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ABSTRACT In recent years, the use of collaborative robots in assembly lines has promised productivity
improvement. It provides more alternatives for the assembly line design, which are the alternative resources
of the human, robot, or human-robot collaboration (HRC), and the alternative subsets of processes, termed
alternative subgraphs, taking advantage of the variety of robotic tools or end-effectors. However, more
alternatives make the assembly line balancing problem more complex. This situation is encountered
frequently in modern electronics and automotive assembly lines. The contribution of this study is to provide
a mathematical model and solution to the assembly line balancing problem that has both HRC and alternative
subgraphs, which has not been discussed as an integrated problem in previous literature. To accomplish this
optimization problem, a mixed-integer linear programming (MILP) model has been developed to assign
tasks to stations and determine the type of resources required while minimizing the cycle time. Practical
constraints such as the available number of robots and robotic end-effector types are also considered. Owing
to the complexity of the problem, the exact method for MILP is extremely time-consuming for real-world
applications. Therefore, a metaheuristic algorithm based on the ant colony optimization (ACO) approach
has been developed to solve the problem more efficiently. The results show that the MILP model can obtain
optimal solutions for small-sized problems, whereas the ACO algorithm has proven to be a practical solution
for medium- to large-sized problems, providing good solutions within an acceptable computation time. The
results also show that the presence of alternative subgraphs can give opportunities for better solutions.

INDEX TERMS Assembly line balancing, human-robot collaboration, mathematical model, metaheuristic.

I. INTRODUCTION
Human-robot collaboration (HRC) is an emerging technology
in the fourth industrial revolution [1] and continues to become
one of the key enabling technologies in the new paradigm
of Industry 5.0 [2]. It uses collaborative robots (cobots),
which are robots that can interact safely with nearby humans
by using integrated sensors and artificial intelligence (AI)
applications [3], [4]. The sensors and AI can be enhanced
with a trust model to make the correct decision regarding
the dynamic interaction between humans and robots [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Liu .

ManyHRC applications, as reported in [7], involve assembly-
production systems. Although a fully robotic assembly line
has been implemented for welding and painting-related pro-
cesses, many assembly tasks still require the dexterity and
flexibility of humans. For such manual assembly tasks, the
power and accuracy of cobots can improve task efficiency
and quality and reduce health and safety risks. Consequently,
the introduction of HRC to assembly processes has become
increasingly common, facilitated by advancements in sensors
and actuator technology [8].

In the design of assembly lines with high-volume pro-
duction, the assembly line balancing problem (ALBP) is
important. The main issue of ALBP is the assignment of
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assembly tasks to a set of workstations, subject to precedence
and other constraints, to achieve a specific objective function.
ALBP has been extensively investigated [9], [10], ranging
from simple to generalized ALBPwith various aspects. How-
ever, the use of cobots in assembly lines has introduced a new
kind of problem, such as the assembly line balancing problem
with human-robot collaboration (ALBP-HRC), which has
received significant attention in recent years. In the rest of
this paper, the term ‘‘robot’’ refers to ‘‘cobot’’ in the context
of ALBP-HRC. Since the first papers discussing ALBP-HRC
were published [11], [12], basic mathematical formulations
for ALBP-HRC have been proposed [13], [14]. This problem
extends the ALBP by providing alternatives for the resources
that perform each task, whether by a human only, a robot only,
or a human and a robot simultaneously. It is important to note
that ALBP-HRC is different from robotic assembly line bal-
ancing problems (RALBP) [15], [16]. The RALBP involves
a fully robotic assembly line, where each station is assigned
a robot as its single resource. In contrast, ALBP-HRC starts
with conventional manual lines that can be improved using
HRC. It can decide whether a station has a single resource,
whether a human or a robot, or whether it has two resources,
namely a human and a robot, in the same station. This implies
that a task can be performed by a single resource or by two
resources, such as a human and a robot simultaneously.

