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ABSTRACT Monocular Visual Odometry (MVO) is a fundamental element in autonomous navigation
systems, providing vehicles/robots with the capability to estimate their positions by analyzing visual images
from a single camera. This work delves into a pure appearance-based MVO algorithm that estimates the
vehicle displacement and orientation between consecutive image frames alone, without using an Inertial
Measurement Unit (IMU) sensor. The proposed method comprises four stages: ground spatial calibration,
vehicle displacement, orientation estimation modules, and an actual vehicle heading estimation module.
In the first stage, the image pixel coordinates are converted into world coordinates through ground spatial
calibration. In the second stage, cross-correlation-based template matching is performed between two
successive image frames and vehicle displacement is computed using the obtained world coordinates. Next,
the orientation of the matched template is estimated along the ‘u’ and ‘v’ axis of the image. Subsequently,
the actual vehicle heading is computed in the fourth stage with respect to the global coordinate system to
estimate the vehicle pose. Experimental evaluations demonstrate the superior performance of the developed
MVO algorithm compared to existing appearance-based methods that additionally utilize IMU to obtain
orientation. When the vehicle is driven for a distance of 1406.35 meters, the average percentage distance
error obtained is 1.41%, thereby highlighting the improved performance of the MVO algorithm in terms of
higher accuracy and efficacy in real-world applications.

INDEX TERMS Autonomous navigation, ground spatial calibration, template matching, visual odometry.

NOMENCLATURE
(u, v)
or
(uI , vI ) center location of the reference template; in gen-

eral, it is a pixel coordinate [pixel].
(x, y) real-world coordinate of the (u, v) pixel coordi-

nate [meter].
D the measured distance between the vehicle start-

ing line to the checkerboard bottom line [meter].
Df estimated distance of any image pixel with

respect to v-axis [meter].
Pw measured width of a single pixel [meter/pixel].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jenny Mahoney .

Pwf estimated pixel width at any v-location
[meter/pixel].

El left edge of the checkerboard pattern at the bottom
line [pixel].

Er right edge of the checkerboard pattern at the bot-
tom line [pixel].

Iw width of the captured image [pixels].
Ih height of the captured image [pixels].
Tw width of the reference template [pixel].
Th height of the reference template [pixel].
f input image to the cross-correlation estimation.
f̄ mean of the input image.
n number of pixels [pixel].
t template which is a small region taken from the

input image [pixel].

106176

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-1477-2258
https://orcid.org/0000-0003-2368-249X
https://orcid.org/0000-0001-5160-5753


R. Rajesh, P. V. Manivannan: Enhanced Monocular Visual Odometry

t̄ mean of the template (t).
K number of basis functions.
ki coefficient for the basis function.
(u1, v1)
or
(uI+1, vI+1) center location of the matched template; in

general, it is a pixel coordinate [pixel].
(x, y) real-world coordinate of the (u, v) pixel

coordinate [meter].
−→m1 displacement vector from points (x1, y1)

and (x, y).
−→m2 displacement vector from points (x1, y1)

and (1, y1).
−→n1 displacement vector from points (0, 0) and

(x, y).
−→n2 displacement vector from points (0, 0) and

(x1, y1).
(Xi,Yi) estimated pose of the vehicle in the world

coordinate system at time i [meter].
(Xi+1,Yi+1) estimated pose of the vehicle in the world

coordinate system at time i+ δi[meter].
Ntf correlation coefficient of the FNCC pro-

cess.
d vehicle displacement [meter].
N Number of image frames.

GREEK LETTERS
θ estimated orientation with respect to u-axis

[degree].
ϕ estimated orientation with respect to v-axis

[degree].
θi previous orientation estimated with respect

to u-axis for the ith image frame [degree].
ϕi+1 current orientation estimated with respect

to v-axis for the i+ 1th image frame
[degree].

ψ estimated actual vehicle heading [degree].

I. INTRODUCTION
Providing a vehicle with Autonomous Driving capability
relies heavily on accurate pose estimation in real-time. Pose
estimation or odometry is used to estimate the vehicle’s cur-
rent location (x, y, z) and orientation (θ) about the starting
point (assuming the origin). Primarily, visual information is
the first and foremost thing for a human driver because visual
cues such as other road participants’ size, shape, color (i.e.,
car, bus), road signs, traffic lights, and lane markings are
easily perceived. However, 3D information can be obtained
from non-visual sensors like Light Detection And Rang-
ing (LiDAR), ultrasonic sensors, and RAdio Detection And
Ranging (RADAR); the important visual cue (i.e., color) is
missing; hence, Visual Odometry (VO) plays a vital role [1]
in autonomous navigation. VO is a method used in com-
puter vision and robotics to estimate the motion of a camera

(installed on the vehicle/system) by analyzing the consecutive
images perceived by the environment.

In general, based on the vision sensor being used, VO can
be divided into Monocular Visual Odometry (MVO), Stereo
Visual Odometry (SVO), and RGB-D VO. MVO uses 2D
images acquired from a single camera to estimate pose;
however, it suffers from scale ambiguity and lack of depth
information, which restricts its direct use in odometry esti-
mation. Recent research has shown positive signs in deriving
the depth from 2D images using various sophisticated
approaches [2], [3]. MVO uses a camera model and imaging
geometry (i.e., traditional method) to compute depth informa-
tion. Moreover, MVO is an economical solution with notable
advantages over other approaches. In contrast, SVO [4], [5],
[6] uses the disparity information between two horizontally
displaced monocular cameras to estimate the depth more
accurately than MVO. RGB-D VO uses a monocular camera
along with a depth sensor to accurately estimate 3D informa-
tion about the environment.

Next, based on the image-processing algorithm, the
approaches can be classified into indirect, direct, semi-direct,
and appearance-based VO. The indirect method [7], [8], [9]
is also known as the feature-based approach, which relies
on image features, such as corners, edges, and blobs. This
method makes odometry estimation robust to illumination
variations since it uses illumination-invariant feature extrac-
tion methods. In the case of the direct method, raw pixel
intensity values are used rather than the image features. This
method estimates pose by minimizing the photometric error,
which measures the difference between image intensities
in consecutive frames [10], [11], [12]. The direct method
requires more computational power (typically implemented
in GPU); however, it is robust in featureless environments.
The semi-direct method combines both indirect and direct
approaches; it uses a small number of key points or features
to aid in motion estimation while also considering raw image
intensity data [13]. Finally, the appearance-based approach
uses a cross-correlation technique between successive image
frames (well known as templatematching) to estimate the dis-
placement. In templatematching, a small template is searched
in the next frame to compute the displacement [14], [15].
In addition, some methods use IMU for orientation estima-
tion, and displacement estimation using images is termed
visual-inertial odometry [15], [16], [17], [18].

