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ABSTRACT In the domain of medical image segmentation, the nnUNet framework is highly respected
for its excellent performance and wide range of applications. However, the inherent bias of locality and
weight sharing introduced by the continuous convolutional operations currently used limits the network’s
performance in modeling long-term dependencies. Furthermore, in the process of implementing residual
links, certain limitations are encountered due to the substantial semantic discrepancy between the encoder’s
output feature maps and the decoder’s. These limitations are seen in the direct application of skip connections
for feature fusion and gradient propagation, which are known to impact the model’s convergence speed
and overall performance. In this paper, a novel framework is presented, namely Multi-Attention nnUNet
(MulA-nnUNet), which utilizes nnUNet as the foundational network structure and integrates two key
attention mechanisms: large kernel convolutional attention (LKA) and pixel attention (PA). LKA is
embeddedwithin the deep encoder, maintaining the effectiveness of shallow feature extraction and enhancing
the deep neural networks’ ability to understand long-range spatial dependencies. At the same time, the
semantic distinction between the encoder and decoder’s output map of features is decreased by the PA
module, which helps to improve the effect of skip connection feature fusion. The complexity of the model is
reduced by replacing the standard convolutions in the encoder and decoder layers with depthwise separable
convolutions (DS), which have fewer parameters. The effectiveness of the proposed framework is confirmed
by a set of ablation experiments and comparison experiments with current state-of-the-art models on the
computed tomography (CT) subset of the multimodal abdominal multi-organ segmentation dataset (AMOS),
which includes 500 CT scans, with 350 scans for training, 75 for validation, and 75 for testing.MulA-nnUNet
shows improvements of 1.1% in mean dice similarity coefficient (mDSC) and 1.52% in mean intersection
over union (mIoU), while the baseline model requires 5 times the floating point operations (FLOPs) and
over 7 times the parameters (Params). Additionally, it demonstrates superior accuracy in segmenting organs
such as the liver, stomach, aorta, and pancreas, thereby enhancing the accuracy of 3D abdominal multi-organ
image segmentation.

INDEX TERMS Abdominal multi-organ image segmentation, attention mechanism, deep learning, nnUNet.
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I. INTRODUCTION
Among the main tasks in the processing of medical images is
regarded as medical image segmentation. In clinical practice,
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manual or semi-manual segmentation technology is usually
used for medical image segmentation, requiring appropriate
clinical expertise to obtain clinically relevant contours, which
is found to be very time-consuming. It is an indispensable
tool in clinical diagnosis, treatment planning, and disease
monitoring. High-resolution and rich 3D anatomical structure
information for image segmentation is provided by CT
technology, which is an important part of the field of
medical imaging. However, as most deep neural network
techniques are intended for 2D pictures, the correlation
information in 3D structures is not adequately captured by the
conventional 2D convolutional neural network (CNN). The
model’s performance deteriorates as a result of information
loss. In addition, the detailed segmentation of multiple
abdominal organs in CT is acknowledged as a difficult
problem for automatic segmentation techniques as well as
manual annotation, because the structural morphology of
multiple abdominal organs is complex, and huge differences
exist between different subjects and within the same subject,
and the soft tissue contrast in the image is low [1].
U-Net [2] is acknowledged as a successful encoder-decoder

baseline network, wherein the encoder component functions
in a manner akin to conventional classification CNNs, aggre-
gating semantic information through successive convolution
operations at the price of reducing spatial information.
By accepting semantic data from the bottom of the ‘‘U’’ and
merging it with a higher-resolution featuremap that is directly
retrieved from the encoder via residual links, the decoder
recovers the lost spatial information. Table 1 provides an
overview of the strengths and weaknesses of various previous
approaches extending the U-Net architecture. Among the
many remarkable architectures, top performance in multiple
medical imaging segmentation competitions has been
achieved by the adaptive framework nnUNet [3]. A common
network architecture similar to U-Net is used by nnUNet,
but the complex manual method configuration process is
systemized into fixed parameters, regular parameters based
on dataset properties, and aminimum of empirical parameters
for optimization. However, the richness of spatial information
is gradually reduced during processing by continuously
using convolution operations in nnUNet, resulting in the
loss of critical connections between some distant pixels.
Therefore, limitations are shown by it in capturing long-
distance dependencies. Qurri and Almekkawy [4] noticed
that CNN-based architecture has inherent biases that make
it limited in simulating long-range dependencies. To collect
long-distance context representations, a transformer is
implemented at the bottleneck as a link between the encoder
and the decoder. A three-level attention (TLA) module
is built at the decoder layer, reducing the semantic gap
between codecs by more precisely capturing local semantic
representations. However, certain limitations are faced by
the attention mechanism when compared to convolution
operations. Adaptation to the spatial dimension is exclusively
focused on, while adaptation in the channel dimension, which
is crucial for visual tasks, is neglected. Murugesan et al. [5]