A robot can be installed with various tools or end-effectors,
which are devices attached to the end of the robot arm to
perform its main tasks. For example, if a robot is required to
hold a component, it can be installed with a gripper tool. The
automatic tool-changing technology enables a single robot
to handle multiple tools [17], [18]. This feature offers the
possibility for alternative processes. For example, for a set
of tasks of installing four screws, one method is to use a
single screwdriver tool and perform the tasks sequentially,
whereas the other method is to use multiple screwdrivers in
parallel and perform the function simultaneously. In ALBP
literature, such alternative processes are termed alternative
subgraphs [19]. This term comes from the representation of
precedence constraints in ALBP as a precedence graph. Each
node of the precedence graph represents a task or process.
Hence, a subset of processes is called a subgraph. The alterna-
tive subgraphs assembly line balancing problem (ASALBP)
is formulated using mathematical programming in [20] and is
more recently discussed in [21].
The use of cobots in assembly lines has added deci-

sion alternatives concerning the type of resources to use
for each task, whether by a human only, a robot only, or a
human and a robot simultaneously in collaboration [14].
The possibility of alternative subgraphs further expands the
opportunities to achieve higher system performance at the
cost of increased complexity in the problem formulation.
The main scientific contribution of this research is the devel-
opment of a mathematical model and solution for ALBP
with HRC and alternative subgraphs (ALBP-HRC-AS) in an
integrated manner, which has never been discussed in pre-
vious literature. This kind of problem frequently occurs in

current industries, such as electronic goods and automotive,
which adopt HRC for their assembly lines. The objective
function is to minimize the cycle time while [14] minimizing
the total cost and [20] minimizing the number of stations.
The ALBP-HRC-AS is modeled as a mixed-integer linear
programming (MILP) formulation, which can be solved opti-
mally using standard mathematical programming software.
This approach usually requires a large amount of computation
time for medium- to large-sized problems. For this reason,
subsequently, a metaheuristic algorithm is developed to find
good solutions with a reasonable computation time.

II. LITERATURE REVIEW
ALBP has evolved since its first introduction [22] from the
simple assembly line balancing problem (SALBP) to more
advanced problems categorized as the generalized assembly
line balancing problem (GALBP) [9], [23]. ALBP-HRC falls
into the category of resource selection problems in GALBP,
which is initiated by [24]. The resource selection problem in
ALBP-HRC involves deciding the type of resources (human,
robot, or HRC) and the assignment of specific resources (the
operator and robot to perform the task) depending on the
system characterization. Table 1 shows the related research
on the ALBP and the contribution of this research.

The basic assumption of the ALBP-HRC is that there
can be one human operator and one robot in a station. This
idea is borrowed from the two-sided assembly line balancing
problem (TSALBP) introduced in [25]. The mathematical
programming formulation of the TSALBP can be found
in [26] and [27]. Although there are similarities between
TSALBP and ALBP-HRC, they exhibit fundamental differ-
ences. In TSALBP, two resources (left-side and right-side
operators) always work for different tasks, whereas in ALBP-
HRC, there is a possibility of the simultaneous operation of
two resources (human and robot).

The first study on ALBP-HRC was published in [12],
which used a cost-oriented approach while considering
ergonomics. Within the same year of publication, [11]
defined the ALBP-HRC with a multi-objective function and
considered multiple types of robots. In subsequent years,
several studies on ALBP-HRC have been published. Both
[13] and [28] minimized the cycle time but used different
approaches to system characterization and solution proce-
dures. In [29], a compound objective function derived from
both the minimization of the cycle time and the number
of resources was used. In [30], a makespan minimization
objective was used with a different approach to the sys-
tem characterization. In [14], a cost-minimization objective
function was used, and the notion of robotic tool types was
considered.

ASALBP is an extension of ALBP with processing alter-
natives [34] that include sequence-dependent ALBP [35].
After its introduction in [19], the heuristic for ASALBP
was discussed in [20] while [31] formulating a compre-
hensive mathematical programming and optimal solution
method. Further research, such as [32] and [33], constructed
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TABLE 1. Related research in assembly line balancing problem with human-robot collaboration and alternative subgraphs.

metaheuristic approaches and recently [21] integrated
ASALBP with a general resource selection problem and
parallel stations using the same approach.

ALBP formulations can be solved using either exact meth-
ods or approximate methods [36], both are algorithmic in
nature, but different in the guarantee to find the global optimal
solutions. Exact methods are based on optimization tech-
niques that guarantee finding a global optimal solution if
it exists; for example, the simplex method for linear pro-
gramming and the branch-and-bound method for integer
programming. Special techniques such as SALOME [37] also
use branch-and-bound; meanwhile, the most recent method
is branch, bound, and remember [38]. Mixed-integer linear
programming (MILP) integrates the branch and bound for
discrete variables and the simplex method for continuous
variables.

