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ABSTRACT Sound source localization for machines has been studied in microphone array and binaural
paradigms in most cases, while much less work has been done in the single-microphone or monaural
paradigm. This paper addresses this task and presents a system designed to classify azimuths of a
speech-emitting sourcewith respect to a binaural receiver, however using only one of its ears. The system uses
the spectrum second derivative approximation calculated on short duration frames and based on a bank of
gammatone filters, in conjunction with a classifier artificial neural network. It is tested to explore its abilities
and the influence of different parameters on its performances. True recognition rates and confusion matrices
are reported in different evaluations studying the effects of the frame duration, filterbank size, silence
elimination, generalization capabilities and source movement. Reported results show an ability to classify
azimuths correctly up to a certain extent depending on the parameters used, with confusions occurringmostly
with neighboring azimuths. The presented system can be built upon for more efficient localization of speech
sources in both azimuth and elevation components.

INDEX TERMS Sound source localization, monaural, machine listening, machine learning, artificial neural
network, sound features.

I. INTRODUCTION
In machine listening, sound source localization (SSL) allows
for the determination of the position of a source emitting
sound in an environment that can be constraining in terms
of noise and acoustic conditions. SSL relies on the existence
of a sound receiver in the environment, used in conjunction
with sound signal and data processing stages that allow
to extract position information from the received sound.
Different paradigms exist for sound reception, and the most
widely used consist of microphone arrays [1], [2], [3], [4] and
binaural receivers [5], [6], [7], [8]. In the binaural context,
sound reception takes place like in humans, and many works
try to produce models of the human hearing mechanisms that
lead to sound source localization. Indeed, in human hearing,
several elements of the auditory system play different roles
in sound source localization. While localization in the
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horizontal plane relies mainly on interaural time and level
differences (ITDs and ILDs), these features are minimal in
the median plane, and yet humans can localize sound sources
in this plane [9]. Other features are therefore exploited by
the human auditory system for the sound source localization
task. Importantly, the pinna functions as a filter with a transfer
function that depends on the direction and distance of the
sound source. This allows it to code spatial attributes of the
sound field into temporal and spectral attributes [9], [10].
Alongside the pinna, the head and torso of a listener affect the
sound reaching a listener’s ears and Head-Related Transfer
Functions (HRTFs) describe this filtering effect and depend
on the source’s azimuth and elevation with respect to the
listener [11]. In addition, HRTFs vary depending on the
person [12].

In the literature, work done on localization with a single
microphone is limited and sparse. A literature review
was made in [13] where it was mentioned that typically
more than one microphone is used, and actually one
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work on single-microphone localization was reported [14].
Additionally, a survey was shown in [15], addressing sound
source localization with deep learning, where it was shown
that sound source localization is usually performed with
multichannel microphone arrays and no single-microphone
localization technique was cited. We propose in this paper
to explore the usage of monaural/single microphone features
in the estimation of the sound source-receiver azimuth. The
proposed approach relies on a framework employing, as a
sound feature, the second derivative of the spectrum that was
used in [16] to estimate the elevation and exploiting it with
a neural network trained to classify source azimuths. Indeed,
the shape of the outer ear is not neutral from a horizontal
point of view and it can filter sounds differently with different
azimuths. The sound-filtering effect of the pinna, head,
and torso that provides monaural features, although more
important in function of the elevation, can still be seen in
function of the azimuth.

