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ABSTRACT The progress in object detection for autonomous driving using LiDAR point cloud data
has been remarkable. However, current voxel-based two-stage detectors have not fully capitalized on
the wealth of contextual information present in the point cloud data. Typically, Voxel Feature Encoding
(VFE) layers tend to focus exclusively on internal voxel information, neglecting the broader context.
Additionally, the process of extracting 3D proposal features through Region of Interest (ROI) spatial
quantization and pooling downsampling results in a loss of spatial detail within the proposed regions. This
limitation in capturing contextual details presents challenges for accurate object detection and positioning,
particularly over long distances. In this paper, we propose ContextNet, which leverages comprehensive
contextual information for enhanced 3D object detection. Specifically, it comprises two modules: the Voxel
Self-Attention Encoding module (VSAE) and the Joint Channel Self-Attention Re-weight module (JCSR).
VSAE establishes dependencies between voxels through self-attention, expanding the receptive field and
introducing substantial contextual information. JCSR employs joint attention to extract both local channel
information and global context information from the raw point cloud within the RoI region. By integrating
these two sets of information and re-weighting the point features, the 3D proposal is refined, enabling a more
accurate estimation of the object’s position and confidence. Extensive experiments conducted on the KITTI
dataset demonstrate that our approach outperforms voxel-based two-stage methods, particularly with a 9.5%
improvement in the mAP compared to the baseline on the nuScenes test dataset, and an improved 1.61%
hard AP compared to the baseline on the KITTI benchmark.

INDEX TERMS Autonomous driving, 3D object detection, LiDAR sensor.

I. INTRODUCTION
In recent years, there has been a significant focus on
autonomous driving technology, with particular attention
given to the rapid advancement and extensive research
on 3D object detection within the perception system
of autonomous vehicles, recognized as a crucial compo-
nent [1], [2]. The application of 2D object detection or
Semantic Segmentation [3], [4], [5], [6] in autonomous
driving perception has achieved some success. For example,
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Liang et al. [3] proposed an improved sparse R-CNN that
integrates coordinate attention blockwith ResNeSt and builds
a feature pyramid to modify the backbone, which enables
the extracted features to focus on important information, and
improves the detection accuracy. Liang et al. [4] proposes a
category-assisted transformer object detector called Detect-
Former for autonomous driving. Liang et al. [5] proposed
an anchor-free lightweight object detector, ALODAD, for
autonomous driving. Liang et al. [6] proposed network
takes a BEV point cloud image generated by the MMS as
input and directly segments map features, including line and
area features, from that image. While 2D object detection
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technology [7], [8], [9] has shown maturity, its inability
to effectively analyze data using 2D convolutional neural
networks is due to the sparse, chaotic, and non-structural
characteristics of point clouds. Consequently, to overcome
this obstacle, certain approaches [10], [11], [12], [13] have
been employed to directly extract pertinent information from
individual pixel regions of the raw point cloud, converting
it into 2D Bird’s Eye View (BEV) feature maps, which are
then processed using 2D CNNs. Nevertheless, this basic
point-level statistical aggregation technique leads to a loss
of important 3D spatial intricacies, resulting in suboptimal
detector performance.

Spatial detail information equips the model with compre-
hensive 3D contextual details surrounding the object, aiding
in the model’s comprehension and localization of the object.
In contrast to the aforementioned approaches relying on BEV
representation, point-based and voxel-based techniques [14],
[15], [16] have the advantage of directly capturing data
from the point cloud space, thereby conserving 3D spatial
intricacies to a significant degree.

In the pursuit of accurately preserving 3D spatial intrica-
cies, certain methodologies opt to directly acquire data within
the point cloud realm. These methodologies consist of two
primary categories: point-based and voxel-basedmethods [2],
[14], [15], [16], [17]. Point-based techniques [18], [19], [20],
[21], [22], [23] employ point feature extractors [24], [25] to
extract multi-scale point-level features from the raw point
cloud, integrating surrounding contextual details for points
via farthest point sampling (FPS) and ball query. However,
this approach comes with a considerable computational
burden. Voxel-based methods [13], [26], [27], on the other
hand, segment 3D space into uniform cubic volumes (voxels).
They project the point cloud onto voxel grids to convert
discrete points into a compact voxel representation, followed
by voxel feature encoding (VFE) [28] for encoding the
voxels to facilitate 3D convolution-based feature extraction.
In general, compared to point-based methods, voxel-based
techniques tend to extract features more effectively. Nonethe-
less, the voxel feature encoder has a limited receptive field,
capturing features solely within the voxel and neglecting
broader contextual dependencies, thereby reducing object
localization accuracy.

As foreground points and background points contribute
differently to proposal refinement, we use channel attention
and self-attention to decode the encoded features, integrating
local channel information and global contextual information
into the raw point features to re-weight the point features
within the RoI region and refine the proposal features,
improving the localization accuracy and detection perfor-
mance of the model in 3D space. Both of these proposed
modules are plug-and-play and can be easily applied to voxel-
based methods. With the support of these two modules, the
detection performance is significantly improved.