Owing to the NP-hard nature of the ALBP [39], approx-
imate methods are often used for larger and more realistic
problem sizes. Approximate solutions can be achieved by
either bounded exact methods, simple heuristics, or meta-
heuristics. Bounded exact methods are performed by restrict-
ing the solution space or limiting the computation time in
exact methods. Simple heuristics attempt to find good feasi-
ble solutions using simple rules. A simple heuristic is limited
to a particular problem. Many types of simple heuristics
were discussed in [31] and [39]. Metaheuristics are advanced
methods that attempt to seek a better approximation of the
global optimal solution.

Metaheuristics are widely used in the field of ALBP. They
havemany variants or approaches, including 1) neighborhood
algorithms such as simulated annealing [29], GRASP [32],

and harmony search [40]; 2) evolutionary methods such as
genetic algorithms as used in [11] and [13], some new meth-
ods including the water flow-like algorithm (WFA) [41] and a
specialized evolutionary approach [42]; and 3) swarm intel-
ligence, such as ant colony [43], bee algorithm [28], whale
algorithm [44], and artificial immune system [45]. Notably,
each metaheuristic approach has advantages and disadvan-
tages that render it suitable for a particular problem.

III. MATHEMATICAL MODELING
This section discusses the mathematical modeling of the
problem in detail. The problem is described and a mathe-
matical formulation is presented. Numerical examples are
provided to describe the workings of themathematical model.

A. PROBLEM DESCRIPTION
A set of assembly tasks, denoted by V , are assigned to a
set of stations, J . These assignments must not violate the
precedence constraints that each task can only be performed
after its predecessors have been performed. Each task may
have one or more direct predecessors represented by Pi and
one or more direct successors denoted by Fi. The prece-
dence constraints can be represented by a precedence graph.
Figure 1 shows an example of a precedence graph.
In Figure 1, P1 = {}, F1 = {2}, P2 = {1}, F2 = {3, 7,

9}, etc. In this study, a precedence graph must begin with a
single node, called the source node, and end with a single
node, called the sink node. The source or sink node may be a
real task; however, if there is no single task to start or end the
graph, an artificial dummy task is added. In Figure 1, Task 1 is
a real task as the source node, whereas Task 22 is a dummy
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FIGURE 1. An example of a precedence graph (adapted and extended from [20]).

task, identified with zero processing time, as the sink node.
Each task has a deterministic processing time but may have
alternatives to be performed either by a human alone, by a
robot alone, or by a human and a robot simultaneously in
collaboration (HRC), each of which has its own processing
time. In Figure 1, the processing times are shown by the data
attached to each node.

The precedence graph may have some alternative sub-
graphs, which are some subsets of tasks that represent
alternative processes. Each alternative subgraph is flanked by
a pair of imaginary tasks, termed entry node and terminal
node. Entry nodes and terminal nodes are not real tasks; they
have zero processing time. In Figure 1, subgraph {3, 4, 5, 6}
has alternatives of subgraph {7, 8} and subgraph {9}. This
means that to achieve the same goal as Tasks 3, 4, 5, and 6,
we can choose to perform Tasks 7 and 8 or perform Task 9.
These alternative subgraphs are flanked by Task 2 as the entry
node and Task 10 as the terminal node. Each branch of the
alternative subgraphs must begin with a single node and end
with another single node so that each node following an entry
node represents its branch of the subgraph, and so does each
node before a terminal node. Again, if needed, a dummy task
may be added. For example, Task 3 in Figure 1 is a dummy
task. In Figure 1, there are two sets of alternative subgraphs:
subgraphs between Tasks 2 and 10, and subgraphs between
Tasks 12 and 17. During the decision process, only one branch
of subgraph from each set of alternative subgraphs must be
chosen.

A robotic process may have an alternative with a different
tool. For example, in Figure 2, the process of tightening four
screws using a single robotic screwdriver (the robot performs
screwing four times) can alternatively be performed using
multiple screwdrivers simultaneously at once. There may be
a question like ‘‘Why not just decide to restrict the use of
parallel tools for the reason of efficiency?’’ The answer is
that these alternatives may be considered due to the number
of tools available in the system, the number of tasks that
potentially use the tool, etc. Each robot can be installed with
one or more tools depending on the capacity of the automatic
tool changer (ATC). In this study, the tool-changing time is

FIGURE 2. An example of alternative processes with similar resources but
using different robotic tools.

assumed negligible. Some tools may also have incompati-
bility to be installed together with other tools in a single
ATC. For example, a complex sealing tool cannot be installed
together with other standard robotic tools (e.g., grippers,
screwdrivers, or pneumatic suction cups) in one robot.