In the present work, a novel Monocular Camera-based
Visual Odometry (MVO) that uses the Ground Spatial Cal-
ibration (GSC) technique has been developed and tested

to estimate the displacement and orientation of a vehicle
for autonomous driving accurately. The key components of
the developed MVO are as follows:

(1) Ground spatial calibration: It establishes the rela-
tionship between pixel coordinates and metric coordinates
irrespective of the image geometry, which helps in direct
depth estimation at a reduced computational cost.

(2) Displacement estimation module: This module esti-
mates the vehicle displacement with the GSC-established
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relation that uses pixel coordinates having a maximum
correlation coefficient between the reference and matched
template.

(3) The orientation estimation module estimates the ori-
entation of the vehicle using a matched template between
consecutive road image frames obtained from a monocular
camera. Furthermore, actual vehicle heading estimation has
been introduced for an accurate representation of the vehicle
heading about the global frame.

II. RELATED WORK
MVOhas various advantages over other VO approaches, such
as cost-effectiveness and reduced hardware and computa-
tional complexity. The authors of [19] discussed the problem
of VO, its basic principle, and a few existing algorithms
that can compute the camera pose using consecutive images
obtained from a monocular camera.

A. FEATURE-BASED METHODS
Davison [7] successfully demonstrated a pure vision-based
3D trajectory estimation method called MonoSLAM for an
HRP-2 high-performance full-size humanoid robot using live
augmented reality (AR). In their study, the available indoor
features were tracked and updated on a 3D map. Subse-
quently, on the updated map, an AR object is inserted at
each time frame, thus helping the system compute the ori-
entation. The downside of this approach is that it works well
under feature-rich indoor conditions. However, for outdoor
conditions, an improved feature selection approach based
on the survival of the fittest strategy was presented in [9].
The authors used ORB features (Oriented FAST and Rotated
BRIEF) for pose estimation along with loop closing to opti-
mize the pose graph and update it in themap in real-time. This
algorithm (ORB-SLAM) has been extensively tested with the
KITTI dataset, and it has been reported that the trajectory
error varies between 0.3% and 5%, and the error increases
when loop closure is not implemented.

An indoor landmark-feature-based approach was proposed
in [20]. In this study, an improved scale-invariant feature
transform (iSIFT) descriptor was used to recognize land-
marks from the RGB-D dataset. Using the iSIFT descriptor,
the computation time for feature recognition was reduced
to 0.0583 s, which was less than that of the other descrip-
tors. However, the Root Mean Squared Error (RMSE) of
the trajectory is 0.03 m for every 4-meter travel distance
(appx). A particle filter was used to recognize the features
for odometry estimation proposed in [21]. In this approach,
the position error decreased when the number of particles
increased. Since the indoor environment is semi-structured,
the number of available features is higher; hence, the num-
ber of particles is also high, which ensures fewer positional
errors. A semi-direct VO was proposed in [13] for large-scale
outdoor localization. In this study, Features from Acceler-
ated Segment Test (FAST) descriptors were used to obtain
more corner points, and the Lucas-Kanade (LK) method
was used to establish the correspondence between consecu-

tive frames. When this modified approach is compared with
ORB-SLAM on the KITTI dataset, it is evident that the
modified approach has a similar position error and orien-
tation error, with a slight reduction in computation time.
To reduce the drift error, an Extended Kalman Filter (EKF)
based tightly coupled MVO was proposed in [16]. Further-
more, a local bundle adjustment was implemented based
on the visual-inertial map points. A Learning Kalman Net-
work (LKN) was implemented for an MVO in [22]. This
approach showed an average translational RMSE of 2.11%
and a rotational RMSE of 1.05◦/100 m. In [23], a feature-
based MVO tested in a harsh environment was presented,
which focused on improving the trajectory accuracy by fusing
the magnetometer and gyroscope data to estimate an accurate
robot orientation. The test result shows that their approach
reduces the average closed loop error to 0.93m, which is
less than the error (7.89 m) obtained with wheel odometry.
A similar algorithm was tested in a complex agricultural
environment [24]. This algorithm uses IMU for orientation
estimation and was tested on a dataset that contains two 180◦

turns, and the average trajectory error observed was found
to be 10.84 m. An error relaxation model was introduced
in a recently presented study [25] for frame-to-frame VO
estimation. The error relaxation model utilizes a bidirectional
loss function, and a pose correction function is used to reduce
the drift error introduced in the initial estimation. The authors
tested this method with the KITTI dataset and achieved an
average translation error of 6.63%, which is better than that of
the existing methods. However, the rotation error was higher
(2.67◦/100 m).

B. APPEARANCE-BASED METHODS
An appearance-based VO for the standard Toyota Prado SUV
and autonomous industrial forklift was presented in [26].
A ground-facing camera is used to compute the camera dis-
placement from the template matching on the low-textured
images, and the orientation is computed from the Ackerman
steering model, which helps simplify the calculation process
and time. From the test results, it can be noted that thismethod
achieved a positional error of 4% and a heading error of 35◦

for a test distance of 100 m. In [27], a linear forward predic-
tion filter was used to find the best template from multiple
templates to estimate the displacement between consecutive
images in a shorter computational time. A multi-camera
approach was presented in [28], where the displacement was
computed from the ground-facing camera, and the orientation
was computed from the template matching on the horizon-
tally installed camera. However, the major drawback of this
approach is that it performs dual-template matching, which
makes the approach computationally expensive. In addition,
the mean distance error was 2.23% of the total travel distance,
and the heading error was 9.34◦. An adaptive-search template
matching based on vehicle acceleration for MVO was pre-
sented in [29]. This adaptive technique reduces the template
search time by approximately 87% and improves the quality
of matching compared with the full search method.
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TABLE 1. Merits and demerits of a visual localization system.