Single-modal 3D object detection methods [29], [30], [31],
[32] can be divided into two categories: voxel-based and
point-based methods. Point-based methods treat point clouds

as a set of discrete points and sample and group them for each
point. PointNet [24] and PointNet++ [25] were the first to
use this approach to process point cloud data. Although these
two methods cannot be directly used in 3D object detection
tasks, they extract point-level features in amulti-scale manner
as a component of point-based methods. PointRCNN [19]
further optimize 3D RoIs use RoI Pooling and Point-wise
MLPs (multi-layer perceptrons) based on PointNet outputs.
Point-GNN [18] uses PointNet to extract point features and
uses GNN to infer and aggregate contextual information of
points in the local neighborhood graph. 3DSSD [21] proposes
a new point cloud sampling method called Feature Distance
Compounding (FDC), which samples point cloud data by
compounding feature distances using Euclidean distance.
STD [33] separates foreground and background points in
point clouds using segmentation algorithms, to detect objects
more effectively. Point-based methods need to query the local
neighborhood of each point, and the computational cost of
this operation increases quadratically with the query sphere
radius and the number of points in the point cloud, resulting
in high computational complexity.

Voxel-based methods are a method of dividing 3D space
into equally sized cubic units (voxels). By mapping point
cloud data onto a voxel grid, the discrete point cloud data
is transformed into a regular and dense voxel representation.
VoxelNet [28] is the first method to use a fully voxel-
based representation, but due to the use of 3D convolution,
the computation and memory costs of this method grow
cubically with the number of voxels involved in the operation.
SECOND [34] utilizes 3D sparse convolution and stores
voxel indices in a hash table to speed up data lookup
for specific positions. This improves the efficiency of the
algorithm and reduces. Voxel RCNN [29] uses Voxel Query,
RPN, and detection head joint training, and performs pooling
operations on the 3D voxel grid using Voxel RoI Pooling
to better capture the spatial features of objects. Although
voxel-based methods are more suitable for feature extraction,
these methods cannot accurately capture contextual infor-
mation like point-based methods. The association between
voxels is weaker, especially for distant voxels, which affects
the model’s learning and detection accuracy for the entire
object. Although somemethods [13], [26] utilize graph-based
knowledge to solve this problem, the construction of the
graph relies on manual design. For example, Song et al. [26]
present a robust network voxel-as-point network (VP-Net)
that views voxels as points to accurately detect 3-D objects
in LiDAR point clouds and can capture objects’ internal
relationships.

As the evolution of detection algorithms continues, voxel-
based methods [27], [29], [35], [36] have introduced proposal
refinement networks into the network framework to form
a two-stage architecture aimed at improving the model’s
detection performance. However, the requirement for voxel
features in the proposal refinement process, which typically
have lower resolutions, poses challenges [37], [38]. The
conventional approach of dividing the Region of Interest
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(RoI) into a grid and using pooling operations to aggregate
features results in some loss of spatial information within
the RoI, thereby limiting the ability to capture contextual
information between points. Based on these limitations,
we propose a voxel-based two-stage detection framework that
leverages self-attention and channel attention mechanisms
to aggregate contextual information between features, thus
maximizing the retention of 3D spatial detail information.

In this paper, we introduce two principal contributions.
Our first contribution is the innovative Voxel

Self-Attention Encoding (VSAE) module, an efficient
extension of traditional voxel feature encoding (VFE) for
voxel encoding. To effectively capture information, we con-
struct self-attention between voxels, thereby enhancing the
correlation between them. We apply multi-head attention
to non-empty voxel positions, boosting the modeling of
relationships among different voxels by learning their relative
importance. This approach fosters contextual dependency
information between voxels, augmenting the model’s
learning ability and comprehension of objects in 3D space.

Our second contribution is the Joint Channel and Self-
Attention Re-weight (JCSR) module, designed to refine
3D proposals. Specifically, we map the proposals to the raw
point features and use self-attention for feature encoding.
We then assign weights to the point features within the
RoI region based on their importance to refine the point
features and capture the correlation between points. Given
the differing contributions of foreground and background
points to proposal refinement, our module employs channel
attention and self-attention to decode encoded features.
This process integrates local channel and global contextual
information into the raw point features, re-weights them
within the RoI, and refines proposal features. The result is
enhanced positioning accuracy and detection performance
in 3D space. Both modules we propose are plug-and-
play, readily applicable to voxel-based methodologies. The
detection performance has seen substantial improvement with
these modules in place.

II. RELATED WORK
A. LIDAR-BASED 3D OBJECT DETECTION
LiDAR sensors play a critical role in enhancing autonomous
driving systems by enabling the perception of objects in 3D
space, particularly in difficult lighting or adverse weather
conditions [17], [39], [40]. They are known to outperform
camera sensors in terms of reliability. Current methods for 3D
object detection using LiDAR can be broadly categorized into
three groups based on different point cloud encoding formats:
point-based [18], [19], [21], [41], [42], voxel-based [29], [34],
[43], [44], [45], and point-voxel fusion methods [20], [33],
[46], [47], [48].