Figure 3 illustrates the ALBP-HRC-AS. The assignment of
tasks to stations must consider the availability of resources.
There are specified numbers of human operators, robots, and
robotic tools available in the system that are fixed, and the
company has no option to increase the number of resources.
This is a situation in which minimization of the cycle time
is considered in the optimization of the assembly line. The
assignment of tasks to stations determines the cumulative
time of each station and the line cycle time t , which is the
maximum of the station cumulative times.
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FIGURE 3. Systematic picture of the problem.

TABLE 2. Mathematical notations.

B. MATHEMATICAL FORMULATION
The problem that has been described is modeled in an MILP
formulation, developed mainly by extending the formulation
in [14] and [20]. The notations used for the mathematical
formulation are listed in Table 2.

The MILP formulation for the problem is presented
in (1) to (29). The equations in the formulation are

explained in the subsequent paragraphs following the
formulation.

Minimize τ (1)

Subject to:

τ − f i ≥ 0 ∀i ∈ V (2)∑
j∈J

 ∑
s∈{1,2,3}

x1js

 = 1 (3)

∑
j∈J

 ∑
s∈{1,2,3}

xnjs

 = 1 (4)

∑
j∈J

 ∑
s∈{1,2,3}

xijs

 ≤ 1 ∀i ∈ V \ {1, n} (5)

ξi =

nW∑
j=1

∑
s∈{1,2,3}

j · xijs ∀i ∈ V (6)

ξh − ξi ≤ 0 ∀i ∈ Fh, h ∈ V\Ve (7)

ξh − ξi ≤ nW ·

1 −

nW∑
j=1

∑
k∈{1,2,3}

xijk


∀i ∈ Fh, h ∈ Ve (8)∑

j∈J

 ∑
s∈{1,2,3}

xhjs

−

∑
j∈J

 ∑
s∈{1,2,3}

xijs

 ≥ 0

∀i ∈ V \ Vt , h ∈ Pi (9)∑
i∈Fh

∑
j∈J

 ∑
s∈{1,2,3}

xijs

−

∑
j∈J

 ∑
s∈{1,2,3}

xhjs

 = 0

∀h ∈ Ve, i ∈ Fh (10)∑
h∈Pi

∑
j∈J

 ∑
s∈{1,2,3}

xhjs

−

∑
j∈J

 ∑
s∈{1,2,3}

xijs

 = 0

∀i ∈ Vt , h ∈ Pi (11)
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fi ≥

nW∑
j=1

 ∑
s∈{1,2,3}

tisxijs

 ∀i ∈ V (12)

fi − fh +M

1 −

∑
s∈{1,2,3}

xijs


+M

1 −

∑
s∈{1,2,3}

xhjs

 ≥

∑
s∈{1,2,3}

tisxijs

∀i ∈ V , ∀h ∈ Pi, j ∈ J (13)

fi − fp +M
(
1 − xijk

)
+M

1 −

∑
s∈{k,3}

xpjs


+Mzip ≥ tik ∀ (i, p) ∈ NP, j ∈ J , k ∈ {1, 2} (14)

fp − fi +M

1 −

∑
s∈{k,3}

xijs

+M
(
1 − xpjk

)
+M

(
1 − zip

)
≥ tpk ∀ (i, p) ∈ NP, j ∈ J , k ∈ {1, 2} (15)

fi − fp +M
(
1 − xij3

)
+M

1 −

∑
s∈{1,2,3}

xpjs


+Mzip ≥ ti3 ∀ (i, p) ∈ NP, j ∈ J (16)

fp − fi +M

1 −

∑
s∈{1,2,3}

xijs

+M
(
1 − xpj3

)
+M

(
1 − zip

)
≥ tp3 ∀ (i, p) ∈ NP, j ∈ J (17)

M

1 −

∑
s∈{1,2,3}

xijs

+M

1 −

∑
s∈{1,2,3}

xhjs


≥ M

∣∣xijk − xhjk
∣∣ ∀j ∈ J , k ∈ {1, 2, 3} , i∈Vz, h ∈ Pi (18)