The proposed approach has different originalities and
merits. Indeed, although the sound feature used in this
work has been previously used in [16], its usage was for
elevation estimation based on comparing feature vectors with
reference feature vectors. This work exploits it for azimuth
estimation, which, - to the best of our knowledge -, has
not been done before, with artificial neural networks that
offer potential for increased efficiency and robustness to
recording conditions and information extraction. ANNs have
also been used previously in localization, but, - to the best
of our knowledge - not in monaural or single-microphone
localization and not with the feature used here. Additionally,
this work provides a framework that can be used with
any asymmetrical sound-reflecting surface. The evaluations
reported in this paper are done in a human-ear sound
reception context, but the system relies on the reflective
effects of the human pinna and can be used with any
other surface that encloses a microphone and reflects sound
signals differently with respect to different sound source
locations. Such an approach can be extended to scenarios
where sound reception is performed with microphones not
necessarily placed inside human-like head and ear shapes.
Different applications can be seen for it, as it reduces the
number of receivers required for sound source localization,
thus reducing physical and computational needs. While it
can be applied in other contexts, the presented approach is
evaluated in this paper with speech signals in single-source
scenarios and an environment that is not highly reverberant.
The proposed approach introduces a novel method for single-
microphone, single-sound source localization, addressing
several key challenges in the field.

• Hardware simplification: by utilizing only a single
microphone, the method significantly reduces hardware
complexity and costs compared to traditional multi-
microphone systems. This simplification makes it
more feasible for integration into various systems and
applications, particularly those with space and budget
constraints.

• Efficient signal processing: the method leverages a bank
of gammatone filters to process incoming sound signals,
mimicking the human auditory system’s frequency
selectivity. This biologically inspired approach enhances
the precision of auditory feature extraction, which is
critical for accurate sound source localization.

• Feature extraction and exploitation: a key step in the
proposed system is the extraction of the spectrum second
derivative. This step highlights dynamic changes and
fine details in the sound signal, providing a robust
set of features that improve localization accuracy.
This technique distinguishes our method from other
single-microphone approaches that may not capture
such detailed spectral information. Furthermore, the
processed features are input to a neural network, which
excels at learning complex, non-linear relationships in
data. This integration allows the system to achieve an
accuracy and adaptability across different conditions,
outperforming traditional methods that rely solely on
signal processing techniques.

• Modularity and adaptability: the approach provides a
modular platform with tunable parameters, allowing
customization for different applications. This modular-
ity also enables the addition of further processing steps
to enhance performance or adapt to various acoustic
conditions. This flexibility ensures that the system can
be optimized for specific use cases, such as robotics,
telepresence, or wearable devices.

• Computational efficiency: designed for efficiency, the
method minimizes the amount of data to be processed
and computational requirements, making it suitable
for real-time applications. The reduced computational
load is particularly beneficial for embedded systems
and portable devices, ensuring swift and reliable
performance.

By combining the simplicity of single-microphone use with
advanced signal processing and machine learning techniques,
the proposed method provides a significant advancement
in the field of sound source localization. It offers a cost-
effective, accurate, and adaptable solution for a wide range of
applications, setting a new benchmark for single-microphone
localization systems.

The rest of the paper is organized as follows: Related work
is shown in Section II. The designed approach is presented
in Section III, and evaluated in Section IV. The outcomes are
discussed in Section V and a conclusion ends the paper.

II. RELATED WORK
In the literature, the amount of work aiming to perform
sound source localization from one sound channel has been
limited and sparse. While sound source localization was
made mainly with microphone arrays, single-channel sound
source localization was made mainly in a monaural context.
With an examination of both contemporary machine learning
and deep learning approaches as well as conventional
propagation models, extensive classification of sound source
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localization methods was discussed in [13]. It emphasizes the
use of artificial intelligence, mathematical correlations, and
physical phenomena in locating sound sources. The study
also looks at potential directions for acoustic detection and
localization in the future, with the goal of being a useful tool
for choosing the best approaches in this area [13]. However,
a thorough investigation of the number of microphones used
reveals one work from this review that relied on a single
microphone. In [14], the incident angle of sound by using an
‘‘artificial pinna’’ and a single microphone is determined by
imitating the directional sound changes seen in the human
outer ear [14]. The method predicts sound distributions and
the direction-dependent changes caused by the pinna by using
a machine learning methodology. Based on experimental
results, a variety of sounds, including speech and barking, can
be accurately localized.