Voxel processing involves dividing 3D space into regular
voxel grids with dimensions (dL × dW × dH ) in the x,
y, and z directions. Only voxel units containing points are
stored and utilized for feature extraction due to the sparse

distribution of point clouds, resulting in many empty voxel
units. Key works like VoxelNet [28] and its optimization in
SECOND leverage 3D convolutional networks with sparse
convolution. Later research has built upon these approaches
by employing similar voxel encoding strategies. Furthermore,
it is worth noting that Pillars can be considered a distinctive
variant of voxels. Specifically, the point clouds are divided
into a uniformly distributed grid on the x-y plane, with
no binning performed along the z-axis. As the pioneering
work in this series [43], [49], [50], [51], [52], PointPil-
lar [43] was the first to introduce the pillar representation.
Subsequent studies have expanded upon the concepts of
2D detection by incorporating the PointPillars approach.
PillarNet [49] leverages an ‘encoder-neck-head’ detection
structure to enhance the efficacy of pillar-based detection
techniques. SWFormer [50] and ESS [53], inspired by the
Swin Transformer [54], implement a multi-scale window
strategy on pseudo-images, thus allowing the network to
maintain a comprehensive receptive field. PillarNeXt [51]
combines an array of established 2D detection methods to
achieve a level of performance in line with voxel-based
approaches.

In the realm of point-based 3D detection [18], [19], [21],
[41], [42], [55], [56], early work extended the PointNet [24]
backbone with a two-stage proposal refinement network to
handle large-scale scenes with over 100k points. Recent
studies [19], [41], [42] have addressed the computational
burden by introducing semantic segmentation tasks during
detection to filter out irrelevant background points.

Efforts have also been made to tackle the uncontrolled
receptive field issue in PointNet and PointNet++ [24]
by integrating Graph Neural Networks (GNN) or Trans-
former architectures. Notably, in point-voxel methods, PV-
RCNN [20] utilizes SECOND as the first-stage detector
and proposes a second-stage refinement step with a Region
of Interest (RoI) grid pool for keypoint feature fusion.
Subsequent research has focused on enhancing second-stage
detection with attention mechanisms, scale-aware pooling,
and point density-aware refinement modules.

These 3D detectors [18], [19], [42], [57] primarily using
LiDAR data rely on sparse and noisy contexts provided by
point cloud data. However, in challenging scenarios with
low reflectivity, small objects, or severe occlusions, relying
solely on point cloud data may lead to inaccurate detections.
Therefore, the current focus is on exploring multi-modal
contexts by integrating geometrically informed point clouds
and semantically rich images to enhance 3D object detection
capabilities.

B. CAMERA-BASED 3D OBJECT DETECTION
There are several types of sensors used for 3D object
detection, with radars, cameras, and LiDAR sensors being
the most commonly used. Radars are known for their long
detection range and resilience to different weather conditions,
and they can also provide velocity measurements due to the
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Doppler effect. Cameras, on the other hand, are cost-effective
and readily available, playing a crucial role in understanding
semantics such as identifying traffic signs.

Camera-based 3D object detection serves as a foundational
component for various downstream applications. Monocular
3D detection focuses on identifying 3D objects from a single
input image. For instance, FCOS3D [58] expands upon the
2D FCOS detector to enable 3D detection by estimating 3D
bounding boxes. Multi-view 3D object detection integrates
multiple images to enhance geometric inference. PETR [59]
enhances the sparse detector DETR [60] by introducing 3D
positional encoding, while PETRv2 [61] further enhances this
by including temporal modeling. StreamPETR introduces a
unique query propagation algorithm to better utilize temporal
information over long ranges.

BEV-based 3D object detectors transform multi-view
images into a unified Bird’s Eye View (BEV) representation
for 3D object detection. BEVDet [62] and its subsequent
work utilize LSS to compute BEV features and predict
objects through convolutional heads. BEVFormer [63], on the
other hand, leverages deformable attention operations [64]
for computing BEV features and employs a DETR-style
head [60] for object detection. These advancements in
3D object detection technologies contribute significantly to
the field’s progress and application in various real-world
scenarios.

C. MULTI-MODEL 3D OBJECT DETECTION
The integration of cameras and LiDAR sensors for 3D object
detection presents a significant opportunity to enhance detec-
tion accuracy by leveraging the complementary strengths
of each sensor type. Cameras excel at capturing rich
color information, which can be leveraged for extracting
detailed semantic features. On the other hand, LiDAR
sensors are proficient in providing precise 3D localization
data, offering valuable insights into the spatial structure
of the environment [65]. AVOD [66], MV3D [67] and
F-Pointnet [68] are the pioneering proposal-level fusion
works that perform the feature extraction of two modalities
independently and simply concatenate multi-modal features
via 2D and 3D RoI directly. CLOCs [69] directly combine the
detection results from the pre-trained 2D and 3D detectors
without integrating the features. They maintain instance
semantic consistency in cross-modal fusion, while suffering
from coarse feature aggregation and interaction. Since then,
increasing attention has been paid to globally enhancing point
cloud features through crossmodal fusion. Point decoration
approaches [70], [71], [72] augment each LiDAR point
with the semantic scores or image features extracted from
the pre-trained segmentation network. 3D-CVF [12] and
EPNet [73] explore crossmodal feature fusion with a learned
calibration matrix. Recent studies have explored global
fusion in the shared representation space based on the view
transformation in the same way. These methods [74], [75],
[76], [77] are less effective in exploiting the spatial cues

of point cloud, and potentially compromise the quality of
camera bird’s-eye view (BEV) representation and cross-
modal alignment. Besides, many concurrent approaches [78],
[79] introduce the cross-attention module to adaptively align
and fuse point cloud features with image features through the
learned offset matrices. Addressing these challenges requires
the development of efficient fusion strategies. Researchers
are exploring various approaches to integrate multi-modal
information effectively, aiming to minimize computational
overhead while maintaining high detection accuracy. Despite
the progress made, efficiently fusing camera and LiDAR
data for 3D object detection remains an ongoing research
challenge.

