developing a systematic
evaluation criterion to guide piece placement decisions.
Taking Fig.10 as an illustration, when positioning piece C,
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(b) Legal arrangement

(c) Unable to legalize scheduling

the algorithm identifies multiple viable placement points
and evaluates each one. If the piece employs the lead
line overlap removal method outlined in Section IV-C,
an additional step ensures no overlap with lead lines of other
pieces. Subsequently, the algorithm virtually expands the
placed piece C and calculates the fit area at each potential
placement point. This includes determining the intersection
area with the contours of already placed pieces A and B
(Intersect(C, other)) as well as the area unique to the
piece C and the sheet contour (Different(C, bin)) in Fig.10(a)
and Fig.10(b). If multiple viable points exist, the algorithm
selects the point offering the largest fitting area for placing
piece C, as depicted in Fig.10(c). This strategy signifi-
cantly enhances the compactness of piece arrangements and
systematically addresses the fitting relationships between
pieces, thereby optimizing conditions for subsequent piece
placements.

(a) Initial deployment! (b) Initial deployment2 (c) The results

FIGURE 10. The process of sticking-edge strategy.

When dealing with different kinds of piece packing,
differences in piece shapes and sizes often create a large
number of gaps in the sheet. Although the bottom-left
algorithm and the edge-fitting algorithm can efficiently find
most of the legal placements, in some cases they may
ignore potential locations with only a small amount of
overlap due to overly strict legality determination. To address
this problem, this paper uses an interpolation algorithm
as a supplement when the bottom-left algorithm and the
affixed-edge algorithm are unable to find a legitimate solution
on the current sheet. This algorithm aims to find the void
with the least amount of overlap for piece placement and
subsequently calls the overlap removal algorithm for fine-
tuning. If the interpolation algorithm is able to find a
feasible solution, then we will update the initial solution.
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Algorithm 2 Improved Greedy Search Algorithm
Input: P: the set of all pieces; V: the set of piece
displacements; R: the set of piece rotations; B: the set of
sheets;
Output: update V, R and B;
1: for P, € Pdo
2:  while B; € Bdo
3: Find some legal set of placeable states (Viemp, Rremp)
based on the pieces already placed on sheet Bj;

4: for (Vi, Ry) < (Vtemp7 Rtemp) do
5 if (Vtemp: Rtemp) 75 ¢ then
6: Legitimate Point Selection Using the sticking-
edge strategy;
7: else
8: Rediscover placement points with the least
overlap;
9: if OverlapMinimization(P, Vi) > 0 then
10: break;
11: end if
12: end if
13: (V,R) < (Vi, Ry);
14 end for
15: B < Bj;
16:  end while
17: end for

Conversely, if it is not possible to find a feasible solution,
then we skip the currently placed pieces of the same type and
continue to try to place another type of piece on the current
sheet.

|

(b) Piece-insertion

(a) Sticking-edge (c) Overlap minimization

FIGURE 11. The process of piece-insertion strategy.

The piece-insertion algorithm, depicted in Fig.11,
is employed when placing piece E. Initially, the sticking-edge
strategy is attempted in Fig.11(a), but it results in an
illegitimate solution. Consequently, piece E is adjusted to
locate a gap that minimizes overlap with already placed
pieces in Fig.11(b). Once a suitable placement is identified,
the overlap removal algorithm is applied to fine-tune
the arrangement, achieving a legal solution in Fig.11(c).
Notably, the piece-insertion algorithm is versatile and can
accommodate pieces preprocessed using the lead lines
removal overlap method. Here, consideration of the lead
lines overlap value is integral to determining and addressing
overlap during the placement process. This flexibility enables
the interpolation algorithm to effectively address various
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types of piece packing challenges. The method used to
generate the initial solution is shown as Algorithm 2.