M

1 −

∑
s∈{1,2,3}

xhjs

+M

1 −

∑
s∈{1,2,3}

xijs


≥ M

∣∣xhjk − xijk
∣∣ ∀j ∈ J , k ∈ {1, 2, 3} , h∈Vz, i ∈ Fh (19)

min

1,
 nT∑
i=1

∑
s∈{1,2,3}

xijs


= min

1,
∑
p∈Vr

∑
s∈{1,2,3}

xpjs

 ∀j ∈ J (20)

min

1,
 nT∑
i=1

∑
s∈{1,2,3}

xijs


≥ min

1,
 nT∑
i=1

∑
s∈{1,2,3}

xi(j+1)s


∀j ∈ J\ {nW − 1} (21)
nW∑
j=1

[
min

{
1,

( nT∑
i=1

(
xij1 + xij3

))}]
≤ α0 (22)

nW∑
j=1

[
min

{
1,

( nT∑
i=1

(
xij2 + xij3

))}]
≤ ρ0 (23)

nW∑
j=1

[
min

{
1,

( nT∑
i=1

(
γgi2xij2 + γgi3xij3

))}]
≤βg0

∀g ∈ G (24)
nE∑
g=1

[
min

{
1,

( nT∑
i=1

(
γgi2xij2 + γgi3xij3

))}]
≤ K

∀j ∈ J (25)

min

{
1,

nT∑
i=1

(
γgi2xij2 + γgi3xij3

)}

+min

{
1,

nT∑
i

(
γhi2xij2 + γhi3xij3

)}
≤ 1

∀ (g, h) ∈IG, ∀j ∈ J (26)

xijs = 0 or xijs = 1 ∀i ∈ I , j ∈ J , s ∈ {1, 2, 3} (27)

fi ≥ 0 ∀i ∈ I (28)

zip = 0 or zip = 1 ∀(i, p) ∈ Q (29)

Equation (1) represents the objective of minimizing the
cycle time, which is self-explanatory, whereas (2) defines that
the cycle time must not be exceeded by the finish time of all
tasks.
Equations (3) and (4) are for the assignments of the source

and sink nodes, whereas the assignments of the other nodes
are modeled by (5) – (11). Some nodes may not be assigned
because their subgraph is not chosen (5). Equation (6) defines
the assigned station numbers to be used in (7) and (8).
Equation (7) determines that all tasks, except entry nodes,
must be assigned to the station where its successors are
assigned to the same or subsequent station. If a task is an entry
node, it must be assigned to the station where its successor
from the chosen subgraph is assigned to the same or subse-
quent station (8). Equation (9) determines the assignments
of tasks related to their predecessors, except for terminal
nodes. If a task is an entry node, exactly one of its successors
must be assigned, as represented in (10). If it is a terminal
node, then exactly one of its predecessors must be assigned,
as represented in (11).
Equation (12) represents the processing time constraints.

Equation (13) indicates the sequencing of tasks that have
precedence relationships if they are assigned to the same
station. Equations (14) – (17) represent the sequencing con-
straints for pairs of tasks that have no precedence relationship
but are assigned to the same station, (14) and (15) are for
human-only or robot-only assignments, while (16) and (17)
are for HRC assignments.
Equations (18) and (19) guarantee that each task with

zero processing time is assigned to the same resource as
its predecessor or successor if they are both assigned to
the same station. Equation (20) ensures that all stations
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FIGURE 4. The optimal solution for the example precedence graph in
Figure 1.

TABLE 3. Results from sample problems.

contain real tasks (not only tasks with zero processing time).
Equation (21) guarantees that the use of stations starts from
the first station and then the next station consecutively.

Equations (22) – (25) consider the available number of
human operators, robots, and tools for each tool type, and the
maximum number of tools in a robot. If there are pairs of
tools that cannot be installed together in the same robot, they
are assigned to different stations (26). Equations (27) – (30)
define the range of values for all variables.

The MILP formulation has been implemented on a com-
puter workstation using a CPLEX solver, implementing the
exact methods. An example of the generated solution for the
precedence graph in Figure 1, with the available resources
of six humans and four robots, is shown in Figure 4, which
shows that the minimum cycle time is six units of time. Only
five humans are used; however, all four robots are used. Some
sample results obtained using the exact method of the mathe-
matical model are presented in Table 3. The sample problems
were generated from the ASALBP reference problem sets on
the ALBP research page assembly-line-balancing.de and as
described in [20]. The parameterization of HRC components
is described in [14].