trained a residual 3D U-Net by adding a residual path
with a 3 × 3 × 3 layer of convolution and a layer of
normalization at every encoding stage. The model is trained
five times utilizing the dice similarity coefficient (DSC)
loss function in conjunction with weighted cross-entropy
loss. This method enables the concurrent segmentation of
all 15 abdominal organs by employing magnetic resonance
imaging (MRI)/CT scans, resulting in the achievement of
generalized and excellent performance in segmentation for
both CT and MRI cross-domain picture modalities. A linear
attention mechanism known as LKA was proposed by
Guo et al. [6]. It breaks down a 13 × 13 convolution
into three different forms: a 5 × 5 profound convolution,
a 5 × 5 in-depth dilated convolution with a dilation
factor of 3, and a point-wise convolutive operation. This
process incorporates the benefits of self-attention, including
adaptability and long-term dependence. Furthermore, the
advantages of convolution, such as the exploitation of local
context information, are benefited from. In an effort to
address the issue of precise brain tumor segmentation,
Li et al. [7] experimented with the combination of 3D
LKA and U-Net. Results demonstrate that LKAU-Net
performs better in characterizing all three tumor subregions
after training and assessing the multimodal brain tumor
segmentation challenge (BraTS) 2020 dataset. There are
documented average dice scores of 79.01%, 91.31%, and
85%, in that order. The whole tumor (WT), the enhancing
tumor (ET), and the tumor core (TC) have Hausdorff
distances of 26.27, 4.56, and 5.87 for 75%, 95%, and
correspondingly. The VGA-Net proposed by Jalali et al.
[8] integrates graph convolutional networks (GCNs) with
attention mechanisms, effectively capturing the global
structure of retinal vessels and maintaining segmentation
continuity. This ensures an accurate representation of
pixel-level information and structural details during the
segmentation process. A concise and effective PA, similar
in expression to spatial attention and channel attention but
generating a 3D attention map as opposed to a 2D or
1D vector, is proposed by Zhao et al. [9], achieving good
performance on lightweight networks. Shah et al. [10] offered
EMED-UNet, which utilizes multiple U-Net structures with
each U-Net gathering information in a separate receptive
field. Several segmented outputs and receptive fields (one
corresponding to each U-Net) are learned by the model to
finally gather information. Deep supervision techniques are
also introduced by the architecture to realize collaborative
learning among multiple U-Nets. Fateh et al. [11] proposed
the MRA-UNet for multilingual handwritten digit recogni-
tion, which used transfer learning to reduce the computational
cost and maintain the quality of the enhanced image and
the recognition accuracy of the model, solving the problem
that handwritten digits in different languages have significant
distance representation in the latent space. MA-UNet [12]
employs compact attention U-Net as its foundational network
structure, and by combining the characteristics produced
by several intermediary layers for prediction, a multi-scale
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TABLE 1. Overview of previous approaches.

method is used to achieve the integration and exploitation
of global data at various stages. Furthermore, to better
explore the global context information, the association
mechanism between features and attention is built, and
the attention mechanism is incorporated to concurrently
articulate dependencies across both spatial and channel
dimensions.

The following is a summary of this paper’s primary
contributions:
• In order to enhance the semantic segmentation capa-

bilities of 3D abdominal multi-organ images, a new
framework, MulA-nnUNet, is proposed in this paper,
by utilizing nnUNet as the fundamental network struc-
ture while introducing the LKA and PA modules.
Additionally, the standard convolution in the encoder
and decoder layers is replaced by DS with fewer
parameters, which obtains better segmentation results.

• To enhance the capacity of the deep neural network
to grasp long-distance spatial relationships, the LKA

module is introduced to the encoder’s profound layer.
The representation ability of the featuremap is improved
by this method, and the effective integration of features
at different levels is promoted without affecting the
efficiency of shallow feature extraction.

• The PA module is introduced in this paper to lessen
the disparity in semantics across feature mappings
transmitted through skip connections between the
codecs. This method yields an improved represen-
tation of important areas within the feature maps
while minimizing the impact of irrelevant or noisy
regions, thereby improving the effectiveness of feature
fusion.