However, relying on a single microphone array rather than
a single microphone, in [17], a smart device is used to handle
the simultaneous localization of several audio sources. The
suggested method, Symphony, makes use of the direction-of-
arrival (DoA) to identify source locations and the geometric
arrangement of microphones to identify signal connections.
Symphony employs a coherence-based module to detect
signals from the same source and geometry-based filtering
to separate signals from distinct sources. More recently,
microphone arrays were used in a variety of studies and in
different contexts. The work presented in [18] consisted of
a microphone array system used for far-field sound source
localization based on time difference of arrival and frequency
division. The cocktail party problem, which consists of
tracking and localizing specific sources among multiple, has
been addressed in [19]. It relied on audio-visual features
used in conjunction with a mobile robot equipped with a
microphone array and capable of moving to gather better
sound signals from the sources of interest.

In [16] and [20], azimuth and elevation estimation methods
were proposed. They relied on gammatone filterbanks to
provide inputs for monaural or binaural processing methods.
Monaural and binaural cues were then exploited to reach the
location information. Reported results showed the ability of
the mentioned cues to reflect information on the elevation,
even though elevation errors were considerably higher than
azimuth errors. In [21], a single microphone SSL technique
was proposed. Pyramidal horns were placed around a
sound receiver, creating an asymmetrical shape that induces
azimuth-dependent resonance and helps to discriminate
between angles. Cepstrum-based features were used after
signal reception to estimate the direction of arrival.

Self-localization of monaural microphones has been stud-
ied recently, concentrating on dipole sound sources. Due to
their bidirectional sound emission pattern, dipole sources
offer both special difficulties and chances for localization
with just one microphone. In [22], a technique for a monaural
microphone’s indoor self-localization was presented. This is
necessary for a number of location-based services. No matter

how many devices are used, localization is accomplished on
each one by creating two pairs of dipole sound fields. This
is done using basic procedures that can be completed with a
limited amount of CPU power and orthogonal detection of
signals. Sound source localization achieved using a single
microphone and additional components often employs an
open-source reflector, which limits the range of the direction
of arrival. In order to accomplish an omni-directional
estimate, a sound source localization system with a closed
surface reflector was studied by [23]. This study presented
the findings from a perturbation technique analysis of such
a system, together with a reflector shape evaluation. Thus,
by comparing the systems utilizing open surface reflectors,
the potential of the system and the hint to solve the inverse
problem are explored.

The deep learning technique for identifying and localizing
speech sources in challenging acoustic environments could
also be employed using hearing aid microphones [24]. A neu-
ral network with a novel combination of residual and dense
aggregation learning, as well as peripheral preprocessing
on microphone inputs, all of which are inspired by the
human hearing system, has been used in [24]. The result
improves the gradient flow during training, which increases
convergence speed and accuracy. Using both binaural and
monaural microphone arrays, the proposed model by [24]
shows promising results when it comes to joint speech source
detection and localization; it even outperforms alternatives
when using Short-Time Fourier Transform components. Due
to the lack of spatial information in audio signals, traditional
self-supervised learning employing monaural audio signals
and pictures has difficulty differentiating similar-looking
sound source objects. In [25], the problem of robots’
autonomously identifying sound source objects in visual
observations was addressed. By utilizing spatial information,
the suggested approach presents self-supervised training with
360◦ photos and multichannel audio inputs [25]. Deep neural
networks (DNNs) for vision and audio are used by the
system to locate sound source items. Whereas the audio
DNN confirms that sound source candidates actually produce
sound, the visual DNN finds potential sound sources in an
input image. The two DNNs are trained together using a
probabilistic spatial audio model in a self-supervised fashion.