III. METHODS
We propose ContextNet, which comprises two modules:
Voxel Self-Attention Encoding (VSAE) and Joint Channel
and Self-Attention Re-weight (JCSR). As shown in Fig. 1,
the Voxel Self-Attention Encoding (VSAE) module focuses
on establishing dependencies between voxels using self-
attention mechanisms. By doing so, it expands the recep-
tive field and integrates significant contextual information.
Essentially, VSAE enhances the understanding of voxel
relationships within the point cloud data, contributing to
improved object detection accuracy. The Joint Channel
and Self-Attention Re-weight (JCSR) module employs joint
attention to capture both local channel details and global
context from raw point cloud data within the Region of
Interest (RoI) region. By combining channel-wise and spatial
attention mechanisms, JCSR effectively extracts relevant
features while re-weighting the point features to refine the
3D proposal. This process aids in more accurately estimating
the position and confidence of detected objects.

A. VOXEL SELF-ATTENTION ENCODING
In this section, we will delve into the intricacies of the Voxel
Self-Attention Encoding (VSAE) module’s design. To kick
things off, we’ll outline the key steps involved in crafting the
VSAE module. Initially, the point cloud undergoes a process
of voxelization, resulting in the creation of a dense voxel
grid. Subsequently, self-attention mechanisms come into play
to facilitate the establishment of relationships among these
voxels.

Self-attention proves to be instrumental in fostering
connections between voxels. This is achieved by singling out
a query voxel, denoted as Vi ∈ RNi×C , and a participating
voxel, labeled as Vj ∈ RNj×C , for the attention calculation
process. Through this calculation, a feature termed f attni
is derived. Among them, Ni and Nj are the number of
Voxel Vi and Vj and C is the dimension of Vi and Vj.
The primary objective of applying self-attention is to model
the interplay between non-empty voxels, thereby capturing
crucial contextual information.

During the attention calculation phase, the query Qi ∈

RNi×qi×H×HD is generated based on the query voxel Vi ∈

RNi×vi×H×HD , whereas the key Kj ∈ RNj×kj×H×HD and value
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FIGURE 1. Overview of ContextNet. We propose ContextNet, which introduces attention mechanism to enrich contextual information of features.
ContextNet consists of two modules: Voxel-based Feature Encode Module (VSAE) and Joint Channel and Self-Attention Reweighting Module
(JCAR). VSAE takes voxel features as input and utilizes self-attention to build relationships between voxels, thereby enriching feature
representation and improving proposal quality. JCAR takes raw point and 3D proposal as input, and extracts local and global fusion information by
jointly using channel attention and self-attention. It then reassigns weights to point features and proposals to refine and optimize proposals.

FIGURE 2. The framework of VSAE. VSAE module first uses convolution to
learn dynamic offsets to locate positions of distance voxels. Then,
it performs attention calculation between query voxels and participating
voxels (composed of neighbor voxels and distance voxels) to aggregate
context-dependent information among voxels. Finally, it encodes the
aggregated features into a voxel-wise feature representation.

Vj ∈ RNj×C are derived from the involved voxel. Among
them, Ni and Nj are the number of Voxel Vi and Vj, and qi,
vi, amd kj are the dimension of query Qi, value Vi, and key
Kj. H represents the number of attention head. HD represents
the dimension in the attention head. This formalizes the
process of self-attention, paving the way for a comprehensive
understanding of the relationships between voxels and the
contextual nuances encapsulated within them.

Qi = fiWQ, Kj = fjWK , Vj = fjWV , (1)

where WQ ∈ RH×HD , WK ∈ RH×HD , and WV ∈ RH×HD

are the weight matrices corresponding to the query, key, and
value, fi and fj are the feature vectors corresponding to the
query voxel and the involved voxel respectively.

To compute the attention matrix A, we first multiply
the query vector Qi with the key vector Kj. The next step

involves normalizing the attention matrix A along the voxel
direction to yield the normalized attention matrixA′. Moving
forward, we proceed to multiply the value Vj with the
normalized attention matrix A′. Subsequently, we aggregate
the involved voxel features by employing the weighted sum
of the attention weights. By integrating the voxel features
that encapsulate the relationships and contextual information
between voxels with the query voxel features, we enhance
and update the query voxel features. This sequence of
computations can be succinctly represented as follows:

A =

KT
j Qi

√
dk

, A′
= σ (A), f attni = VjA′ (2)

where
√
dk is a normalization factor, and σ (·)is the softmax

function. We perform a weighted sum of all values based on
the attention weights and use a feedforward network(FFN) to
generate the features, Where FFN is a simple fully connected
(FC) layer.