• This model is put through a battery of ablation tests
and contrasted with more sophisticated models that have
been released recently. The efficiency of this strategy
is confirmed by the experimental findings, which show
that this model delivers superior outcomes than earlier
models.
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II. RELATED WORK
A. NNUNET AND ITS VARIANTS
In a conventional CNN, local characteristics are extracted
from pictures using convolutional and pooling layers, and
then the images are classified using fully connected layers.
However, classic CNN frequently fails to satisfy the require-
ments of high-precision segmentation in the abdominal
multi-organ segmentation assignment because of the image’s
complexity and the correlation of numerous organs. A deep
learning framework created especially for segmenting images
is called U-Net. Its unique codec architecture and residual
links allow the network to effectively restore the spatial
details of the image while preserving high-level semantic
information and finally generate segmentation masks through
an output layer for binary segmentation. In the disciplines
of biomedical image segmentation and other areas, U-Net
has demonstrated outstanding achievements and has become
a classic model in image segmentation tasks. nnUNet is a
U-Net-based deep learning framework that features adaptive
setup and rule parameters to make it more user-friendly
and appropriate for various medical image partitioning
challenges [15]. By extracting the dataset fingerprint of
dataset attributes, nnUNet models the interdependence of
parameters. A set of heuristic rules is adopted to manipulate
these dependencies. In this way, it can infer rule-based
parameters to train up to three configurations using
5-fold cross-validation. nnUNet autonomously identifies the
optimal combination of these models and decides whether
post-processing is necessary. The robustness of nnUNet is not
the result of a novel training plan, loss function, or network
design; rather, it is the result of an intricate process of
methodical manual method setup. nnUNet was originally
developed on seven training datasets from the first phase
of the medical segmentation decathlon challenge and won
this competition [16]. In addition, in the automatic cardiac
segmentation challenge (ACDC), nnUNet successfully seg-
mented the dynamic magnetic resonance imaging (cine-MRI)
heart images taken at two distinct time intervals. Accurate
segmentation results of three parts of the heart are obtained.
In this challenge, nnUNet ranked first in the open leader-
board. Isensee et al. [17] extended nnUNet by meticulously
altering hyperparameters, including residual connections in
the encoder, and creating a unique post-processing plan
to compete in the AMOS 2022 competition. For task 1
(CT) and task 2 (CT+MRI), the final ensemble receives
dice scores of 90.13% and 89.06%, respectively. Due to
the significance of high-quality segmentation, most state-
of-the-art models come at the expense of computational
complexity. However, practical applications have a limited
computational budget, so technical solutions that strike
a balance between accuracy and available computational
resources are needed. This is why Magadza and Viriri [13]
extended the U-Net model in nnUNet. To reduce the number
of network parameters and increase network efficiency,
all standard convolutions are replaced with deep-separated
convolutions. A bottleneck unit is also added to further reduce

the number of parameters, and the skip connection uses a
three-dimensional shuffle attention mechanism to enhance
the network’s segmentation performance. To prevent network
deterioration, residual connections are also added. Using
just 2.51 Mega (M) parameters and 55.26 Giga (G) FLOPs,
the network obtained dice scores of 79.2%, 91.2%, and
84.8% for ET, WT, and TC improvement, respectively, on the
BraTS 2020. Three types of attention mechanisms as well
as additional ensemble mechanisms from advanced U-Net
variations, such as residual, dense, and inception blocks, were
added to the network architectural components of the nnUNet
framework by McConnell et al. [14]. In addition, in Channel-
Spatial-Attention-nnUNet, they integrated a variant of the
newly proposed channel-attention mechanism, utilizing the
channel attention block and spatial single attention block
in turn to utilize channel and spatial attention, and added
key modifications. This involves the substitution of the fully
connected layer by a 1 × 1 × 1 convolutional layer, and
the replacement of the addition operation following the
fully connected layer with a concatenation operation prior
to convolution. Such adjustments are made to enhance the
preservation of information and to sustain the numerical
differentiation between the maximum and average outputs
for the layers of convolution that follow. The findings
demonstrate that the application of attention variations to a
tumor segmentation problem involving two or more target
anatomical areas may effectively increase the segmentation
performance and that the use of deep supervised structural
features influences the segmentation performance.

B. LARGE KERNEL ATTENTION
The main goal of an attention mechanism in computer vision
is to teach the system to disregard irrelevant input and to con-
centrate on important details. In recent years, this concept has
been applied widely in various disciplines, including natural
language processing [18], [19], speech recognition [20], [21],
image processing [22], [23], and so forth. Building neural
networkswith attentionmechanisms has become increasingly
crucial as deep learning continues to progress swiftly. 3D
abdominal images contain rich 3D structural information, and
there are also complex relationships between various organs.
Different organs exist in close proximity, resulting in unclear
boundaries between organs. The perceptual range is increased
by designing large kernel convolution operations to better
grasp the image’s long-range dependencies, which helps to
process global structural information and channel adaptation.
The implementation of 3D LKA was demonstrated in LKA-
UNet [7], where the 3D LKA module was applied to the
upsampling decoder layer, the attention map was created by
utilizing sigmoid function activation, and 3D large kernel
convolution was applied to the feature maps activated by
group normalization and leaky ReLU. Before 3D large
kernel convolution, the result is produced by multiplying this
attention map by the feature map element by element. The
final decoder layer compresses the feature channels into three
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using a 1×1×1 convolution, and then creates three prediction
probabilitymaps using the sigmoid function. Sigmoid outputs
are added to all except the two lowest layers for enhanced
deep supervision and to facilitate gradient flow to preceding
layers. The LKAmodule introduced by Guo et al. [6] in VAN
is segmented into three components: spatial local convolution
(deep convolution), spatial remote convolution (deep dilated
convolution), and channel convolution (1 × 1 convolution).
This segmentation aims to minimize computational demands
and parameters while capturing distant relationships, thus
enabling the estimation of a point’s significance and the
generation of the attention map.