Using reverse correlation analysis (RCA), the outer ear
contributes to the location of the front back and the height
of the sound source has been examined by [26]. The mag-
nitude spectrum of head-related transfer functions (HRTFs)
from 73 participants with free-field localization behavior
was integrated. Localization responses from participants
are gathered both before and after the introduction of
HRTF-modifying outer-ear implants. Based on the main
characteristics identified by the RCA that affect localization
responses, two monaural localization models are assessed.
For bare ears, the models largely agree with free-field
localization; however, when using modified HRTFs, the
models overstate errors. Remarkably, RCA feature selection
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lessens the influence of distorted HRTF elements on model
accuracy and enhances alignment, indicating that it discloses
crucial information for precise prediction. In a separate work,
the effects of multi-band frequency compression on source
localization and speech perception in monaural hearing aids
were examined in [27]. Due to their inability to precisely
localize sound sources, monaural hearing aids—which are
intended for people with unilateral hearing loss—may make
it difficult for users to understand speech in surroundings with
complex auditory systems.

III. SYSTEM ARCHITECTURE
The proposed system relies on a framework for learning
spectral attributes related to the sound source location and
embedded in the sound signal received by a microphone.
The operation of the system is based on steps shown in
Figure 1. The signal is divided into short term frames, then
silence removal is done with the sound activity detection
shown in § III-B. Energy normalization is then carried out as
shown in § III-C. Gammatone filtering is followed by feature
extraction as shown in § III-D. This produces the feature
vector which is input to an artificial neural network trained
to output the azimuth, explained in § III-E.

FIGURE 1. Consecutive steps involved in the workflow of the system,
from signal reception until azimuth output.

A. DATABASE COLLECTION
A database consisting of sound sources emitted frommultiple
emitter-receiver azimuths is established. The database is
designed to contain sound recordings from a single micro-
phone/ear. Databases of binaural recordings can be used but
recordings of ears can be processed separately, i.e. the system
can rely on only one ear’s recordings.

B. SOUND ACTIVITY DETECTION
The sound signals are first decomposed into frames of short
duration. The energy of each frame is then estimated as:

Ei =

N∑
j=1

s2i,j (1)

where i is the frame number, N is the number of samples in
the frame and si,j is the sample j of the signal in this frame.
The frame energy calculation serves in the process of
eliminating frames with low activity compared to others,
which can correspond to silences in the signal and do
not provide information about the sound source position.
This activity detection is performed based on the following

thresholding process: the frame i is maintained if its energy
Ei is higher that the threshold ELth calculated as follows:

ELth = Emin + Lparam × (Emax − Emin) (2)

where Emin and Emax are respectively the lowest and highest
frame energies over all the frames of the signal, and Lparam
is a parameter that can be modified to adjust ELth. This
approach allows for the detection of silence segments with
recording-dependent thresholding as thresholds that can be
used in certain recordings do not apply to others.

C. ENERGY NORMALIZATION
After silence elimination, the energies of the signal frames
are normalized to have a value of 1 each, by dividing each
sample in the frame by the square root of the frame energy:

si,j =
si,j
√
Ei

(3)

This step maintains the dynamics within each frame’s
samples and its purpose is to reduce the sound loudness
reduction caused by the head shadowing effect, which can
bias the learning process for a machine learning system being
trained on source locations from both sides of a head-like
receiver.

D. FEATURE EXTRACTION
The sound signals are filtered with bank of G gammatone
filters with center frequencies regularly spaced on the
equivalent rectangular bandwidth scale as implemented
in [28]. At the output of each gammatone filter, the energy
Egi of the signal is calculated in dB as follows:

Ei,g = 20 × log10
N∑
j=1

s2g,i,j (4)

where sg,i,j is the sample j at of the frame i at the output of
the gammatone filter g.