Instead of template matching, Fast Fourier Transform
(FFT)-based displacement estimation was presented in [30],
which reduces the computation time. In addition, the rotation
is estimated from the simple idea of the FFT output obtained
on specific regions of the image frame, instead of taking the
FFT of the whole image. This technique reduces the distance
error by 1.33% for a total distance of 20 m, and the rotation
error is 17.2057◦. Zaman et al. [14] developed a cost-effective
MVO solution for agricultural environments. In this work,
the authors used the normalized cross-correlation (NCC)
technique to match the templates between images for dis-
placement estimation, and the orientation was computed as
the angle between the templates. It was found that as the
template size increased, the orientation error decreased; how-
ever, there was no significant improvement in displacement
estimation. On the other hand, Zeng’s approach in [15] is
similar to that of [14]; however, an IMU is used for orientation
estimation; which resulted in improved odometry estimation.
This approach achieved a position error of 2.32% for an
experimental travel distance of 335 meters.

The merits and demerits of the existing VO methods are
presented in Table 1. It is ascertained that feature-basedmeth-
ods require feature-rich environments that restrict them to
indoor applications. In contrast, appearance-based methods
rely heavily on an additional sensor (IMU) for orientation
estimation, which makes them cost-ineffective. Moreover,
existingmethods are tested for smaller travel distances, which
makes it difficult to draw robust conclusions about their
applicability for long travel distances. The major challenge
with MVO is obtaining depth information from a single

FIGURE 1. The experimental data collection platform contained a
monocular camera, IMU, and GPS-RTK. The platform movement is
controlled by a joystick.

image using lightweight models that do not consume unnec-
essary computational power. Therefore, the MVO presented
in this paper addresses the above challenges through a novel
GSC for converting pixel coordinates into metric coordi-
nates without unnecessary computation. Furthermore, the
vehicle displacement is estimated purely from the captured
images through a template-matching process along with a
new orientation estimation method that uses images alone
(no additional proprioceptive sensors are needed), thus mak-
ing the presented method cost-effective and computationally
effective.

III. MATERIALS AND METHODS
This section discusses the proposed Ground Spatial Cali-
bration and vehicle displacement and orientation estimation
modules for estimating odometry. Figure 1 illustrates an
experimental vehicle equipped with various sensor modal-
ities. The camera used in our data-collection platform is
pre-calibrated to remove image distortions and the undis-
torted image is used for GSC, displacement, and orientation
estimation modules.

A. GROUND SPATIAL CALIBRATION
In Computer Vision, the concept of spatial calibration is
used to establish the relationship between camera coordinates
(pixels) and real-world coordinates (metric units). This rela-
tionship is only valid if the camera is fixed at a particular
height and orientation. The present work extends this concept
as a Ground Spatial Calibration (GSC) technique for esti-
mating the distance and orientation using monocular vision.
The objective of GSC is to establish a function that converts
any pixel coordinates (u, v) with sub-pixel accuracy into
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real-world coordinates (x, y) in meters. To perform this func-
tion, a monocular camera was fixed onto the vehicle using
an additively manufactured plastic camera holder, as shown
in Figure 1. Unlike regular camera placement (as in [14],
[15], [26], [27], [28], [29], and [30], the camera is fixed at
a pitch angle of 30◦ (facing the ground), which facilitates
capturing more road surface features for implementing the
MVO. Hence, this method enables the estimation of vehicle
displacement at a higher traveling speed. To perform the
GSC, a checkerboard pattern of size 0.297 m x 0.42 m was
used (Figure 2). During calibration, the distance between the
camera and the checkerboard pattern is varied by moving the
checkerboard relative to the camera (i.e., the camera is fixed),
and images are captured. Therefore, the scene area captured
by the camera is constant (i.e., (u, v) pixel coordinates); how-
ever, the size of the checkerboard pattern projected onto the
image sensor varies. Hence, by knowing the v-axis location
of the checkerboard, it is possible to estimate the distance
(D) at which the checkerboard pattern is placed. In Figure 2,
it can be seen that the bottom center (marked as a RED dot)
of the checkerboard pattern is placed at the bottom center of
the image (for the present case, it is (u, v) = (640, 720)).
By keeping the checkerboard position constant in the hori-
zontal direction (i.e., no movement in the u-axis) and moving
the checkerboard along the v-axis, the distance moved by
the board (in meters) could be recorded. Since, a 2D image
is a perspective projection of a 3D real-world scene, the
distance between the camera and real-world points exhibits
an exponential relationship (represented as a BLUE curve in
Figure 3). The measured distances (D) versus the v-locations
are shown in Figure 3. Using exponential curve fitting, cal-
ibration equation (1) is obtained. Hence, using equation (1),
distance of any image pixel with respect to the v-axis (i.e.,
distance Df ) can be computed.

Df = 0.913e−0.006709v
+ 1.198e−0.001197v (1)

Subsequently, the pixel width (i.e., the distance between
two pixels) relationship can be obtained from the number of
pixels occupied by the checkerboard at various v-locations
(GREEN line) as shown in Figure 2. To obtain this rela-
tionship, effective pixels that capture the actual width of
the checkerboard pattern (0.42 m) are required. This can
be obtained from the difference in pixels (482.23 pixels)
between the left (El) and right edge (Er ) pixel locations of
the checkerboard pattern at 72.6 cm distance.

It should be noted that, before calculating the difference
(in number of pixels), El and Er for all the v-locations are
linearized using the least squares method to compute the pixel
width with sub-pixel accuracy.

Pw =
checkerboard pattern width

number of pixels
(2)

The calculatedPw using equation (2) is the pixel width data
at various v-locations. From Figure 3, it can be seen that the
pixel width data at various v-locations exhibit the exponential
trend (RED curve) and the obtained relationship can be seen

FIGURE 2. Ground-spatial calibration setup. D is the actual distance
between the vehicle and respective v-pixel coordinates. The actual width
of the checkerboard pattern in the image is marked with a GREEN line.

FIGURE 3. Ground Spatial Calibration results. The RED curve shows the
fitted pixel width and the BLUE curve shows the fitted distance from the
vehicle starting line. Both sets of data exhibited an exponential
relationship.

in equation (3). Using equation (3), the fitted pixel width Pwf
at any v-location can be computed.