C. PIXEL ATTENTION
The idea behind the pixel attention mechanism is to
emphasize or suppress specific regions by calculating the
weight of each pixel in the image and then applying these
weights to the original pixel or featuremap.With this method,
the model may prioritize the areas that are more crucial
for the current job and adaptively modify its attentional
focus. This idea was first put forward and quickly refined
in the field of natural language processing. It has since
been applied to computer vision, particularly in tasks like
object identification, segmentation, and image classification.
Zhao et al. [9] applied PA to the lightweight convolutional
neural network of image super-resolution (SR) and divided
PA into two building blocks, namely, self-calibration block
with pixel attention (SC-PA) and upsampling block with pixel
attention (U-PA), which contained few parameters but could
obtain good reconstruction effects. There is also a case of
combining the PA module with U-Net [24], which is applied
to the landslide recognition task. The PAmodule is utilized in
each upsampling stage of the model, and a two-dimensional
deconvolution layer is used to upsample the feature map, and
then a connection function is used to connect the upsampling
map with the corresponding encoder feature map and input
into the PA module. The representation of key regions is
further enhanced to help perform feature fusion.

III. METHOD
A. OVERVIEW OF MulA-nnUNet
The U-Net architecture serves as the foundation for nnUNet,
where the convolutional layers have local receptive fields.
Although the receptive field can be gradually expanded
by multi-layer convolution and pooling, global contextual
information in the image is still limitedly captured by
this method. At present, the action of pooling in the
downsampling procedure decreases the spatial resolution
as the network layers deeper during the encoder stage,
which impacts the network’s ability to comprehend the
global structure and long-distance dependencies within the
image. There are still certain limitations on the overall
comprehension of the global information, even when at the
decoder stage the skip connection combines the context
information from the high levels of the decoder with the

precise information from the shallow layers of the encoder.
The primary reason for this restriction is the feature map of
the decoder stage is semantically different from the output
of the encoder stage, making it difficult to effectively fuse
different levels of features when direct skip connections are
used, thereby impacting the segmentation performance.

In the proposed method, the input images undergo
preprocessing inherited from the nnUNet framework before
being fed into the MulA-nnUNet model. This model employs
an attention mechanism to capture long-range dependencies
in 3D medical images and bridges the semantic gap between
the feature maps connected by skip connections in the
encoder-decoder architecture.

Fig. 1 offers an overview of the workflow, while Fig. 2
elaborates on the network architecture generated by the
MulA-nnUNet framework.

Firstly, the encoder’s deep layer contains references to
the LKA module, so that it is acted upon by the feature
maps with large receptive fields. This enhancement of
the network’s overall performance is accomplished without
compromising the effectiveness of shallow feature extraction,
allowing for the more effective capture and utilization of
long-range spatial information. For the output feature map
of each encoder layer, pixel-level attention weighting is
performed through the corresponding PA module before
downsampling, highlighting important feature areas and
enhancing the semantic information of key areas. This assists
in the fusion of the skip connection with the upsampling
feature map corresponding to the decoder stage, thereby
reducing the semantic gap between them. Ultimately, the
depthwise separable convolution takes the role of the regular
convolution in the encoder and decoder layers, reducing both
the number of parameters and the complexity of the model.

B. DESIGN OF THE LKA MODULE
As mentioned earlier, the network’s capacity for feature
extraction is improved by LKA, which provides a larger
receptive field, effectively modeling long-range dependen-
cies. The LKA module is implemented in the last three
layers of the encoder. This is a result of the fact that
each convolutional layer’s receptive field grows as the
network’s depth rises. Therefore, at a deeper level, high-
level and abstract feature maps with larger receptive fields
can be acted upon by the LKA module. Moreover, by being
applied to deeper layers, the number of feature maps that
need to be processed is reduced through LKA, effectively
capturing and exploiting long-range spatial information
without significantly increasing the computational burden.
The LKA module, seen in Fig. 3, expands the number of
channels to 4

3C using a 1 × 1 × 1 convolutional layer before
performing gaussian error linear unit (GELU) activation,
assuming that the number of channels is C . This allows the
network to obtain a broad feature space, thereby capturing
richer and more detailed information, which assists the model
in understanding complex patterns in 3D abdominal multi-
organ images. A large kernel convolution of 4

3C ×
4
3C ×

4
3C
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FIGURE 1. Workflow of the proposed method.