For the frame i, after calculation of all the gammatone
filter energies, the second derivative of the spectrum is
approximated as in [16] for each frequency band and time
frame:

Mi,g = Ei,g−2 − 2Ei,g + Ei,g+2 (5)

these channel-dependent second derivatives are concatenated
in one vector to produce the vector Vi representing the frame
i as:

Vi = [Mi,1,Mi,2,Mi,3, . . . ,Mi,G] (6)

E. MACHINE LEARNING FRAMEWORK
Neural networks and Support Vector Machines (SVM) were
compared as classifiers in [29] with different datasets to study
the effect of dataset size and class number. Advantages were
found for the neural network over SVMs. Also, in another
classification task, MLPs were compared to other deep neural
network architectures, ensemble algorithms, and SVM and
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were found to outperform them [30].In another work, ANNs
outperformed SVMs and random forests [31]. A last example
is shown in [32] where ANNs were found to outperform
other classifiers. Neural networks have been widely used
in the field of sound source localization, where the task
has been formulated as classification or regression [15].
Indeed, they can adapt to different acoustic conditions
and extract relevant information from data [13]. Although
different classifiers exist, and even within the same classifier
family, different architectures and training methods exist,
and although different classification tasks and the nature and
amount of data used can give advantages to classifiers over
others, for the purpose of source location classification based
on received sound signals, it was decided to pursue with
MLPs in this work as a means for proving the possibility of
extracting azimuth information from sound. Although other
classifiers may be better at this task, MLPs remain among the
best candidates as classifiers.

The feature vectors calculated in the previous step are
exploited by a multi-layer perceptron (MLP) with H hidden
layers and h1 cells in the first hidden layer, h2 cells in
the second, etc. The MLP exploits the feature vectors after
decomposing the database into training and testing parts.
The process is elaborated as a classification task where each
source azimuth represents a class and the MLP is required
to provide outputs, allowing to classify the input vectors
provided to it. It is important to note that in the evaluations
reported in this study,H = 2, and h1 = h2 = 50. The training
and testing of the MLP are performed as follows:

1) TRAINING
The training data is used to train the MLP with the
TensorFlow platform1 for a number of epochs NBepochs.
The feature vectors for all frames from all azimuths are
concatenated into one matrix. And in parallel to the feature
vectors provided as inputs, the MLP receives a vector of
outputs containing for each vector, its corresponding class.
The training process further decomposes the training data into
training and validation, with a percentage of Vals used for the
validation data split.

2) TESTING
Testing data consists of input feature vectors and real
output classes generated in parallel with the input vectors
calculation. That is, to each input feature vector corresponds
a ground truth output from the database. The MLP receives
all the testing data in one array and for each feature vector,
generates a class estimation. And the confusion matrix M
is filled at each cell location in row r and column c with
the number of tests that are in reality from the class r and
estimated as being from the class c. Additionally, the true
recognition rate is calculated as the ratio of the number of
tests correctly estimated by the total number of tests. The true

1Available: https://www.tensorflow.org/

recognition rate will be used as a metric for the evaluation of
the system performances presented in the next section.

IV. SYSTEM EVALUATION
As shown in Section III, the proposed approach has several
parameters that can affect its performances, as follows:

• Frame duration: the proposed approach allows for
changing the duration of each frame along which the
feature vector Vi is extracted. Frame durations of a
few tens of milliseconds are usually considered in
speech processing. However, longer duration can be
investigated in this study as it aims to localize sources,
not recognize the speech or the speakers. It is important
to note that longer durations result in fewer frames per
recording and, thus, fewer feature vectors and training
data for the neural network.

• Gammatone filter number: it is another parameter
that can affect the filter’s selectivity, feature vector
dimensions, and thus the system’s training.

• Silence removal energy thresholding: the silence
removal is an important step in the system that can
affect its performances. Indeed, the lower the threshold
ELth of the frame energy for silence removal, the more
likely frames with low energy, i.e., without speech or
partially containing speech, will be used in the training.
Such frames assign silence parts to specific azimuth
classes without containing any real information about
the azimuth, thus reducing the effectiveness of the neural
network training.

• Neural network architecture: the used neural network
has a number of inputs equal to the number of
gammatone filters used, and a number of outputs equal
to the number of azimuths to classify. Other components
of its architecture are the number H of layers and the
numbers h1, h2, . . . of cells in the respective layers.
These parameters can greatly affect the performances of
the system.