Pwf = 0.0008189e−0.006648v
+ 0.00108e−0.00105v (3)

By using equation (1) and equation (3), the distance (Df )
and pixel width (Pwf ) can be computed for any v-location.
In other words, if any image coordinates (u, v) are pro-
vided, they can be converted into physical units (i.e., (x, y)
in meters) which is an important requirement for odometry
estimation using monocular vision. Unlike depth-estimation
network methods [2], [3], the proposed GSC method directly
converts the required pixel coordinates into metric units with-
out processing the entire image, which generally consumes
unnecessary computational power and time.
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1) GSC EVALUATION
To assess the accuracy of the GSC used for displacement
estimation through template matching, ten random pixel loca-
tions (u, v) have been chosen, and their real-world locations
(x, y) are manually measured to establish ground truth. Sub-
sequently, the GSC is applied to estimate real-world locations
based on pixel locations using equations (1) and (3). The pixel
locations, their corresponding ground truth locations, and
estimated locations using the GSC are tabulated in Table 2.
The evaluation metrics used to analyze the performance of
the GSC included the Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE). The observed MAE for the
presented data is 0.0225 m, and the RMSE is 0.0221 m.
It is noteworthy to mention that the proposed GSC-based
pixel-to-metric conversion exhibited a maximum distance
measurement error of less than 2 cm, indicating the accuracy
of the proposed technique. Consequently, under this criterion,
the computed MAE for the matched template location is
approximately 1.74 cm, and an RMSE of 1.64 cm. These
findings highlight that the displacement estimation error with
the proposed GSC technique is constrained to not exceed
1.74 cm for every 64.16 cm distance traveled in the case of the
120×120 template. This underscores the robustness and pre-
cision of the proposed GSC for pixel-to-metric conversion,
affirming its reliability in odometry estimation.

B. MONOCULAR VISUAL ODOMETRY
As mentioned earlier, this paper aims to estimate the pose of
the vehicle using the computed displacement and orientation
between image frames obtained from a monocular camera.
Since images are represented as pixels, they are converted
into metric units through the ground spatial calibration as dis-
cussed in Section III-A. Subsequently, this section discusses
the displacement estimation, orientation estimation, actual
vehicle heading estimation, and pose estimation.

1) DISPLACEMENT ESTIMATION MODULE
Unlike feature-based approaches, this paper focuses on tex-
ture information as appearance-based methods do. To facili-
tate this, the monocular camera has been fixed on the vehicle
at an angle facing the ground that captures consecutive
images for estimating displacement. In general, the best way
to find a match between two images based on texture is to
perform template matching. Images are continuously cap-
tured at each time step. At the time ‘i’, from the captured
image (I ), the template to be matched is taken as a square
area in the image having a width and height of 120 pixels
(Tw,Th) = (120, 120)) as shown in Figure 4 in RED dotted
line. Then, in the next image frame (I + 1) captured at a time
‘i + δi’, the location of this template is identified (enclosed
in BLUE line) based on the highest matching score. The
direct template matching technique using Normalized Cross
Correlation (NCC) is not computationally efficient. Hence,
the FFT-based Fast NCC (FNCC)method is used for template
matching, where the computational complexity of FFT is

FIGURE 4. Illustration of template matching. Iw , and Ih are the width and
height of the captured image which is 1280 × 720 pixels. The RED box is
the template to be matched obtained from image (I) and the BLUE box is
the matched template at the image (I + 1). Tw , and Th are the width and
height of the template respectively. The GREEN line is the displacement
(d ) to be computed from the template matching which can be converted
into metric units using GSC. The notations θ and ϕ denote the
orientations computed with respect to u and v axes respectively.

O(nlogn), which is lesser than the direct method (i.e.,O(n2)).
The FNCC-based correlation coefficient (N tf ) is calculated
using equation (4).

Ntf (u, v)

=

∑K
i=1 ki(s (x, y)−s (x, y−1)−s (x−1, y)+s (x−1, y−1))√{∑

x,y [f (x, y)−fu,v]
2 ∑

x,y [t (x−u, y−v)− t̄]
2
}
(4)

where f is the input image, t is the template which is a small
region taken from the input image, f̄ is the mean of the input
image (f ), t̄ is the mean of the template (t),K is the number of
basis functions (i.e., zero mean template), ki is the coefficient
for the basis function, and Ntf is the correlation coefficient.

Using (4), the center location (uI+1, vI+1) of the matched
template in the image frame (I + 1) is obtained. Next,
the displacement can be computed by following the proce-
dure described below. The reference template’s center point
(uI , vI ) coordinates are fixed at (640, 164). These center point
location values in pixels can be converted into metric units
(x, y) using equation (5) and equation (6), which are away
from the actual starting location of the vehicle.

x =

(
Iw
2

− u
)

∗ Pwf (5)

y = y1 = Df (6)

Next, the matched template’s center point (x1, y1) which
is (uI+1, vI+1) in the image frame is computed using equa-
tions (7) and (6) respectively. Any center location of the
matched template’s u- value is less than 640 pixels, it is
considered a negative x-axis and vice versa according to
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equation (8).

x1 =

(
Iw
2

− u1

)
∗ Pwf (7)

x1 =

{
−x1, uI+1 > uI
x1, uI+1 < uI

(8)

Vehicle displacement (d) can be computed as the Euclidean
distance between the center points in reference and matched
templates (i.e., (x, y) and (x1, y1) using equation (9). It should
be noted that for the forwardmovement of the vehicle, the d is
positive and for backward movement d is negative according
to equation (10).

d =

√
(x − x1)2 + (y− y1)2 (9)

d =

{
−d, vI > vI+1

d, vI < vI+1
(10)

Since the vehicle was operated at the speed of 1 m/s to
1.2 m/s, certain proportions of the captured images may have
blurred. However, template-matching handles this effectively.
Once the template is matched at I + 1th image, the I+1 image
will become I and continue.

2) ORIENTATION ESTIMATION MODULE
Similar to existing methods that rely on the cumulative angle
acquired from orientation along the v-axis (ϕ), literature has
indicated an elevated level of position error in [14], [28], and
[30]. Consequently, some approaches have opted to utilize
orientation data sourced from IMU sensors [15]. Neverthe-
less, it is important to note that IMU sensors are susceptible to
drift error, which invariably impacts the accuracy of position
estimation. Hence, orientation data derived from both the u-
axis (θ) and v-axis (ϕ) is used to facilitate a more precise
estimation of the vehicle’s position. To compute ‘θ’, first the
pixel coordinates (uI , vI) and (uI+1, vI+1) are converted
into metric units (x, y) and (x1, y1) respectively as discussed
in the previous section. Using equations (11), (12), and (13)
the ‘θ’ can be computed.