FIGURE 2. Network architecture generated by the MulA-nnUNet framework.

is decomposed into a depth-wise convolution (DW Conv) of
size (2d − 1) × (2d − 1) × (2d − 1), a depth-wise dilated
convolution (DWD Conv) of size

(
4
3C ·

1
d

)
×

(
4
3C ·

1
d

)
×(

4
3C ·

1
d

)
with dilation (d, d, d), and a 1×1×1 convolution

(1 × 1 × 1 Conv). The attention map generated by the
LKA module is then element-wise multiplied (⊗) with the
feature map previously activated by GELU. Ultimately, a
1 × 1 × 1 convolutional layer is employed to restore the
number of channels to their initial size, guaranteeing that the
output of each residual connection retains the same channel
dimension as the input. The entire LKA module can be

written as follows:

E = GELU
(
Convexpansion (Input)

)
, (1)

Atten = Conv1×1×1 (ConvDW (ConvDWD (E))) , (2)

Output = Input + Convreduction (Atten ⊗ E) . (3)

where E ∈ RC×D×H×W displays the input feature map’s fea-
ture map following the extension of the number of channels
(Convexpansion) and GELU activation function processing,
Atten ∈ RC×D×H×W represents the attention map. Atten
and E are multiplied element-by-element. Following that,
Convreduction restores the number of channels, and the output
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FIGURE 3. Large Kernel Attention (LKA) module: The input feature map is first processed through a 1 × 1 × 1
convolutional layer, which expands the number of channels to 4/3 times the original number of channels, and
GELU activation is performed. Next, the feature map is processed by a 5 × 5 × 5 depth convolution (DW Conv), a
7 × 7 × 7 deep dilated convolution featuring a dilation factor of 3 (DWD Conv), and a 1 × 1 × 1 pointwise
convolution to generate the attention map, which undergoes an element-wise multiplication with the feature map
activated by gaussian error linear unit (GELU). The number of channels is restored to the original size by another
1 × 1 × 1 convolution. Ultimately, the final output feature map is constituted by adding the processed feature map
to the original input feature map through a residual connection, culminating in the transformation process. In the
figure, the location of the convolution kernel is represented by the colored grid, and the center point is represented
by the yellow grid. The figure illustrates the DW Conv, DWD Conv, and 1 × 1 × 1 Conv, which are derived from the
decomposition of a large kernel convolution with dimensions of 21 × 21 × 21. It presents merely a segment of the
feature matrix resulting from this decomposition, specifically a corner, while excluding any representation of zero
padding.

FIGURE 4. Pixel Attention (PA) module.

feature map is created by summing it with the input feature
map.

C. DESIGN OF THE PA MODULE
In recent years, good performance has also been shown
by the PA module by using the skip connection process.
As previously pointed out, various restrictions in the feature
fusion and gradient propagation of the direct skip connection
are encountered, impacting the model’s convergence speed
and performance. This is because of the significant semantic
gap between the encoder layer and the decoder layer’s
output feature maps. Therefore, the feature maps in skip
connections can be weighed using PA to improve the feature
representation of key semantics and reduce the interference of

irrelevant features. The structure of the PAmodule is depicted
in Fig. 4.

The input feature map Input ∈ RC×D×H×W in the
encoder stage is convolved with 1 × 1 × 1, the features
of each channel are transformed to discover the signif-
icance of every feature channel, and then the attention
map Atten ∈ RC×D×H×W is generated by the sigmoid
activation function. Ultimately, the input feature map and
the attention map undergo element-by-element multipli-
cation (⊗) to produce the output feature map, and the
decoder layer’s feature map is fused, which is described as
follows:

Atten = σsigmoid (Conv1×1×1 (Input)) , (4)
Output = Atten ⊗ Input. (5)
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D. LOSS FUNCTION
The hybrid loss function integrates cross-entropy (CE) loss
and dice (DC) loss and is tuned for the model’s segmentation
and classification accuracy, leading to a superior segmen-
tation effect and increased generalization capacity. The DC
loss is derived from the dice coefficient, which is determined
by the similarity between the model-predicted segmentation
results and the true segmentation labels. It is calculated as
follows:

DCLoss = −
2
∑N

i=1pigi + smooth∑N
i=1p

2
i +

∑N
i=1g

2
i + smooth

, (6)

Here, pi and gi signify the predicted and actual values at the
pixel i, correspondingly, with N symbolizing the aggregate
pixel count, and smooth serving as a stabilization term
introduced to preclude scenarios wherein the denominator
approaches zero.

CE loss serves as a metric to assess the disparity between
the model’s predicted probability distribution and the actual
distribution of the target, which is particularly effective
for multi-class classification problems. It is calculated as
follows:

CELoss = −
∑M

c=1 yo,clog
(
po,c

)
, (7)

Here, yo,c is represented as a binary indicator denoting the
membership of sample o in class c, whereas po,c delineates the
probability assigned by the model for sample o being part of
class c. Here,M denotes the comprehensive count of classes,
and log signifies the natural logarithm. The ultimate hybrid
loss function is derived as delineated below:

Loss = weightce · CELoss + weightdice · DCLoss. (8)

Among them, weightce and weightdice embody the respective
contributions of CE loss and DC loss to the composite loss
function. Through the strategic modulation of these weights
and the synergistic integration of the merits of both CE
loss and DC loss, an elevation in segmentation accuracy is
achieved, concurrently with an augmentation in the model’s
sensitivity to the segmentation tasks. Since the loss is the sum
of CE and DC losses, and the best CE loss is 0 while the best
DC loss is −1, the overall best possible loss is −1.