The proposed approach has been evaluated with datasets
of speech recordings, for its ability to classify sound source
azimuths as explained in Section III.

A. USED DATABASE
The used database features speech recordings made with
still sources at different source-receiver azimuth values. The
receiver is the binaural human-like head of the humanoid
robot SIG2 [33], [34]. The recorded speech signals originate
from the TSP speech database [35]. This speech database
contains utterances recorded in anechoic conditions, cor-
responding to sentences provided by the list of Harvard
sentences [36]. The TSP speech database contains recordings
with lengths varying between 1.34 s and 4.79 s, with
an average length of 2.37 s. To each speaker, a total of
60 different sentences was assigned. 10 male speakers were
selected for our recordings, and the entire set of sentences
of each speaker among them was used. A loudspeaker was
used to emit sounds, placed at each of the 13 positions
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corresponding to the theoretical constant distance of 1.5 m
and the theoretical 13 azimuth angles ranging between −60◦

and 60◦ with a step of 10◦. Figure 2 shows the different
positions from which sound was emitted and recorded. For
each of the still positions, two sentences from each speaker
were used. This takes a total of 26 sentences per speaker.
The database also includes recordings with movement during
speech utterance.Movements weremade in a way tomaintain
an approximately constant speaker-receiver distance at 1.5 m
and with azimuth angles changing between −60◦ and 60◦,
in both left-to-right and right-to-left directions. Thus, two
movement recordings with the same speech are made for
each speaker, taking his remaining 10 sentences. The robot
head was placed in a large room, with the ear microphones
at a height of 141.5 cm. A Roland UA-101 audio interface2

was used, and Audacity 2.0.53 was used to export recordings
as wav files, with a sampling rate of 48 kHz and 16 bits
per sample. Speaker-receiver positions were measured and
adjusted to comply with the theoretical positions using
a NaturalPoint OptiTrack Motion Capture system,4 that
determines real-time ground truth information about the
positions of visual markers according to a specific landmark.
Thus, markers placed on the source and the receiver allow us
to measure their relative placements and track them, whether
still or moving. The actual positions were not exactly match
the theoretical ones, in terms of speaker-receiver azimuth and
distance. Slight errors took place, with approximately 0.12◦

in azimuth and 0.56 cm in distance in average, and maxima
of 0.27◦ and 2 cm respectively. Table 1 summarizes the main
information related to the database.

FIGURE 2. The 13 positions used to record signals.

B. RESULTS
From each recording, the first 40 seconds are used for the
training, with Vals = 10% of them used for cross-validation,
and the next 15 seconds are used for the testing. A series

2Available: http://www.roland.com/products/ua-101/
3Available: https://sourceforge.net/projects/audacity/
4Available: http://www.naturalpoint.com/optitrack/

TABLE 1. Summary of the used database.

of tests was performed to assess the ability of the system
to classify azimuth angles and to study the effect of each
parameter on its performance. Indeed, the system has several
parameters that can affect its precision in feature extraction
and its ability to use these features. In each evaluation, all
system parameters were fixed to constant values except the
one being studied, which was changed across a set of values.

1) FRAME DURATION EFFECT
To study the effect of frame duration on the performances
of the system, the training was done with the following
configuration: Lparam = 0.01, G = 100 and NBepochs =

1000, and with frame durations varying between 20 and
160ms. As Figure 3 shows, training does not get significantly
improved for frame durations beyond 50ms. Also, no signif-
icant improvement in testing recognition rate is observed for
frame durations above 100ms with around 47% of correct
classifications.

FIGURE 3. Frame duration effect on the neural network performances
with the network being tested with the training data (including validation
data) and testing data separately.