The computational complexity associated with attention
calculations is proportional to the square of the input size,
resulting in considerable costs when performing global
attention operations. Specifically, given the number of
voxels N and the image feature dimensions W × H , the
complexity balloons to O(NWH ). To address this challenge,
we sample the voxels participating in the attention com-
putation, thereby curbing superfluous processing demands.
In contrast to earlier approaches like Voxel RCNN [29]
and VP-Net [26], which harbored substantial redundant
information, we employ an attention mechanism. By utilizing
KNN, we selectively focus on K dynamic, high-quality voxel
features to enhance feature aggregation. Consequently, our
method slashes the complexity from O(NWH ) to O(NK 2),
withK , the number of selected voxels, fixed at 32. In Figure 2,
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the selected voxels comprise neighboring non-empty voxels
as well as distant non-empty voxels. Sampling neighbor-
ing non-empty voxels is a relatively straightforward task,
whereas sampling distant non-empty voxels poses a greater
challenge. To tackle this challenge, we employ a learnable
convolutional network to dynamically generate sampling
offsets (1x, 1y, 1z) based on the spatial location of the
current query voxel. These sampling offsets serve to precisely
determine the location of distant voxels.

Overall, by strategically sampling voxels for attention
calculation and leveraging a learnable convolutional network
for generating sampling offsets, we aim to optimize the
computational efficiency of the process while maintaining
high detection performance.

P = r · (v+ 0.5) (3)

where P denotes the center coordinates of the actual voxel, r
is the voxel size, and v is the index of the current voxel.

B. JOINT CHANNEL AND SELF-ATTENTION RE-WEIGHT
In the realm of two-stage object detection frameworks, there
is a prevailing reliance on voxel features to engage in the
process of proposal refinement. Nevertheless, these features
are often characterized by their low resolution, a factor that
can contribute to inaccuracies in object localization. Further-
more, the current methodology of feature pre-processing in
proposal refinement is deemed laborious and intricate. As a
response to these challenges, we advocate for the adoption
of a novel proposal refinement strategy that streamlines the
process through the incorporation of the Joint Attention
method.

In this section, we aim to elucidate the intricacies of the
Joint Channel and Self-Attention Re-weight (JCSR) module.
Traditional methods have often utilized low-resolution voxel
features to enhance proposals and pool features, inadvertently
leading to a loss of crucial contextual information. To address
this limitation, we introduce the innovative Joint Channel and
Self-Attention Re-weight (JCSR) module.

Our approach involves refining proposals by identifying
the Region of Interest (RoI) based on the proposal and
subsequently samplingN=256 points within the RoI. While
some of these points may represent background elements,
foreground points play a pivotal role in refining the proposal.
To this end, the encoder within the JCSR module is
instrumental in reassigning weights to these points and
identifying the most salient ones. For a visual representation
of the encoder in JCSR, please refer to Figure 1.
Initially, establish the relationship between the feature

of the proposal and the feature of each sampling point by
computing the distance feature between every sample point
and the proposal’s center point, which can be represented as
pd = pi − pc. Subsequently, proceed to map the proposal
features onto the point features, resulting in the feature fi post-
mapping. This process can be formally expressed as follows:

fi = A([pd, lc,wc,hc, θc, ρi]) (4)

FIGURE 3. A detailed design illustration of the Joint Attention module,
which is a commonly used and simple component that includes only MLP,
MaxPool layer, AvgPool layer, and Self-Attention, is used for 3D proposal
refinement.

where A(·) is a fully-connected (FC) layer that lifts the
dimensionality of the concatenated features to enrich the
information. The features of the proposal, including length lc,
width wc, height hc, orientation angle θc, and the feature ρi of
each sample point, are encoded as:

F = [f1, · · · , fN ] (5)

These characteristics help to maintain the spatial details
of the point cloud dataset [80]. Subsequently, the proposed
features are inputted into a self-attention layer for encoding.
During this stage, the values Qe, Ke, and Ve are derived
via linear mapping functions FWQ, FWK , and FWV ,
respectively. The encoding features are then computed
through a sequence of operations. Initially, the attention
calculation determines the weighted features, as denoted by
the equation 2. Following this, for each weighted feature,
we apply residual connection and Layer Normalization
processes, resulting in the encoding features denoted as Fenc

formally.

Fi
enc

= N (F(N (fattni ))) (6)

where N(·) represents the normalization operator, and F(·)
denotes the FFN with a FC layer activation.

The conventional Transformer decoder has limitations in
effectively capturing local point information and adapting to
various scenes and objects within the RoI region. To over-
come these challenges, we have developed a novel decoding
module that integrates both local and global information to
enhance the refinement of proposals. This is illustrated in
Figure 1 through the incorporation of the Joint Channel and
Spatial Relationship (JCSR) module.

The decoding module comprises key components such
as Multilayer Perceptron (MLP), addition and normalization
operations, Joint Attention mechanism, and Feedforward
Network (FFN). Notably, the Joint Attention mechanism is
a novel attention approach introduced by our team to address
the shortcomings of traditional self-attention mechanisms.

By leveraging channel attention to combine local channel
information with global contextual information, our proposed
method effectively assigns weights to points within the
RoI region, thereby improving the quality of proposal
refinement. The innovative nature of our Joint Attention
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mechanism allows for a more adaptive and comprehensive
handling of diverse scenes and objects, enhancing the overall
performance of the decoding process.