IV. EXPERIMENT
A. DATASETS
A large and diverse abdominal multi-organ dataset contain-
ing 600 CT/MRI scans and over 74K annotated slices is
provided by AMOS [25], featuring voxel-level annotations
for 15 abdominal organs. The spleen, right kidney, left kidney,
gallbladder, esophagus, liver, stomach, aorta, inferior vena
cava, pancreas, right adrenal gland, left adrenal gland, duo-
denum, bladder, and prostate/uterus are included, as shown
in Fig. 5. Data are obtained from 600 patients diagnosed
with abdominal tumors/abnormalities at Longgang District
People’s Hospital and Longgang District People’s Hospital,
Shenzhen, China. For the experiments, the AMOS-CT subset

FIGURE 5. Examples of annotated slices in axial, sagittal, and coronal
planes from the AMOS dataset.

is used, where all 500CT scans are interpolated to an isotropic
voxel spacing of 1.0mm × 1.0mm × 1.0mm.

B. EXPERIMENTAL DETAILS AND EVALUATION
INDICATORS
1) EXPERIMENTAL DETAILS
In this experiment, Python 3 is utilized, and PaddlePaddle
is chosen as the deep learning framework for training
and testing on the NVIDIA A100 GPU. The details
of hyperparameter configurations such as the optimizer,
learning rate scheduler, and batch size will be determined
after the hyperparameter selection ablation experiments.
The experiments were conducted on the CT subset of the
AMOS dataset, with a total of 400 epochs, which equates
to 100,000 iterations. The DC_and_CE_loss function is
adopted, and the evaluation metrics include intersection
over union (IoU) and DSC. The experiments are conducted
on the CT subset of the AMOS dataset, with a total of
400 epochs, equates to 100,000 iterations. Data augmentation
operations from the nnUNet framework [16], such as gaussian
noise, random rotation, random scaling, random elastic
deformation, gamma-correction enhancement, andmirroring,
are inherited by MulA-nnUNet. Additionally, MulA-nnUNet
also inherits the data preprocessing operations [16] from
the nnUNet framework, such as cropping, resampling, and
normalization.

2) EVALUATION INDICATOR
In this experiment, two performance evaluation metrics are
utilized, one being the DSC, which is commonly employed
in medical image segmentation tasks, and the other being the
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IoU. These metrics are used to assist in assessing the quality
of different models. The DSC is extensively employed in the
realm of medical image segmentation as a metric to ascertain
the congruence between the prediction and the genuine label,
thus facilitating the assessment of the model’s efficacy. For a
given organ i, where Prei denotes the pixel set corresponding
to the predictive outcome and Gti represents the pixel set of
the actual label, the formulation of the DSC is expressed as
follows:

DSCi =
2 × |Prei ∩ Gti|
|Prei| + |Gti|

, (9)

The IoU metric stands as the predominant measure for
appraising the efficacy of models dedicated to semantic
segmentation, referring to the coverage degree between the
predicted region and the true annotation, namely, the ratio
of their intersection region to the union region. For every
specified organ i, wherein Prei is designated as the pixel
ensemble of the forecasted outcome and Gti signifies the
pixel ensemble of the authentic label, the IoU is expressed
as follows:

IoUi =
|Prei ∩ Gti|
|Prei ∪ Gti|

. (10)

C. HYPERPARAMETER OPTIMIZATION EXPERIMENTS
To identify the optimal hyperparameter configuration,
a series of experiments is conducted focusing on three
key factors using the MulA-nnUNet model: the optimizer
(such as adaptive moment estimation with weight decay,
AdamW [26]; adaptive moment estimation, Adam; and
stochastic gradient descent, SGD), the learning rate scheduler
(including polynomial decay, PD; cosine annealing decay,
CAD; and step decay, SD), and the batch size. The evaluation
metrics include the training loss and the mDSC, which is
the average dice similarity coefficient for 15 abdominal
multi-organs obtained from predictions on the validation set
during training.

1) OPTIMIZER SELECTION EXPERIMENT
The performance of AdamW, Adam, and SGD optimizers
is evaluated while keeping the learning rate scheduler and
batch size constant. Fixed parameters are selected based on
standard practices and preliminary experiments indicating
stable training conditions.

• Optimizer evaluated: AdamW, Adam, SGD
• Fixed parameters:

– Learning rate scheduler: Learning rate scheduler:
PD is chosen for its ability to gradually decrease
the learning rate throughout training, ensuring
smooth convergence.