Figure 4 shows the evolution of the training in function
of time. At each epoch, the neural network is tested with
the training data, the validation data and the testing data
separately. The figure shows a continuous improvement in the
neural network training while no significant improvement is
observed in its performances on validation and testing data
after the 600th epoch. Validation performances are slightly
better than testing performances. This can be explained by the
fact that validation data are extracted from training data after
being shuffled. By this process, a validation feature vector can
be associated with a time frame surrounded by time frames
used for training and the sound content of this frame does
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FIGURE 4. Evolution of the neural network training in function of time.

not vary significantly from its surroundings. Thus, the fact
that validation data are better classified by the network than
testing data, indicates that the network is probably learning,
aside the sound source azimuth, information about the used
signal itself. This is possible since the feature vectors used
are based on a filtering of the sound signals.

Additionally, a confusion matrix obtained with the testing
data with the same parameters used to generate the results
in Figure 4 is shown in Figure 5. As the matrix shows,
most classes have confusions with their nearest classes,
with outliers in some cases. Also, for all the classes except
the −10◦ class, the class having the highest number of
classifications is the real one.

FIGURE 5. Confusion matrix visualization. Horizontal axis: classification
results (degrees). Vertical axis: real angles (degrees).

2) GAMMATONE FILTERS NUMBER
To study the effect of the gammatone filterbank size on the
system performances, the number of filtersGwas varied with
the values of 20, 60, 100, 140 and 180 while keeping a frame
duration of 100ms, Lparam = 0.01, and NBepochs = 1000.
Results of correct classification with training and testing data
are reported in Figure 6.

Although the figure does not show a significant improve-
ment in performance with testing data for G beyond
100 filters, it is important to note that the architecture of
the neural network plays an important role in the results.
Increasing G leads to increasing the dimension of the feature
vectors provided to the neural network as inputs, while the
hidden layers and cells of the network remain the same.
Also, an increased dimension of the input layer may require
a bigger database for improved training of the network. This
is not taking place in the reported results as the number of

FIGURE 6. Gammatone filter number effect on the neural network
performances with the network being tested with the training data and
testing data separately.

samples provided as input is not changing, with the frame
duration and the silence elimination threshold remaining the
same.

3) SILENCE ELIMINATION THRESHOLD
The effect of silence elimination severity has been studied
while keeping the frame duration of 100ms, G = 100 and
NBepochs = 1000. The values of Lparam used are 0, 0.01,
0.05 and 0.1. Figure 7 shows the correct classification results
with tests performed on the training data and the testing
data. It can be seen that as the silence elimination becomes
more severe, correct classifications on training data improve
while they deteriorate on testing data, indicating a loss of
generalization capability of the neural network. This can also
be associated with the reduction of the training dataset size
available for the network, as can be seen in Figure 8. While
550 frames of 100ms are obtained from 55 seconds used
in each direction with Lparam = 0, this number becomes
on average 81.3 with Lparam = 0.1. Thus, a steep decrease
in the database size is witnessed as the severity of silence
elimination severity increases.

FIGURE 7. Lparam effect on the neural network performances with the
network being tested with the training data and testing data separately.

4) TRAINING AND TESTING WITH DIFFERENT AZIMUTHS
Another evaluation of the systemwas performedwith training
on data from the azimuths −60◦, −40◦, −20◦, 0◦, 20◦, 40◦,
and 60◦. Testing was done with the azimuths −50◦, −30◦,
−10◦, 10◦, 30◦ and 50◦. The training parameters were as
follows: Lparam = 0.01, G = 100, NBepochs = 1000.
Figure 9 shows the confusion matrix obtained from this
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FIGURE 8. Average number of frames over all directions, remaining after
silence elimination, for different values of Lparam.

FIGURE 9. Confusion matrix visualization when testing with azimuths not
included in the training. Horizontal axis: classification results (degrees).
Vertical axis: real angles (degrees).

test. The matrix shows that for each of the testing angles,
the highest confusion was with the surrounding azimuths
included in the training. For instance, out of 97 tests done
with the angle −50◦, 53 were classified as the angle −60◦,
29 from −40◦, 6 from 0◦, 2 from 40◦ and 5 from 60◦. This is
an expected results with sound recordings corresponding to
neighboring azimuths generating patterns in their spectrum
second derivative approximations with more resemblances
than they do with other azimuths.