B. ITERATIVE COMPRESSION ALGORITHM

After deriving the initial packing solution, there remains
significant potential for optimizing the piece layout to
maximize sheet space. To achieve this goal, this paper
employs an iterative compression strategy. The strategy
begins by attempting to enhance piece compactness by
compressing the sheet length, which may lead to some pieces
overlapping. Subsequently, it applies piece swapping and
overlap removal techniques to minimize the overlap value
in the obtained solution. If complete elimination of overlap
is not feasible through these methods, the algorithm records
and updates the set of solutions with the smallest overlap
values.

The process then continues with further attempts at piece
swapping until a predefined upper limit on the number
of swaps is reached. If a feasible arrangement is still
unattainable at this stage, it suggests that the compression
level might be excessive. In such cases, the compression
amount is appropriately reduced, and the process retries to
find a feasible scheduling plan. Upon achieving a feasible
plan at a specific compression level, the algorithm maintains
this compression amount and continues to strive for higher
utilization rates. This iterative refinement continues until
no further compression of the sheet layout is possible.
Any remaining vacant areas on the right side of the
sheet are considered potential spaces for future pieces.
Fig.12 illustrates the entire iterative optimization process,
detailing how progressive compression and piece swapping
can effectively enhance sheet utilization by optimizing the
arrangement of pieces. Algorithm 3 outlines the pseudo-code
of our proposed algorithm.

FIGURE 12. Iterative optimization of compression.

VII. RESULTS AND COMPARATIVE ANALYSIS
All algorithms proposed in this paper have been implemented
using C++411, and all experiments were conducted on a
Windows computer equipped with an Intel(R) Core(TM)
i5-10400F CPU running at 2.90 GHz and 16.0 GB of RAM.
The effectiveness of these algorithms has been validated
through experimental tests conducted on real-world cases
within enterprises.

Table 1 gives the basic information of the test case.
It mainly contains the length and width of the sheet, the
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TABLE 1. The characteristics of the data.

Sheet information

Piece information

Process information

Case Length Width Types  Points Num Gap Inlength  Outlength
Base0Ol 7400 1800 18 144.889 112 4.25 9.35 6.95
Base02 6000 1500 11 143.545 252 5 10.4 7.9
Base03 7400 1650 6 13.5 240 5 13.7 8.5
Base04 9200 1800 82 273.341 229 2.87 11.67 9.57
Base05 12800 3000 27 134.259 233 2.5 10.2 8
Base06 7200 2050 51 144.961 286 275 6.05 9.45
Base07 8000 2050 46 142.261 222 2.75 11.45 11.65
Base08 6500 1500 47 223.319 246 2.75 7.75 10.05
Base09 8000 2500 9 159.111 255 4.16 6.46 13.76
Basel0 6700 1400 38 105.237 211 425 5.65 13.65
Basell 7400 1650 40 196.8 295 5 14 9.7
Basel2 8000 1000 26 350.962 231 5 14.2 12.5
Basel3 6000 1500 10 113.6 362 4.12 10.42 9.82
Basel4 9000 2100 29 168.207 446 5 14 12.4
Basel5 5400 1800 16 62.4375 468 4.25 10.55 13.15
Basel6 6100 1500 53 323.717 368 2.78 8.88 6.88
Basel7 6000 1500 19 190 284 2.86 5.96 10.26
Basel8 6000 2200 67 287.269 478 2.87 5.07 7.47

avg 7394.44  1805.56  33.06 176.52  289.89  3.79 9.76 10.09

TABLE 2. Result of not considering lead lines and shape expansion method.