– Batch size: 2. This batch size is chosen to provide
stable gradient estimates, especially in situations
where computational resources are limited.

• Result: Fig. 6 shows the training loss and mDSC trends
for each optimizer evaluated. AdamW achieves a final

training loss of -0.91 and an mDSC of 92.00%, demon-
strating faster convergence and superior performance
compared to Adam (training loss of -0.78 and mDSC
of 78.33%) and SGD (training loss of -0.81 and mDSC
of 74.77%). Due to its superior performance, AdamW is
selected for subsequent experiments.

2) LEARNING RATE SCHEDULER SELECTION EXPERIMENT
This experiment assesses the impact of PD, CA, and SD
learning rate schedulers on model performance.

• Learning rate schedulers evaluated: PD, CAD, SD
• Fixed parameters:

– Optimizer: AdamW
– Batch size: 2. To maintain consistency, a batch size

of 2 is continued to be used.
• Result: Fig. 7 shows the training loss and mDSC trends

for each learning rate scheduler evaluated. PD achieves
a final training loss of -0.89 and an mDSC of 86.77%,
demonstrating faster convergence and superior perfor-
mance compared to CAD (training loss of -0.78 and
mDSC of 76.63%) and SD (training loss of -0.71 and
mDSC of 72.97%). Due to its superior performance,
PD is selected for subsequent experiments.

3) BATCH SIZE SELECTION EXPERIMENT
This experiment explores the effect of different batch sizes
(1, 2, 4) on model performance.

• Batch sizes evaluated: 1, 2, 4
• Fixed parameters:

– Optimizer: AdamW
– Learning rate scheduler: PD

• Result: Fig. 8 shows the training loss and mDSC trends
for each batch size evaluated. Batch size 2 achieves
a final training loss of -0.91 and an mDSC of
91.84%, demonstrating faster convergence and superior
performance compared to batch size 1 (training loss of
-0.83 and mDSC of 85.88%) and batch size 4 (training
loss of -0.88 and mDSC of 85.67%). Due to its superior
performance, batch size 2 is selected for subsequent
experiments.

Based on the results of the hyperparameter optimization
experiments, the best configuration for training the model is
using the AdamW optimizer, the PD strategy for the learning
rate scheduler, and a batch size of 2. This configuration
ensures the optimal balance between training efficiency and
model performance.

D. NETWORK COMPONENT ABLATION EXPERIMENTS
To verify the effectiveness of the individual components
within the MulA-nnUNet framework, a series of ablation
studies are conducted. The effects of the LKA module,
PA module, and DS on the semantic segmentation perfor-
mance of 3D abdominal multi-organ images are mainly
focused on in these ablation experiments. By gradually
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FIGURE 6. Result of optimizer selection experiment.

FIGURE 7. Result of learning rate scheduler selection experiment.

adding these modules on top of the baseline model, nnUNet,
the contribution of each module to the overall performance
can be identified. The specific model configuration is as
follows:

• BL:Baselinemodel nnUNet, which does not contain any
additional modules.

• BL+LKA: The LKA module is introduced in the last
3 layers of the encoder of the baseline model.

• BL+PA: The PA module is introduced in the skip
connection of the baseline model.

• BL+LKA+PA+DS: Based on the LKA and PA mod-
ules, the DS is further introduced.

Table 2 displays each configuration’s experimental results.
The experimental findings demonstrate that the model
gradually introduces the LKA and PA modules and replaces
the usual convolution with DS to obtain certain performance

TABLE 2. Results of ablation studies for the MulA-nnUNet framework,
where the best values are shown in bold.

gains on the 3D abdominal multi-organ image segmentation
challenge. Specifically, an improvement of 0.84% in the
mDSC and 1.19% in the mIoU is observed in the model
by the incorporation of the LKA module. By adding the PA
module, improvements of 0.34% in the mDSC and 0.64% in
the mIoU are observed in the model, respectively. Among
them, the highest values in mDSC and mIoU are achieved
by the BL+LKA+PA configuration, showing an increase
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FIGURE 8. Result of batch size selection experiment.

TABLE 3. Evaluation of MulA-nnUNet against current leading-edge segmentation techniques on the CT subset of the AMOS dataset, as measured by the
DSC. Note: spleen (Spl.), right kidney (Rki.), left kidney (Lki.), gallbladder (Gbl.), esophagus (Eso.), liver (Liv.), stomach (Sto.), aorta (Aor.), inferior vena cava
(Ivc.), pancreas (Pan.), right adrenal gland (Rag), left adrenal gland (Lag.), duodenum (Duo.), bladder (Bla.), prostate/uterus (Pro./Ute.). Bold text indicates
the best results.