Further experiments have been conducted using the solver
to gain insight into the robustness of the model. First, the
effect of the tasks that can be performed by robot or HRC

are considered. Experiments on 46-task problems are shown
in Figure 5 and Figure 6. In Figure 5, Experiment 1 was
done with all tasks performed by humans, Experiment 2 with
12 tasks having robot or HRC alternatives, Experiment 3 with
33 tasks having robot or HRC alternatives, and Experi-
ment 4 with all tasks having robot or HRC alternatives.
In Figure 6, Experiment A was done with no alternative
subgraphs, Experiment B with a group of tasks having their
alternative subgraphs, and Experiment C with three groups of
tasks having their alternative subgraphs. The results show that
optimal cycle time gets better by providing more alternatives,
while computation time increases with more alternatives.
These experiments confirm that HRC and alternative sub-
graphs can improve the assembly line, while the provision of
HRC and alternative subgraphs requires more computation
time to solve the problem.

IV. METAHEURISTIC ALGORITHM
Based on the sample results presented in Table 3, it was
discovered that medium- to large-sized problems require an
enormous amount of computation time. This implies that a
heuristic approach is required to obtain good results within
an acceptable computation time. The NP-hard nature of the
ALBP [34] has led to the development of metaheuristic
approaches [31].

In this study, the ant colony optimization (ACO) approach
was chosen because of its simplicity for the problem.AnACO
algorithm can be developed using a construction algorithm
only. All the constraints can be evaluated more easily in a
construction algorithm; therefore, the ACO is suitable for
ALBP-HRC that include many constraints. The construction
processes are repeated iteratively, guided by a mechanism to
obtain better new solutions.

ACO was first developed in [46], and its use in ALBP can
be seen in [43] and more recently in [47]. The contribution
of the proposed algorithm in this study is to provide an
ACO-based metaheuristic to solve ALBP-HRC with alter-
native subgraphs. In addition, the objective function in this
study is to minimize the cycle time, which differs from [38]
and [41]. To search for minimized cycle time, the idea is to
set an estimated upper bound of cycle time as a constraint for
each loop of construction steps, and then reduce the upper
bound step by step in the next loops, until no more feasible
solutions can be generated.

The fundamental logic of ACO is as follows: in each
step, a virtual ant object constructs a feasible solution. While
constructing the solution, it scans for feasible alternatives to
be decided in each step and then chooses an alternative using a
random approach based on the probability that is influenced
by a pheromone trail and a heuristic value. The higher the
pheromone trail and the heuristic value of an alternative will
result in a higher probability of selecting that alternative. The
pheromone trail is a value dropped by each ant in its pathway
to construct a solution. Each ant updates the pheromone trail
values in each construction step based on the solution quality
that it has constructed. The better the solution, the more
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FIGURE 5. Experiments by varying the number of tasks that can be
performed by robot or HRC.

FIGURE 6. Experiments by varying the number of alternative subgraphs.

value it reinforces the pheromones related to the solution.
In addition to the reinforcement, all pheromone trails are
also subjected to natural decay by the evaporation process.
Heuristic value is a simple criterion that predicts the goodness
of each alternative. In this study, one of the heuristic values is
inversely proportional to the calculated finish time of a task
if the task is assigned to the station in the current step. Some
additional notations for the proposed algorithm are listed in
Table 4.

There are two kinds of pheromone trails in this study:
1) pheromone for the selection of subgraph branches and
2) pheromone for the assignment of tasks to stations and

resource types. In the initialization step, all pheromone trails
are set to 1.

In the selection of subgraph branches, for each entry node
e, each of the alternative subgraph branches b has a probabil-
ity of selection as in (30).

peb =

(
8SG
eb

)αA ( 1
tMAXeb

)βA

∑
l∈E

[(
8SG
el

)αA ( 1
tMAXel

)βA
] (30)

Based on the selected subgraph branch, the upper bound of
the cycle time, τUB, can be calculated. This is the key to each
construction step. Each ant attempts to construct a solution
by assigning tasks to stations that do not exceed the upper
bound of the cycle time. The upper bound of the cycle time is
defined by (31). In this equation, λτ is a factor that multiplies
the theoretical cycle time. Some studies have used λτ = 2
[48], [49]. However, in this study, the algorithm defines the
search range within the maximum andminimum values of λτ ,

TABLE 4. Additional mathematical notations for algorithm.

which can lie somewhere between 0 and 2.