−→m1 =

[
x − (−x1)
y− y1

]
(11)

−→m2 =

[
1 − (−x1)
y1 − y1

]
(12)

θ = cos−1
(

−→m1.
−→m2∥∥∥ −→m1

∥∥∥∥∥∥ −→m2
∥∥∥

)
.
180
π

(13)

While the vehicle is moving, if it turns toward the left side,
uI+1 > uI and the ‘θ ’ value is between 90◦ and 180◦. Instead,
if it turns towards the right side, the ‘θ’ is between 0◦ and 90◦

as per the equation (14).

θ =

{
180 − θ, uI+1 > uI
θ, uI+1 < uI

(14)

Next, the orientation along v-axis can be computed using
equations (15), (16), and (17). Similar to equation (14), for

the left-side movement, the ‘ϕ’ is negative, and for the right-
side movement, it is positive according to equation (18).

−→n1 =

[
x
y

]
(15)

−→n2 =

[
x1
y1

]
(16)

ϕ = cos−1
(

−→n1 .
−→n2∥∥∥ −→n1

∥∥∥∥∥∥ −→n2
∥∥∥

)
.
180
π

(17)

ϕ =

{
ϕ, uI+1 > uI
−ϕ, uI+1 < uI

(18)

Individually, using ‘θ’ and ‘d’, the pose can be com-
puted; however, the ‘θ’ computed along u-axis is limited
to 45◦ between the reference and matched templates (i.e.,
the computed ‘θ ’ will not exceed 135◦ during a 90◦ left
turn, while during a 90◦ right turn, the ‘θ’ will not be less
than 45◦). Hence, pose estimation using ‘θ’ is accurate for
straight movements and the vehicle heading is less than 45◦.
In contrast, the pose estimated with ‘d’ and cumulatively
computed ‘ϕ’ along v-axis has a large straight-line error how-
ever, it accurately captures the rotation. Hence, in the present
work, the orientation along u-axis and v-axis to estimate the
pose of the vehicle.

3) ESTIMATING ACTUAL VEHICLE HEADING (ψ)
While estimating the pose of the vehicle, to compute the
vehicle heading angle (ψ), ‘θ’ (orientation measured along
the lateral axis) is used as ‘ψ’ when the vehicle is moving a
straight line, and ‘ϕ’ (orientation measured along the longi-
tudinal axis) value is added with or subtracted from ‘ψ’ for
the successive frame when the vehicle turns left or right. This
is tested with two cases 1) a left turn, and 2) a right turn.

a: CASE 1: LEFT TURN
Based on Figure 4, the actual vehicle orientation range (i.e.,
ψ) for a left turn span from 90◦ to 180◦. However, analy-
sis of the experimental dataset reveals that the orientation
estimation module consistently provides estimates of the ‘θ’,
as long as its value is within the range of 90◦ to 135◦ (90◦ <

θ < 135◦), while the vehicle starts taking a left turn. At this
condition, the ϕi+1 will be greater than zero (as shown in
Figure 5 ‘ϕvsN ’) then ‘ψ’ will be estimated as the summation
of the previous orientation (u-axis) θi and current orientation
(v-axis) ϕi+1 according to equation (19).

ψ = θi + ϕi+1 (19)

After computing ‘ψ’, update it as (ψ = ψ +ϕi+n) where
n is the number of image frames. For the consecutive image
frames the ‘ψ’ will exceed 180◦ (if the vehicle completed
the left turn), and also the θi will be less than 90◦. In that
case, since the vehicle takes the left turn the vehicle pose with
reference to the starting point will be in 90◦ offset. Hence,
‘ψ’ is estimated by adding 90◦ (i.e., ψ = θ + 90◦). The ‘ψ’
computed using equation (20) represents the accurate actual
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FIGURE 5. Actual vehicle heading with reference to the global frame. θ is
orientation with respect to u-axis, ϕ is orientation with respect to v-axis,
and N is image frame number.

vehicle heading angle.

ψ =

{
ψ, (90◦ < θ < 135◦)
θ + 90◦, ψ > 180◦

(20)

b: CASE 2: RIGHT TURN
If the vehicle takes a right turn, the orientation varies between
90◦and0◦. Subsequently, the ‘ψ’ computed between con-
secutive image frames in such cases varies between 45◦ to
90◦(45◦ < θ < 90◦). Using equation (19), the ‘ψ’ can be
computed, the only difference is that the orientation along
v-axis (ϕ) is negative. Hence, the updated ‘ψ’ decreases
towards 0◦, which indicates that the vehicle has taken a right
turn. Further, unlike (20), the ‘ψ’ is updated as θ−90◦ for the
subsequent image frames if ψ < 0. With this, accurate pose
estimation is achieved for the right turn.

Figure 5 helps estimate the actual vehicle orientation using
the method described above. Let’s assume that the vehicle
is moving in a straight-line path; then the estimated θi is
approximately close to 90o; and corresponding ϕi is close
to 0o or slightly negative. However, if the vehicle is making
a turn, ϕi will be positive for a left turn and negative for a

right turn and its magnitude will be greater than 0o for both
cases. Since, the θi does not accurately capture the vehicle
heading while turning, to accurately compute the current
vehicle heading (ψ), which is the summation of the estimated
first positive value of ϕi+1 (marked as GREEN filled circle in
sub-plot ‘ϕ vs N ’); and the previous θi (marked as GREEN
square in sub-plot ‘θ vs N ’).

4) VEHICLE POSE ESTIMATION
The computed displacement (d) and actual vehicle heading
(ψ) between consecutive image frames from the previous
sections are used to compute the vehicle pose. The start-
ing location of the vehicle is considered as (Xi,Yi, ψ) =

(0, 0, 90o). Next, from the consecutive image frames this
(Xi,Yi, ψ) is estimated and updated using equation (21).[

Xi+1
Yi+1

]
=

[
Xi + d ∗ cosψ
Yi + d ∗ sinψ

]
(21)

where, (Xi+1,Yi+1) represents the estimated pose of the vehi-
cle in the world coordinate system at the time ‘i + δi’ and
(Xi,Yi) represents the estimated pose of the vehicle in the
world coordinate system at time ‘i’.

IV. EXPERIMENTAL VERIFICATION AND ANALYSIS
This section presents the methods used for experimental data
collection and verification of the developed MVO algorithm.
Furthermore, to demonstrate the efficacy of the developed
algorithm, the results are analyzed qualitatively and quanti-
tatively and are presented.