TABLE 4. Evaluation of MulA-nnUNet against current leading-edge segmentation techniques on the CT subset of the AMOS dataset, as measured by the
IoU. Note: Bold text indicates the best results.

of 1.38% and 2.77%, respectively. This demonstrates that
these two attention mechanisms can effectively enhance
the capture of long-distance spatial dependence and the
prominence of important features, as well as promote the
effective integration of features at various levels. Further-
more, the deployment of DS significantly diminishes both
the computational complexity and the volume of parameters
within the model. Although there is a marginal reduction
in mDSC and mIoU, this outcome is deemed a tolerable
compromise. The rationale behind this perspective lies in the
balance between performance and efficiency, as vindicated

by the notable enhancement in computational efficiency and
the reduction of the model’s complexity.

E. COMPARATIVE STUDY
To ascertain the impact of the introduced MulA-nnUNet
architecture on the task of 3D abdominal multi-organ image
segmentation, this section undertakes a comparative analysis
between the proposed model and existing sophisticated
models. Included in these models are nnUNet (Baseline) [3],
VNet [27], nnFormer [28], TransUNet [29], SwinUNet [30],
and UNETR [31]. Tables 3 and 4 display the related results,
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FIGURE 9. Visual comparison with other models on AMOS-CT.

TABLE 5. Comparison of performance metrics between MulA-nnUNet
and various advanced models. Note: Bold text indicates the best results.

whereas Fig. 9 provides instances of the corresponding
segmentation.

Tables 3 and 4 describe the results of the experiments
of MulA-nnUNet and various other models on the CT

subset of the AMOS dataset. The mDSCs of nnUNet, VNet,
nnFormer, TransUNet, SwinUNet, and UNETR are reported
as 88.83%, 81.91%, 85.84%, 85.37%, 84.89%, and 78.36%,
respectively. The mIoUs obtained are reported as 80.11%,
74.14%, 78.04%, 77.55%, 77.10%, and 70.51%, respectively.
The highest mIoU andmDSC are achieved byMulA-nnUNet,
reported as 89.93% and 81.63%, respectively. Increases in the
mDSC of 1.1%, 8.02%, 4.09%, 4.56%, 5.04%, and 11.57%,
respectively, are achieved by MulA-nnUNet contrasted with
the results of the remaining six models. Increases in the
mIoU of 1.52%, 7.49%, 3.59%, 4.08%, 4.53%, and 11.12%,
respectively, are observed. From the perspective of each
organ, the best performance on 11 abdominal organs is
achieved by the proposed MulA-nnUNet, which especially
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shows great advantages in the segmentation of organs such
as the liver, stomach, aorta, and pancreas. Better results than
those of other models are achieved by our proposed model,
with mDSC andmIoU scores that are 1.1% and 1.52% higher,
respectively, than the second-best scoring model, nnUNet.

Table 5 describes the performance of MulA-nnUNet and
various other advanced models in terms of runtime, model
parameters, and FLOPs. Compared to the nnUNet model,
it requires only 20% of the FLOPs and 13% of the parameters
while maintaining a relatively fast runtime. Fig. 9 displays
the visual comparison with various models on the AMOS-
CT dataset. More accurate details in the segmentation map,
better handling of close or intersecting organ boundaries,
and accurate depiction of the contour and internal details of
organs are achieved by the segmentation map predicted by
MulA-nnUNet. It is confirmed that our suggested approach
works well for enhancing the segmentation accuracy of 3D
abdominal multi-organ images.

V. CONCLUSION
Medical image analysis is thought to include medical
image segmentation as a crucial component. The U-Net
architecture is carefully analyzed in this paper in an attempt
to identify any possible areas for improvement. It is found
that the continuous convolution operation leads to a gradual
reduction of spatial information in the feature map with the
downsampling, thus resulting in the loss of some important
correlations between distant pixels. In this paper, LKA
is implemented prior to down-sampling within the deep
encoder portion of the network. This modification augments
the deep neural network’s capacity to apprehend spatial
dependencies over extended distances, thereby enhancing
the representational efficacy of the feature maps. Moreover,
distinctions are observed between the features transmitted
from the encoder network and those conveyed through
the decoder network. To coordinate these two sets of
incompatible features, the addition of PA between them
is proposed to strengthen the representation of important
regions in the feature map and reduce the influence of
irrelevant or noisy regions, which helps enhance the two
feature maps’ integration impact. With the addition of LKA
and PAmodules, a significant increase in the model’s compu-
tational complexity is observed, prompting the replacement
of the standard convolution in the encoder/decoder layer
by DS. This adjustment reduces the model’s complexity
while maintaining competitive segmentation performance.
Ultimately, the experimental results on the CT subset of the
AMOS dataset validate the efficacy of the suggested method.

In order to evaluate our method’s universality and applica-
tion, future work will entail testing and validating it on other
datasets and medical imaging modalities, including positron
emission tomography (PET) and MRI. Additionally, further
exploration and enhancement of the feature fusion strategy
will be conducted to improve the model’s performance and
robustness.
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