Not considering lead lines

Shape expansion method

Case Utilization  Bins num times(s) Utilization ~ Bins num times(s)
BaseOl 0.8368 4 501.63 0.8179 4 619.62
Base02 0.8188 3 686.54 0.7881 3 837.09
Base03 0.8973 5 426.65 0.8504 5 572.94
Base04 0.8249 3 752.58 0.7931 4 832.49
Base05 0.7617 2 465.98 0.7292 2 905.96
Base06 0.7888 5 730.09 0.7762 5 905.97
Base07 0.8381 5 827.89 0.8025 5 918.72
Base08 0.8401 4 705.63 0.8167 4 796.90
Base09 0.4992 3 969.92 0.4992 3 971.59
Basel0 0.8694 5 783.46 0.8194 5 824.73
Basell 0.8498 6 872.73 0.8256 6 909.69
Basel2 0.7158 6 757.54 0.6928 7 797.89
Basel3 0.8138 14 821.33 0.7812 15 854.38
Basel4 0.7299 4 844.96 0.6959 4 887.90
Basel5 0.8083 1 433.35 0.7895 1 545.18
Basel6 0.9241 5 548.26 0.8958 5 619.54
Basel7 0.8451 2 529.27 0.8136 2 935.41
Basel8 0.9035 2 530.66 0.8753 2 628.52

avg 0.8092 4.3889 677.1376 0.7812 4.5556 798.0299

number of types of pieces, the average number of point
sets of the piece contour, the number of pieces, the piece
gap, the lead-in line length, and the lead-out line length.
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Table 2 and Table 3 presents a comparison of three different
lead lines processing methods applied to the enterprise
dataset. The main statistics in the table are the utilization
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TABLE 3. Result of Local deformation method and Lead removal method.

Local deformation method

Lead removal method

Case Utilization = Bins num times(s) Utilization  Bins num times(s)
Base01 0.8341 4 1171.76 0.8318 4 636.62
Base02 0.8188 3 1186.36 0.8188 3 817.07
Base03 0.8973 5 1162.77 0.8973 5 726.68
Base04 0.8249 3 1332.89 0.8249 3 812.36
Base05 0.7524 2 1375.23 0.7559 2 913.99
Base06 0.7793 5 1400.88 0.7826 5 952.03
Base07 0.8347 5 1870.17 0.8435 5 922.48
Base08 0.8351 4 1226.81 0.8416 4 880.04
Base09 0.4992 3 1001.63 0.4992 3 1017.04
Basel0 0.8650 5 1386.54 0.8621 5 855.08
Basell 0.8495 6 1230.65 0.8481 6 930.23
Basel2 0.7158 6 1252.58 0.7158 6 860.82
Basel3 0.8111 14 1165.98 0.8159 14 906.37
Basel4 0.7305 4 1330.09 0.7258 4 919.96
Basel5 0.8016 1 927.89 0.8033 1 558.83
Basel6 0.9214 5 1505.63 0.9248 5 688.95
Basel7 0.8377 2 1069.92 0.8325 2 955.75
Basel8 0.9012 2 1144.89 0.8998 2 690.01

avg 0.8061 4.3889 1263.4824 0.8069 4.3889 835.7949

TABLE 4. Comparison of algorithm performance evaluation at each stage by lead removal method.

bottom-left algorithm Initial solution Iterative compression
Case Utilization  Bins num Time(s) Utilization  Bins num Time(s) Utilization  Bins num Time(s)
Base01 0.8031 4 183.6 0.8248 4 204.4 0.8318 4 636.6
Base02 0.7934 3 197.1 0.8122 3 248.4 0.8188 3 817.1
Base03 0.8538 5 119.1 0.8892 5 273.7 0.8973 5 726.7
Base04 0.7853 4 101.2 0.8163 3 134.9 0.8249 3 812.4
Base05 0.7195 2 126.5 0.7485 2 187.4 0.7559 2 914.0
Base06 0.7374 5 269.8 0.7769 5 3259 0.7826 5 952.0
Base07 0.8047 5 195.4 0.8392 5 291.4 0.8435 5 922.5
Base08 0.8034 4 181.6 0.8346 4 212.5 0.8416 4 880.0
Base09 0.4916 3 122.7 0.4958 3 159.3 0.4992 3 1017.0
Basel0 0.8295 5 163.8 0.8573 5 198.6 0.8621 5 855.1
Basel 0.8194 6 177.4 0.8454 6 238.8 0.8481 6 930.2
Basel2 0.7072 7 136.1 0.7122 7 172.9 0.7158 6 860.8
Basel3 0.7849 15 264.2 0.8062 15 387.5 0.8159 14 906.4
Basel4 0.6951 4 185.9 0.7187 4 238.5 0.7258 4 920.0
Basel5 0.7749 1 127.3 0.7978 1 165.0 0.8033 1 558.8
Basel6 0.9010 5 184.8 0.9129 5 238.5 0.9248 5 689.0
Basel7 0.8066 2 101.5 0.8268 2 148.3 0.8325 2 955.8
Basel8 0.8682 2 2164 0.8937 2 287.6 0.8998 2 690.0
avg 0.7766 4.5556 169.6889 0.8005 4.5000 228.5267 0.8069 4.3889 835.7949