In summary, the integration of local and global information
through the JCSR module, along with the introduction
of the Joint Attention mechanism, represents a significant
advancement in refining proposals within the decoding
framework, as depicted in Fig. 1.
The detailed design of the Joint Attention module is

illustrated in Fig. 3. It consists of two parallel pipelines.
One pipeline applies global average pooling and global
max pooling on the features, followed by a fully-connected
layer. This introduces smooth channel attention through
the global average pooling, and more sensitive attention to
salient features through global max pooling. The pooled
features are element-wise added and normalized to calculate
channel weights. These weights are multiplied with the raw
features to obtain a channel-weighted feature representation.
The second pipeline employs self-attention on the input
features to generate attention weights. This produces a global
feature representation through interactions between the query
embeddings. Finally, the features from the two branches
are added to obtain features that fuse global contextual
information and local channel information, providing a
more comprehensive and accurate feature representation to
re-allocating weights to points in the RoI:

ω = σ (AP(F ′) +MP(F ′) +
KT
d Qd
√
dk

) (7)

where AP(·) is the average pooling,MP(·) is the max pooling.
The feature F ′ goes through nonlinear transformation by
the MLP, then the Qd and Kd of the decoder are generated
through linear mapping functions. As a result, the features of
the proposal can be represented as:

Fproposal = ωF ′ (8)

The 3D proposal refinement network is designed to predict
and pinpoint the object’s location using the Region of
Interest (RoI) feature of the provided proposal. This network
leverages a Multilayer Perceptron (MLP) architecture to
enhance the proposals and incorporates two fully connected
(FC) branches. These branches are responsible for predicting
confidence scores and bounding box regression, respectively.

IV. EXPERIMENTS
In this section, we present a comprehensive overview of
the datasets used, training methodologies employed, and the
evaluation criteria set forth. Our study includes a thorough
examination of two modules within the framework, evaluated
against the established KITTI benchmark [81] and nuScenes
benchmark [82], with a comparative analysis against contem-
porary state-of-the-art detection models. Furthermore, our
research incorporates a series of meticulous ablation studies
aimed at deconstructing each element for a detailed analysis
and validation of our proposed design.

A. KITTI DATASET
The KITTI [81] dataset is one of the most commonly used 3D
object detection datasets for autonomous driving. It contains
7481 samples for training and 7518 samples for testing.
Models are typically evaluated based on the mean Average
Precision (mAP) metric. We conduct experiments on the
most commonly detected car category and use an Average
Precision (AP) with an IoU threshold of 0.7 as the evaluation
metric. The ground truth is calculated with a recall of
40 positions (R40). To further compare the results with other
methods on the KITTI 3D detection benchmark, we divide
the KITTI training dataset into a 4:1 ratio for training and
validation, and report the performance on the KITTI test
dataset.

B. NUSCENES DATASET
The nuScenes [82] dataset is a large-scale 3D detection
benchmark consisting of 700 training scenes, 150 validation
scenes, and 150 testing scenes. The data are collected using
six multi-view cameras and a 32-channel LiDAR sensor.
It includes 360-degree object annotations for 10 object
classes. To evaluate the detection performance, the primary
metrics used are the mean Average Precision (mAP) and the
nuScenes detection score (NDS).

C. IMPLEMENTATION DETAILS
For the KITTI dataset, we set the detection ranges on the X, Y,
Z axes to [0, 70.4]m, [−40, 40]m, and [−3, 1]m respectively,
and the voxel size is (0.05m, 0.05m, 0.1m). The detection
range is set to [0, 70.4]m on the X-axis, [−40, 40]m on
the Y-axis, and [−3, 1]m on the Z-axis, with voxel sizes of
(0.05m, 0.05m, 0.1m) on each axis.We selected the one-stage
method SECOND [34] as a baseline in the KITTI dataset.
Moreover, we validate our ContextNet on the nuScenes [82]
dataset using CenterPoint [95] as the baseline. The detection
range for the X and Y axes is set at [−54m, 54m] and [−5m,
3m] for the Z axis. The input voxel size is set at (0.075m,
0.075m, 0.2m), and the maximum number of point clouds
contained in each voxel is set to 10.

1) TRAINING
We employ the ADAM optimizer for training. Our training
process involves utilizing 8 GTX 2080 Ti GPUs to train the
complete network for 80 epochs with a batch size of 16. This
process takes approximately 5 hours. For the learning rate,
we utilize cosine annealing to decay it and set the initial value
to 0.001. During the proposal refinement stage, following the
design of PV-RCNN [20], we randomly sample 128 proposals
and additionally sample N=256 points in the RoIs. The
threshold of 3D IoU is 0.55. We use OpenPCDet [96] as our
codebase for more detailed configuration information.