τUB = λτ · max
{
max (tis) ,

∑
i∈V maxs∈S (tis)

nW

}
∀i ∈ V , s ∈ {1, 2, 3} (31)

The developed algorithm constructs and finds the best solu-
tion according to the maximum upper bound value of the
cycle time. Subsequently, λτ is decreased by 1λτ . The
construction and determination of the best solution continues
according to the current upper bound of the cycle time, up to
the minimum value of λτ or when the percentage of failed
ants exceeds a certain limit. A failed ant is an ant that faces a
situation where all stations are already assigned, while some
tasks have not yet been assigned; thus, the upper bound of the
cycle time in the last station is violated. The percentage of
failed ants is calculated by (32). Owing to the use of random
numbers, this algorithm runs in replications to increase the
chance of obtaining a better solution, whereas iterations are
the mechanism to converge the pheromone trails.

%F =
nF

aC × iMAX × NREP
(32)

VOLUME 12, 2024 107523



A. Ma’ruf et al.: Mathematical Model and Ant Colony Algorithm for ALBP-HRC-AS

FIGURE 7. The algorithm of ACO ASALBP-HRC for minimizing cycle time.

The assignment of tasks to stations and resource types is
based on the selection probability in (33).

pijs =

(
8ijs

)αA ( 1
f ∗
i

)βA

∑
i,l∈A′

[(
8ijl

)αA ( 1
f ∗
i

)βA
] (33)

The ACO-based algorithm for ASALBP-HRC that mini-
mizes the cycle time is represented using the pseudocode in
Figure 7.

V. NUMERICAL RESULTS AND ANALYSIS
Parameters setting can affect the performance of the
algorithm. As explained in [50], the parameters αA, βA, and
ρA affect the convergence versus stagnation of the solution-
searching steps. In this research, theACOparameters were set
to moderate values of αA = 0.5, βA = 1.0. The evaporation
parameter ρA was set to 0.1. The number of replications
was 4, the ant colony size was 25, and the maximum number
of iterations was 25. A higher number of replications may
increase the probability of obtaining a better solution, but pro-
portionally increases the computation time. A similar logic
applies to the ant colony size and the maximum iterations.
The upper bound of the cycle time was within the range of
0.6 < λτ < 1.3. The percentage limit of failed ants was
90%. When the %F exceeded this limit, the algorithm was
terminated.

TABLE 5. Results and performances of ACO ASALBP-HRC algorithm.

Table 5 presents the best solutions for the five sample
problems. From the samples presented in the table, it can
be concluded that the algorithm can find optimal solutions
for some small- to medium-sized problems (nT < 50) with
a more efficient computation time compared to the exact
method. In large-sized problems (nT ≥ 50), the algorithm
can find good solutions with gaps to the solutions of the
exact method of less than 10% on average, with a much more
efficient computation time.
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TABLE 6. Best solution findings and termination conditions.

The best solution for each problem is highly dependent on
specific parameters such as the structure of the precedence
network, processing time values, existence of subgraphs,
and alternative resources. This study has introduced a novel
mechanism for decreasing the upper bound of the cycle time
and termination condition based on the percentage of failed
ants, distinguishing it from previous ACO-based algorithms.
Table 6 lists the best solution findings and termination con-
ditions for each sample problem to describe this mechanism.
The value of λτ at which the solution is obtained describes the
efficiency of selecting the initial λτ . For example, if the initial
λτ is 1.3, but the best solution is obtained when λτ is 0.8,
then the algorithm can perform more efficiently by starting
from λτ = 1.0. The discrepancy between λτ when finding
the best solution and terminating the algorithm also describes
the computational efficiency, because iterations between the
two are performed without obtaining a better solution. These
conditions are likely to pose challenges for future research.