of the case results, the number of sheets used and the According to the experiments, the lead removal method
time the algorithm was used. The statistical results are demonstrates the highest average utilization rate at 80.69%.
based on the average of 10 independent runs for each case. In contrast, the piece shape expansion method shows the
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TABLE 5. Comparison of algorithm performance evaluation at each stage by local deformation.

Bottom-left algorithm

Initial solution

Iterative compression

Case Utilization ~ Bins num Time(s) Utilization ~ Bins num Time(s) Utilization ~ Bins num Time(s)
Base 01 0.7852 4 220.5 0.8272 4 269.5 0.8341 4 1171.8
Base 02 0.7896 3 263.1 0.8116 3 375.1 0.8188 3 1186.4
Base 03 0.8582 5 218.5 0.8877 5 389.4 0.8973 5 1162.8
Base 04 0.7866 3 197.2 0.8143 3 273.8 0.8249 3 1332.9
Base 05 0.7271 2 148.5 0.7496 2 187.4 0.7524 2 1375.2
Base 06 0.7365 5 309.2 0.7741 5 408.4 0.7793 5 1400.9
Base 07 0.8012 5 247.1 0.8301 5 327.3 0.8347 5 1870.2
Base 08 0.7924 4 220.7 0.8297 4 289.8 0.8351 4 1226.8
Base 09 0.4911 3 147.4 0.4949 3 201.7 0.4992 3 1001.6
Base 10 0.8269 5 206.4 0.8592 5 274.9 0.8650 5 1386.5
Base 11 0.8149 6 199.7 0.8439 6 288.6 0.8495 6 1230.7
Base 12 0.7011 6 175.2 0.7086 7 243.1 0.7158 6 1252.6
Base 13 0.7821 14 314.8 0.8083 15 477.6 0.8111 14 1166.0
Base 14 0.6974 4 231.3 0.7247 4 364.4 0.7305 4 1330.1
Base 15 0.7758 1 158.8 0.7995 1 221.6 0.8016 1 927.9
Base 16 0.9062 5 220.3 0.9148 5 289.1 0.9214 5 1505.6
Base 17 0.8017 2 144.2 0.8285 2 182.7 0.8377 2 1069.9
Base 18 0.8671 2 257.6 0.8912 2 339.1 0.9012 2 1144.9

avg 0.7745 4.3889 215.5833 0.7999 4.5000 300.1964 0.8061 4.3889 1263.4824

Algorithm 3 Iterative Compression Algorithm

Input: P: the set of all pieces; V: the set of piece
displacements; R: the set of piece rotations; B: the set of
sheets;

Output: update V, R and B;

1: (B, V, R) < ImprovedGreedySearchAlgorithm(B, V, R);

2: for B; € Bdo

3:  Lyseq < Get the used length of the current sheet B;;