A. EXPERIMENTAL DATA COLLECTION
A Personal Computer (PC) powered by an AMD Ryzen
9 5900HS CPU clocked at 3.3GHz along with 16GB RAM,
and a dedicated NVIDIA RTX 3050Ti graphics card with
4GB memory is used for multi-sensor data collection and
algorithm testing. A monocular camera (IMX335 – 5MP)
having 1280 × 720 pixels image resolution, BNO055 IMU
(interfaced with Arduino DUE), and GPS-RTK are used as
sensors and connected to the PC through USB serial ports.
The experimental vehicle equipped with the above sensors
to collect data is shown in Figure 1, and the data sampling
frequency is presented in Table 3.

The experimental data is collected by driving the experi-
mental vehicle on five different paths (both under indoor and
outdoor conditions). The outdoor paths were composed of
hot-mix asphalt. The indoor paths are made of BLACK dotted
granite and mixed floors such as a few meters of fine cement
floor, followed by tiled floor and granite floor, as shown
in Figure 6. The multi-sensor data collection is performed
using the script coded in MATLAB R2022a that stores the
images captured by the camera (10 frames per second), ori-
entation data from IMU for every 0.1 seconds, and GPS-RTK
updates for every second. The GPS-RTK geographic coordi-
nates (i.e., latitude, longitude, and altitude) are converted into
local Cartesian coordinates using Gauss-Kruger projection
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TABLE 2. Computed error for the GSC technique.

TABLE 3. Experimental data collection parameters at 1 m/s.

FIGURE 6. Images were collected in different ground conditions.
a) Asphalt road, b) BLACK dotted granite, c) Cement floor, and d) Tile
floor.

transformation [31]. The collected experimental dataset can
be found here.

B. DATA PROCESSING AND ANALYSIS
The Ground Spatial Calibration (GSC) andMonocular Visual
Odometry (MVO) algorithms explained in Section III-A and
Section III-B have been coded and tested in MATLAB
R2022a environment. During the experimental investiga-
tions, the developed algorithms are tested with three
different-sized image templates such as 80×80 pixels, 120×

120 pixels, and 160 × 160 pixels for a matching operation
that computes the vehicle displacement and orientation. The
vehicle pose was estimated using computed displacement
and orientation values. Furthermore, the method proposed in

this work provides better results using MVO alone, than the
method proposed in [15], which uses the orientation data from
the IMU along with the MVO.

The estimated vehicle pose (also called the trajectory) is
shown in Figure 7a–11a. Furthermore, the vehicle position
error in terms of theX andY directions is shown in Figure 7b–
11b. In addition, the percentage distance error is depicted
in Figure 7c–11c. In all figures, the BLUE, GREEN, RED,
MAGENTA, and BLACK lines represent the results obtained
with 80 × 80 pixels, 120 × 120 pixels, 160 × 160 pixels
template, MVO+IMU, and ground truth respectively. From
the odometry results obtained for the outdoor path (Asphalt
Road) which are shown in Figure 7 and Figure 8, it can
be noted that the 120 × 120 pixels sized template performs
better than other template sizes andMVO+IMU. The average
error in the X and Y directions for the 120 × 120 template
is 0.4148 meters and 1.1904 meters for the Path-1 dataset.
Furthermore, the average distance error is 1.3286 meters for
a total distance traveled of 470.31 meters. From Figure 7c,
it can be seen that the distance error percentage over the total
distance is the minimum (i.e., 0.44%) when compared with
other template sizes. Next, for Path-2 (which is 636.14 meters
long), with an 80×80 template size, the average error inX and
Y directions is less (i.e., 0.4046 meters, 1.1103 meters) and
the average distance error is 1.3062 meters, than with other
template sizes which can be noted from Table-3. In both cases
(Path-1 and Path-2), the use of a 120 × 120 template and
80 × 80 template results in a lesser error. In particular, the
80× 80 template holds the second minimum error for Path-1
and shows similar performance to the 120 × 120 template
for the Path-2 dataset. However, the 160 × 160 template
shows a large maximum error in the X and Y direction, and
also a maximum distance error. This is mainly due to the
difficulty in precisely localizing the template in the actual
image. Moreover, if the matched template position is having
an error, the GSC output will also have an error since, it takes
the center of the matched template (i.e., (u, v)).

From Figures 7a and 8a, it can be seen that the vehicle
pose estimated with different-sized templates and the pose
estimated using the orientation from the IMU, as in [15],
matches the ground truth pose. However, if we see the error
plots in Figures 7b and 8b, the magnitude of the errors in the
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TABLE 4. Positioning errors observed for the outdoor dataset (Asphalt road). Lowest error highlighted in PURPLE and Second lowest error highlighted in
MAROON.

TABLE 5. Positioning errors observed for the indoor dataset (BLACK dotted granite, mixed cement & tile floor).

X and Y directions is less for the pose estimated with the
120×120 template. Furthermore, it can be noted that the pose
estimated using the IMU orientation data shows maximumX,
Y, and distance errors. This is due to IMU data inconsistency
and drift error (i.e., error accumulating), and this error is
predominant when the vehicle takes a turn (left or right).
However, in the present work, as discussed in earlier sections
(Sections III-B2 and III-B3), the orientation is computed only
with MVO data (using subsequent image frames), thereby
avoiding the drift problem. The positioning errors observed
for the outdoor conditions are listed in Table 4. In the table,
the values highlighted in PURPLE have the lowest error, and
those highlighted in MAROON have the second lowest error.

Next, the MVO algorithm was tested on the indoor con-
ditions with the image collected at different floor conditions.
Figure 9 shows the results of straight maneuvering (i.e., Path-
3). From Table 5 it can be noted that the position obtained
with the use of a 120 × 120 pixel template shows the lesser

average and maximum errors in the X direction and also
the distance error. Whereas the MVO+IMU method shows
the lesser average and maximum errors in the Y direction.
Further, with the 120 × 120 pixel template, the Y error
observed is the second lowest. Furthermore, the error in the
Y direction is minimal and the X direction is higher with
the MVO+IMU. The lower Y error can be attributed to
the accurate estimation of the displacement with template
matching, which is based on GSC. However, the X error is
higher (shown in the MAGENTA line in Figure 9b), since
the IMU sensor used in the present work shows a larger
orientation error when the vehicle is static. Once the vehicle
starts moving, the IMU captures the relative orientation of the
vehicle with higher accuracy (±0.21◦). On the contrary, the
relative orientation error estimated with the MVO is slightly
larger (±0.52◦).