The algorithm has been used to conduct more computa-
tional experiments to test the robustness of the developed
model. Some variations in the presence of alternative sub-
graphs were introduced in this research. These experiments
were designed to test the advantage of the presence of alterna-
tive subgraphs in the precedence graph. They were conducted
on the two largest sample problems in this research, which
are precedence graphs with 52 nodes (Sawyer reference prob-
lem) and 92 nodes (Warnecke reference problem). Due to
the limited space, partial precedence graphs of the sample
problems are shown in Figure 6, with each graph showing
only its source node, sink node, and alternative subgraphs;
other nodes in each graph correspond to original base prob-
lems in [15]. Refer to Figure 1 and its explanation for the
notation of precedence graph. For each alternative subgraph
(any nodes in between an entry node and a terminal node),
a branch of the alternative subgraph was eliminated in each
experiment. For example, in the Sawyer reference problem
(Figure 8(a)), Experiment 1a in Table 7(a) eliminated the
branch of Node-28 from Subgraph 1; Experiment 1b elimi-
nated the branch of Node-10 from Subgraph 1. Experiment 5b

TABLE 7. Computational experiments for reducing the number of
subgraphs’ branches.

in Table 7(b) for Warnecke problem (Figure 8(b)) eliminated
the branch of Node-65 from Subgraph 5.

Table 7 shows that the presence of alternative subgraphs
may increase the opportunity to find better solutions. The
variation of the experimental results is influenced by random
numbers in the ACO-based algorithm. Some results with the
reduction of solution quality ≥ 5% may indicate that the
elimination of some branches of the alternative subgraphs
really affect the best solution. For example, in Experiment
1a of Table 7(a), the cycle time is 21.0, so that the reduc-
tion of solution quality is (21.0 – 20.0)/20.0 = 5%. In the
Sawyer problem experiments, the solution quality is reduced
not more than 5%, but it was shown that some branches of
subgraphs, espescially those of Node-28 and Node-44 affect
the opportunity to find better solution. In the Warnecke prob-
lem experiments, the results show more variation. The worst
case is in Experiment 4b of Table 7(b), that is the elimination
of Node-43 from Warnecke problem, with the reduction of
solution quality (320.53 – 224.40)/224.40 = 42.8%. The
experiments show that the branches of Node-50, Node-34,
Node-38, Node-43, andNode-64 are significant in the finding
of better solution.
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FIGURE 8. Partial precedence graphs showing alternative subgraphs of reference problems.

The model needs to be extended in further studies. Some
practical aspects are not yet considered in the model. One of
them is a mixed product variant or mixed-model assembly
line balancing problem. This kind of assembly line is adopted

in many industries to accommodate flexibility and efficiency
altogether. Another aspect is the need for total cost minimiza-
tion as an objective function. Some practical situations may
permit the addition of robots and tools in the short or medium
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term through robot rental. This implies the need to evaluate
cost terms in the decision. Other future research also can
be directed to the monitoring aspect of the execution of the
assembly line in real-time. To capture the dynamics of the
assembly line, a digital twin concept for the assembly line
with HRC can be developed. The research and applications
of digital twins have been growing in recent years either in
manufacturing or in other sectors [51], [52].

VI. CONCLUSION
A mathematical model for the assembly line balancing
problem with human-robot collaboration and alternative sub-
graphs aiming to minimize cycle time has been presented in
this paper. The problem is modeled in the MILP formulation,
which has been testedwith several sample problems. In small-
sized problems, this model obtains exact optimal solutions,
and in medium- to large-sized problems, time-bounded exact
solutions are achieved, but have limited practical use owing
to the computation time required. To address this limitation,
a metaheuristic algorithm based on the ant colony optimiza-
tion approach has been developed.

The metaheuristic algorithm is based on the ant colony
optimization, which is extended using the principle of
decreasing the upper bound of the cycle time. Using this
approach, a good solution is obtained, and in some cases,
it produces the same result as the optimal solution obtained by
the exact method, but with a more efficient computation time.
Solution quality is represented by the gap of about 0 to 10%
from the solution of the exact method, with the computation
time of less than five minutes compared to hours using the
exact method.

Experiments have been conducted to gain insight into
the benefits of alternative subgraphs. The experiments have
shown that the presence of alternative subgraphs gives better
opportunities to find better solutions.

Further study needs to address other practical but important
aspects of the assembly line balancing problem with human-
robot collaboration, such as the assembly lines that produce
mixed product variants (mixed-model assembly line balanc-
ing problem), and the objective function that minimizes the
total cost. Another study also can be directed to the dynamic
aspect of the assembly line.
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