2) INFERENCE
We utilize non-maximum suppression to choose the best
100 proposals, while an IoU of 0.7 for filtering. After
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TABLE 1. Comparison of mAP (R40) for the car category on the KITTI dataset is reported.L+R represents the method that combines point cloud and image
data, while L represents the LiDAR-only method.

refining the proposal stage, we utilize an IoU of 0.01 to
eliminate boxes that do not meet the criteria. Training
Details, we used the ADAM optimizer for end-to-end
training of the entire network. We used a batch size of
16 and trained the network for 80 epochs on 8 GTX 2080
Ti GPUs, which took approximately 5 hours. During the
data augmentation phase, we followed the strategy used in
SECOND [34]. We set the learning rate to 0.001 and used
the cosine annealing learning rate strategy for learning rate
decay. For proposal generation, we used the RPN network
provided by SECOND to generate high-quality proposals.
During the proposal refinement phase, we randomly sampled
128 proposals and randomly sampled N=256 points from
the RoI. We considered proposals with a 3D IoU of at least
0.55 with ground truth boxes as positive proposals for box
refinement training.

D. COMPARISON WITH STATE-OF-THE-ARTS
1) KITTI BENCHAMRK
In the comparison with state-of-the-arts, we evaluated
the performance of our proposed method on the KITTI
Benchmark dataset to assess its efficiency and accuracy in
object detection tasks.Table 1 illustrates the evaluation results
of the mean average precision (mAP) performance of various
state-of-the-art 3D object detectors on the KITTI dataset [81].
The data indicates that our proposed method has shown
significant enhancements in performance compared to other

leading approaches. Specifically, our method demonstrated
outstanding mAP performance of 92.08%, 85.66%, 84.47%,
95.47%, 91.31%, and 88.97% respectively. In comparison
to the baseline SECOND [34], our method exhibited
improvements in AP3D performance by 4.52% mAP, 8.51%
mAP, and 10.12% mAP on the car category across three
difficulty levels. Additionally, our model outperformed other
voxel-based techniques, showing performance enhancements
of −0.3%, 0.37%, and 1.61% over the voxel-based method
with the best results, Voxel RCNN [29], respectively.

The results in Table 1 also highlight that our model
surpassed point-based models and multi-modal models,
particularly excelling at the Hard level. Notably, compared
to the advanced point-based method PV-RCNN [20] and the
multi-modalmethod EPNet [73], ourmodel achieved a 1.78%
and 4.33% higher mAP, respectively. This success can be
attributed to our approach of modeling voxel relationships
through self-attention and leveraging joint attention to
re-weight the point cloud in the Region of Interest (RoI),
thereby incorporating rich contextual information to enhance
the performance of the detection network. Consequently, our
model achieved superior 3D object detection results in sparser
point clouds and under more severe occlusions.

2) NUSCENES BENCHAMRK
As shown in Table 2, we conducted comparative experiments
on the nuScenes test benchmark. As a unimodal solution,
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TABLE 2. Comparison with the SOTA methods on the nuScenes test set. ‘‘C.V.’’, ‘‘Motor.’’, ‘‘Ped.’’, and ‘‘T.C.’’ are short for construction vehicle, motorcycle,
pedestrian, and traffic cone, respectively.

TABLE 3. Ablation experiments of VSAE and SCR. The results are
evaluated with 3D AP calculated for car class on the moderate level.

our ContextNet achieved an average precision (AP) of 67.5%
and a NuScenes Detection Score (NDS) of 71.1%, surpassing
the unimodal state-of-the-art (SOTA) methods [26], [43],
[88], [89], [90], [91], [95], as well as the multi-modal SOTA
methods [35], [70], [72], [84]. Moreover, it outperformed
other SOTA methods in specific categories, such as Truck,
Construction Vehicle, Trailer, and Barrier. As a LiDAR-based
method, our method outperforms multi-modal and LiDAR-
based methods in performance. For example, compared to
the SOTA multi-modal methods of AutoAlign [84] and
GraphAlign [35], our ContextNet surpasses 1.7%, 1.0% on
mAP, 0.2%, and 0.5% on NDS, respectively. Compared
to SOTA LiDAR-based methods, VP-Net [26] and Center-
Point [95] exceed 10.0%, 9.5% on mAP, 3.6%, and 5.6% on
NDS, respectively.

The success of our ContextNet in exceeding the perfor-
mance of point-based and multi-modal models, especially
at the Hard level, can be attributed to our novel approach.
Wemodel voxel relationships using self-attention and employ
joint attention to re-weight the point cloud within the Region
of Interest (RoI). We incorporate contextual information and
significantly enhance the detection network’s performance.
This approach allowed our model to achieve superior 3D
object detection results in sparser point clouds and under
more severe occlusions, demonstrating the effectiveness of
our method in handling challenging scenarios in object
detection tasks.

E. ABLATION STUDY
In order to comprehensively assess each component of our
proposed framework, we undertook thorough ablation studies
using the KITTI dataset as a reference [81]. The dataset
was divided equally for training and validation purposes,
with a 1:1 split for all models. Subsequently, we measured
the AP3D metric across 40 recall positions on the validation
set to provide a detailed evaluation of our framework’s
performance.

1) EFFECTS OF VSAE AND JCSR MODULES
In this section, we conducted a validation of the effectiveness
of two key components: the VSAE module and the JCSR
module. The data presented in Table 3 clearly demonstrates
that both components play a crucial role in enhancing the
detection proficiency of the baseline method SECOND [34].
It is worth noting that while both components contribute to
performance improvements, the JCSR module stands out for
its more pronounced impact.