Subsequently, the use of a 160 × 160 template results
in higher X, Y, and distance errors than with templates of
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FIGURE 7. Estimated vehicle position and errors for outdoor Path-1.

lower size. This is mainly due to the inaccurate localiza-
tion of the templates when the floor contains more generic

FIGURE 8. Estimated vehicle position and errors for outdoor Path-2.

features or indistinguishable textures. Hence, FNCC inac-
curately fits the reference template, thus causing notable
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FIGURE 9. Estimated vehicle position and errors for indoor Path-3.

pixel errors that affect the GSC output. On the other
hand, from Figure 9c, it can be seen that the distance

FIGURE 10. Estimated vehicle position and errors for indoor Path-4.

error percentage distribution is minimal (1.56% with the
80 × 80 template).
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FIGURE 11. Estimated vehicle position and errors for indoor Path-5.

In the next experiment, the vehicle is made to follow Path-4
(shown in Figure 10a) and the vehicle pose is estimated. The

use of a 120 × 120 template resulted in the lowest error with
respect to the ground truth comparedwith the other templates,
as well as with the MVO+IMU method. The highest error
with the 80 × 80 template is due to the higher percentage
of pixels being saturated (i.e., exhibiting glare) which results
in notable displacement error. From Figure 10b, it is evident
that after taking the second turn (i.e., nearly after 120 meters
of distance traveled) the X error increases owing to the higher
illumination at that particular section of the path. For the same
path, when vehicle position is estimated with MVO+IMU,
the estimated Y error starts increasing and this is due to IMU
sensor drift. Overall, the 120 × 120 template shows a better
estimation for Path-4 with the lowest average X and Y error
(i.e., 0.4390 meters and 0.2083 meters respectively), and also
the average distance error of 0.5805 meters. It can be noted
that the percentage distance error for the 120× 120 template
is 1.26% which is the minimum among the other estimations.

In the last experiment, the vehicle was made to follow
Path-5, which is made of different floor textures (i.e., with
mixed floor conditions–cement floor for a few meters fol-
lowed by tile floor and then BLACK dotted granite floor).
The estimated path is plotted in Figure 11a. The experi-
ment started with a fine cement floor with high reflectivity,
as shown in Figure 6c. Therefore, it will be difficult for the
smaller template (80×80) to perform the matching with high
accuracy since there is a possibility of obtainingmultiple sim-
ilar FNCC scores. However, with larger template sizes, there
is a greater possibility of capturing more surface features,
which reduces false matching, thereby obtaining a higher
FNCC score. With a high FNCC score, the displacement
and orientation are estimated with higher accuracy and is
evident from Figure 11b showing the error in the X and Y
directions. Of the three template sizes, the 160×160 template
shows the lesser average error in X and Y directions with the
magnitude of 0.0588 meters and 0.2422 meters respectively.
Also, the average distance error observed for this template
is 0.2611 meters. When the vehicle moves from one type
of floor to another type of floor, there is a sudden increase
(i.e., spikes) in both the X and Y errors. This is due to the
transition of the floor from cement to tile (at a distance of
approximately 28 m) and the second impulse at a distance
of approximately 33 m (from tile to granite floor). Even for
different types of floor conditions, it can be noted that the
error values are minimal with the 160 × 160 template. The
percentage distance error is also low, with a value of 1.46%.

Since the developed GSC is a 2D calibration approach (i.e.,
it converts (u, v) pixel coordinates into (x, y) world coordi-
nates), the elevation (height) estimation (i.e., z coordinate)
is unviable. This is mainly due to the assumption of a flat
ground plane. However, to realize the behavior of GSC-based
MVO in the influence of uneven roads such as steep roads and
speed breakers, we conducted two additional experiments.
In the trailer ramp (steep road) experiment, the camera image
frames are collected by making the test vehicle move on the
13◦ trailer ramp. From the results presented in Figure 12 (b)
and (c), it can be seen that the developed MVO accurately
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FIGURE 12. Estimated vehicle position in the trailer ramp and speed
breaker. (a) 13◦ trailer ramp (first), and speed breaker (second) test
image, (b) estimated pose on the trailer ramp-top view, (c) estimated
pose on the trailer ramp-side view, (d) estimated pose on the speed
breaker-top view, and (d) estimated pose on the speed breaker-side view.
The BLACK line represents the ground truth and the GREEN line
represents the estimated pose with a 120 × 120-sized template.

estimates the vehicle position with the average distance error
in the xy-plane is 0.18 meters. However, due to the lack
of elevation data, the average error in the z-plane is higher
with a value of 0.57 meters. Similarly, in the speed breaker
experiment, from Figure 12 (d) and (e), it is evident that the
average distance error in the xy-plane is 0.23 meter, and also,
in the z-plane, the average error is estimated as 0.14 meter.
This increased z-plane error signifies the limitations of the
developed GSC-based MVO presented in this work. There-
fore, if the GSC is provided with the ability to estimate
elevation, then the present 2D MVO can be extended to 3D
MVO without the use of an additional IMU sensor.

A recently developed elevation estimation method called
RoadBEV [32] estimates the elevation with an absolute error
of 1.83 cm which can help extend the present GSC-based
MVO. In RoadBEV, the authors presented a framework for
estimating the elevation using monocular and stereovision
cameras. Specifically, for monocular vision, the RoadBEV
estimates the elevation by searching the candidate elevation
voxels in the height direction (z-axis) rather than searching
the depth. This makes RoadBEV more accurate than the
existing elevation estimation methods. The same authors pre-

TABLE 6. Maximum allowed velocity.

sented their dataset [33] for verifying elevation estimation
methods. Additionally, it can be noted that, in the outdoor
experiments (i.e., Path-1 and Path-2), owing to the rough
surface of the road, the test vehicle is subjected to vibra-
tions; therefore, the acquired imageswill be blurry.Moreover,
on roads, tiny obstacles such as stones, leaves, broken twigs,
and litter are present. However, FNCC-based template match-
ing handles these blurry images and tiny obstacles efficiently,
thus helping in accurate displacement and orientation estima-
tion; however, owing to the lack of elevation data, 3D pose
estimation becomes difficult and inaccurate.