4 while compress_ratio > EPSILON do

5 Lysed < Lysed /compress_ratio;

6 (Viemp> Riemp) < Through the existing solutions
(V, R) exchange different kinds of pieces, and try
different rotation angles;

7: if OverlapMinimization(Viepp, Riemp) == 0 then
V.R < Vtempv Rtemp;

9: continue;

10: else

11: Lysea < Lysea * (1 + compress_ratio);

12: compress_ratio <— compress_ratio/10;

13: end if

14:  end while

152 B <« Bj;

16: end for

lowest average utilization rate of 78.12%. The local defor-
mation of pieces method achieves a moderate effect with an
average utilization rate of 80.61%. However, it is important
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to note that the piece localized deformation method exhibits
longer running times. This is primarily due to increased
complexity of the method in solving the NFP of the piece,
leading to significant extension of the NFP computation
time. Consequently, this impacts the overall efficiency of the
algorithm. To evaluate the effectiveness of various mecha-
nisms in the algorithm presented in this paper, we conducted
tests using the bottom-left algorithm, the improved greedy
search algorithm, and the iterative compression algorithm on
the enterprise case study. Throughout the testing process, all
three methods employed the same lead lines preprocessing.
The test results of the three algorithms employing local
deformation of pieces are summarized in Table 4. The main
statistics in the table are the utilization of the case results,
the number of sheets used and the time the algorithm was
used. From the table, it is evident that the bottom-left
algorithm achieves an average utilization of 77.66%, the
improved greedy search algorithm achieves 80.05%, and the
iterative compression algorithm achieves 80.69%. Compared
to the bottom-left algorithm, the improved greedy search
algorithm shows an average improvement of 2.39%, while
the iterative compression algorithm demonstrates an average
improvement of 3.03%. Furthermore, Table 5 presents the
test results of the same algorithms using the lead removal
method: the bottom-left algorithm achieves an average
utilization of 77.45%, the improved greedy search algorithm
achieves 79.99%, and the combined use of the improved
greedy search algorithm with the compression algorithm
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achieves 80.61%. These results indicate that the iterative
compression algorithm performs best under both lead lines
preprocessing methods. Moreover, the improved greedy
search algorithm exhibits significant improvement over the
bottom-left algorithm, highlighting the effectiveness of the
sticking-edge, piece-insertion, and compression algorithms
proposed in this paper.

VIIl. CONCLUSION AND FUTURE SCOPE

In this paper, a comprehensive approach is presented for
addressing the 2D irregular packing problem with con-
sideration of lead lines. The proposed solution includes
three preprocessing methods for pieces and two heuris-
tic packing algorithms. Initially, the piece preprocessing
methods effectively convert complex lead line constraints
into simplified non-overlapping constraints among pieces,
thereby facilitating the management of the packing problem.
Subsequently, pieces are densely packed onto the sheet using
heuristic strategies such as sticking-edge, piece-insertion, and
compression, aimed at maximizing sheet space utilization.
To validate the efficacy of this approach, a real- world
cases within enterprises case study was conducted. The
results demonstrate that local piece deformation and lead
removal method during preprocessing significantly mitigate
the impact of lead lines on piece arrangement. Furthermore,
the overlap minimization of algorithmic modules and their
impact on final packing outcomes were assessed to confirm
the effectiveness of the strategy. Experimental findings
indicate a notable enhancement in raw material sheet utiliza-
tion, thereby validating the efficacy of the proposed piece
preprocessing and packing methods. This study contributes
novel insights and methodologies to address the irregular
packing problem involving lead lines in the sheet metal
industry.

Future work will focus on addressing these limitations by
exploring solutions for packing lead-in lines with circular arc
shapes and investigating methods to enhance the speed and
efficiency of critical polygon solving, thereby optimizing the
overall performance of the packing algorithm. In addition,
some digital twin technology [19] can be introduced to
digitize the packing process, machine learning [20] and
learning network [21] can be used to detect possible problems
in the cutting process.
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