Specifically, in comparison to the baseline experiment, our
model exhibited enhancements of 2.51%, 5.11%, and 6.82%
in mAP performance across the easy, moderate, and hard
difficulty levels, respectively. The JCSR module, in partic-
ular, yielded a more significant gain effect, underscoring its
importance in enhancing model performance.

In contrast, the VSAE module, while delivering more
moderate improvements, also played a significant role in
enhancing performance. Notably, it resulted in mAP per-
formance improvements of 2.3%, 4.06%, and 5.58% across
the easy, moderate, and hard difficulty levels, respectively.
These improvements, although slightly more moderate than
those achieved by the JCSR module, remain substantial and
should not be overlooked in their contribution to overall
model enhancement.

2) DISTANCES ANALYSIS
This section evaluates the model’s effectiveness across
various distance intervals. The distances were categorized
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TABLE 4. Comparison of detection accuracy across different distance ranges indicates that the mAP at the moderate level is reported.

TABLE 5. Comparison of detection accuracy across different
hyperparameters of N demonstrates that the mAP at the moderate level
is reported.

TABLE 6. Effect of the quantity of voxels K used in attention calculation
is examined, which shows that the mAP at the moderate level is reported.

into three levels: 0-20m, 20-40m, and 40m-inf. As illustrated
in Table 4, our approach demonstrates enhanced performance
across different distance ranges. When compared to Voxel
RCNN [29] and PV-RCNN [20], our method excels particu-
larly at medium (20-40m) and long distances (40m-inf). This
improvement can be primarily attributed to the incorporation
of rich contextual information within the modules, enabling
the preservation of intricate spatial details within the point
cloud data. Consequently, this enhancement empowers the
model to accurately infer and predict objects located at
greater distances.

3) EFFECT OF DIFFERENT HYPERPARAMETER N
The table presented (Table 5) demonstrates that opting for
256 raw point clouds within the Region of Interest (ROI)
yields the optimal results, leading to the model achieving
peak performance. As the number of point clouds increases
beyond this threshold, the enhancement in mean Average
Precision (mAP) appears to plateau, suggesting diminishing
returns. Additionally, augmenting the sampling number has
shown to have a negligible impact on the overall outcome.

TABLE 7. Compare the parameters, GFLOPs, and inference speed
between our ContextNet and the baseline (Voxel RCNN). We tested the
FPS using an NVIDIA GTX 2080Ti.

4) EFFECT OF THE QUANTITY OF VOXELS K
Table 6 presented in the study illustrates a notable trend
in the detection performance of the model concerning the
quantity of involved voxels. It is evident that an increase in the
number of involved voxels correlates with an improvement
in detection accuracy. Specifically, the model exhibits
performance gains of 1.66%, 3.07%, and 3.73% when the
quantity of involved voxels escalates from 9 to 32. This
enhancement can be attributed to the incorporation of rich
contextual information for the querying voxel facilitated by
self-attention mechanisms.

However, it is noteworthy that a subsequent increase
in the quantity of involved voxels from 32 to 50 results
in a slight decrease in detection accuracy. This decline
could potentially be ascribed to the introduction of
noise stemming from the augmentation of voxel quantity.
Hence, it becomes evident that the selection of an
optimal quantity of involved voxels holds paramount
importance in ensuring the optimal performance of the
model.

In conclusion, the findings underscore the critical role of
striking a balance in the number of involved voxels to achieve
the desired detection accuracy. By carefully considering the
trade-off between contextual information enrichment and
noise introduction, researchers can enhance the model’s
performance effectively.

5) COMPARE THE PARAMETERS, GFLOPS, AND INFERENCE
SPEED
We compared our method with baseline Voxel RCNN
in Table 7, particularly in terms of model parameters,
FPS, and GFLOPs, which helps to further understand the
model. We have added our strategies including VSAE and
JCSR on the basis of Voxel RCNN, although the model
parameters have slightly increased from 7.59M to 8.02M.
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We conducted FPS testing on NVIDIA GTX 2080Ti and
found no significant impact, decreasing from 22 to 20.
However, as one of the indicators for measuring hardware,
GFLOPs (Giga Floating point Operations Per Second) did
not show significant changes, ranging from 1542.2 to 1571.3.
Overall, our method, as a very simple strategy, is very suitable
for addressing the issue of insufficient distance in previous
Voxel based systems, and there has been no significant
change in GPU testing and model parameter count.

V. CONCLUSION
The study delves into the limitations of current voxel-
based two-stage methods and suggests a novel approach
incorporating context-dependent information. Unlike exist-
ing techniques, the proposed method employs a self-attention
mechanism during the voxel encoding stage to establish
connections between voxels, facilitating the capture of
context information within the specified voxel query range.
Furthermore, joint attention is utilized in the proposal
refinement stage to amalgamate global context and local
channel information within the Region of Interest (RoI),
thereby enhancing detection accuracy. The experimental
results demonstrate that the proposed method outperforms
existing approaches. The primary objective of this research
is to introduce innovative concepts for voxel-based 3D object
detection.

A. FUTURE WORK
In future research, we aim to delve into self-attention
mechanisms to create connections among voxels for the
purpose of 3D object detection in multi-modal fusion. Also,
in our endeavor to enhance performance, we will investigate
the efficacy of integrating visual foundational models, such
as Depth Anything [97], into our approach.
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