C. MAXIMUM ALLOWED VELOCITY
The maximum allowed velocity of the Monocular Visual
Odometry developed in this paper is directly proportional to
the size of the template being used for the matching process.
From Section III-A, it can be noted that the center point of the
reference template is located at (640, 164) pixel coordinates.
The center points of the matched template coordinates for
each template size and the maximum allowed velocity are
listed in Table 6.

From Table 6, it is evident that the developed MVO esti-
mates the vehicle pose, even if the vehicle moves at a velocity
greater than 5 m/s, irrespective of the template size. Fur-
thermore, the algorithm estimates the odometry accurately
for most of the cases by using a reference template size of
120×120 (after considering the results from all experiments).
This template is selected as the optimum size, as the errors
are minimal as shown in Table 7. Moreover, the proposed
MVO performed better than the method presented in [26].
The visual odometry results from [26] have a distance error
of 3.93 meters whereas with the proposed method the average
distance error is 0.84 meters.

Considering the maximum allowed displacement pre-
sented in Table 6, the expected percentage distance error can
be computed using equation (22) and is tabulated in Table 8.

Expected % distance error =
E

Max. allowed displacement
(22)

where E is the maximum allowed error (for a 120×120 pixel
template it is 1.74 cm). It can be noted that the actual percent-
age distance error obtained with the 80 × 80 pixel template
and 120×120 pixel template is lesser than the expected error
(i.e., 2.54% and 2.72%) respectively. The average percentage
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TABLE 7. Combined errors in the proposed MVO.

TABLE 8. Comparison of percentage distance error (Actual vs Expected).

distance error is lesser for the 120 × 120 pixel template at
1.41%. However, Path-5 exhibits a higher error, since the data
is obtained on the cement floor where the 160 × 160 pixel
template performs better. We compared our method with the
LiDAR Odometry And Mapping (LOAM) algorithm [34],
[35]. The LOAM algorithm is tested using the LiDAR point
cloud obtained using the Velodyne vlp-16 LiDAR at 10Hz
sampling frequency. The average percentage distance error
obtained with LOAM in the xy-plane is 2.6% which is nearly
1.8 times higher than our MVO algorithm. Since LOAM is a
3D pose estimation algorithm the error in the z-plane is lesser
than the MVO presented in this work.

D. COMPUTATIONAL PERFORMANCE
The real-time performance of the developed MVO algorithm
is evaluated by measuring the time taken to process the
image frames with the Central Processing Unit (CPU) and
Graphical Processing Unit (GPU). As mentioned earlier (see
Section IV-A), we use a 4 GB dedicated GPU-installed laptop
to collect and process the acquired multi-sensor data. The
processing time for template matching using the CPU and
GPU is shown in Figure 13.

From Figure 13, it can be noted that the processing time
required to execute the template-matching technique with the
CPU is longer than with the GPU. Hence, there is a reduction
of 42.43% execution time, when a GPU is used instead of
a general-purpose CPU. In addition, by using the GPU for
template matching, higher Frames of Image data can be pro-
cessed per second (i.e., 9.75 FPS with GPU vs. 5.61 FPS with
CPU). In the present work, using GPU-accelerated template
matching, the proposed MVO-based vehicle distance mea-

FIGURE 13. Relationship between processing time of template matching
and the template size on CPU and GPU platforms.

surement technique achieves real-time performance since the
monocular camera sampling frequency is 10 Hz. In addition,
this new template-matching method performs faster than the
approach presented in [29], even with a CPU. Additionally,
when compared with LOAM [34], the processing speed with
GPU implementation is approximately 4 FPS, whereas the
developed MVO on GPU is 2.5 times faster. In addition,
we compared the computational complexity of our MVO
with the LiDAR Inertial Odometry via Smoothing and Map-
ping (LIO-SAM) [36], [37]. The comparison showed that the
LIO-SAM estimates the odometry at approximately 2 FPS
(CPU) which is 2.8 times slower than the developed MVO
implemented on a CPU.

E. FUTURE RESEARCH DIRECTIONS
Based on experimental findings and analysis, it is evident
that enhancing the accuracy of the developedMVO is crucial.
To achieve this, it is necessary to improve the displacement
and orientation estimation processes. One notable limitation
that should be addressed in future work is the potential failure
of the template-matching process in scenarios involving sud-
den changes in lighting, contrast, partial occlusion, or image
noise, leading to inaccuracies in the displacement and orien-
tation estimation. Amore robust approach involves extracting
relevant features from both the reference template and the
image to enhance the matching process rather than relying
solely on direct pixel value matching. Introducing a 1D
Kalman filter for displacement estimation can help mitigate
sudden spikes and enhance estimation stability.Moreover, the
orientation estimation accuracy can be enhanced by adopting
a multiscale matching technique. Another critical aspect for
future enhancement is to address the absence of elevation
estimation, thereby limiting the applicability of the current
system for 3D pose estimation. Integrating elevation esti-
mation methods into GSC can provide 3D pose estimation.
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By leveraging these improvements, the MVO can advance
its capabilities and offer more precise and reliable pose
estimation.

V. CONCLUSION
This paper proposes a Monocular Visual Odometry esti-
mation algorithm that computes vehicle displacement and
its orientation using a correlation-based template matching
technique. The displacement is estimated using the Ground
Spatial Calibration (GSC) technique, a lightweight direct
method that converts camera pixel coordinates into world
coordinates. Furthermore, the displacement estimation mod-
ule uses Fast NCC algorithm-based template matching to
compute displacement. In addition, instead of using an IMU
to determine vehicle orientation, it is estimated from the
acquired successive image frames. However, one of the chal-
lenges with image-based vehicle orientation estimation is that
the orientation is limited to 135◦. To solve this issue, an ori-
entation fusion approach has been introduced to accurately
transform the estimated orientation to a global coordinate
frame. The accuracy of the proposed MVO is investigated
for the different template sizes. Finally, the developed MVO
algorithm is tested and validated through experiments con-
ducted under both indoor and outdoor conditions. From the
experiments, it is observed that the use of a 120 × 120 pixel
template helps in reducing the displacement error estima-
tion in both the X and Y directions. The proposed MVO
method results in an average distance error of 1.41% (i.e.,
0.8454 meters) for the driving distance of 1406.35 meters in
the case of a 120 × 120 pixel template.
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