5) LOCALIZATION OF MOVING SOURCES
An additional test was made to investigate the ability of the
designed system to track a person moving while speaking.
The used database contains sound recordings with speech
sourcesmoving from−60◦ to 60◦ or in the opposite direction,
while keeping a constant distance to the receiver and staying
oriented towards it. Each recording corresponds to one person
speaking continuously. Results are reported in Figure 10 and
Figure 11 with two different speakers sounds moving from
60◦ to −60◦ and from −60◦ to 60◦ respectively. Each figure
contains two parts. The upper part shows the raw frame-
by-frame outputs of the neural network, and the lower part
shows the raw outputs filtered with a median filter with a
window length of 21. In both cases, the raw outputs show
fluctuations and confusions in the classification, which are
well smoothed by the median filtering. Although the database
does not contain ground truth information about the exact
speaker locations at each instant of time, the outputs clearly
show a change of azimuth in function of time and allow to

FIGURE 10. Outputs with recordings from Speaker 1 moving from 60◦ to
−60◦. Up: raw outputs. Down: outputs after median filtering.

FIGURE 11. Outputs with recordings from Speaker 5 moving from −60◦

to 60◦. Up: raw outputs. Down: outputs after median filtering.

track the movement efficiently with some confusions that
can be reduced more by more filtering or other processing
techniques.

V. DISCUSSION
As shown in the evaluations performed, different assumptions
were made on the behavior and performances of the system.
Indeed, like any other system of sound source localization,
its parameters need to be addressed one by one to study
their effects separately, then as a whole. It was important
to vary each parameter in a wide range of possible values
that it can take, and observe how the system reacts to each
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value. Naturally, in all evaluations, and working with a
classifier, the true recognition rate is a highly relevant metric
to use, along with the confusion matrix. The results reported
in Section IV serve to demonstrate the ability of a neural
network to learn the azimuth of a speech source using signals
captured by one microphone placed in an ear of a human-like
head. From these results, it can be stated that the head and
pinna filtering of arriving sound waves, and the head shadow
effect, induce features in the waves reaching the eardrums
that reflect the source’s azimuth. This goes along with the
results reported in [37], showing that near normal localization
in both azimuth and elevation was achieved by listeners
with unilateral deafness. As stated in [9], these listeners are
capable of extracting and processing monaural spectral cues.
The obtained results proved the following:

• a correct classification rate not far from 50% with data
unseen in the training but from directions seen in the
training, and with confusions occurring mostly with
the classes neighboring the correct class. The system
exhibits confusions with neighboring azimuths due to
the fact that for a given azimuth, the ones surrounding
it are the most likely to produce similar pinna filtering
effects on the sound wave and thus induce features close
to the features produced at it. For further azimuths,
the pinna filtering has more differences and the system
is less likely to confuse them with the real azimuth.
Also, the fact that the database has been recorded in
reverberant environment with noises inside affects the
performances of the system and allows such confusions
to arise more easily. This effect can be mitigated by
introducing de-reverberation and de-noising steps in
the signal processing prior to feature extraction. Such
conclusions have been reached in previous studies where
it was shown that signals recorded in less noisy and
less reverberant conditions are better localized by a
neural network [38]. This study shows that in the
present conditions, one microphone allows to localize
the sound source even without de-reverberation and de-
noising, while showing the mentioned confusions in its
estimations. Another way of mitigating the confusions
is to allow the system to output one azimuth estimate for
different consecutive time frames, by taking the mode
of its frame-by-frame azimuth outputs. When the real
azimuth is the dominant one among the outputs, taking
the mode allows to better reach a correct estimate with
fewer confusions, at the cost of taking longer to produce
an output.

• the possibility of positively or negatively affecting the
performances of the system by adjusting any of its
parameters. For example, it was seen that with the
shortest frame duration, performances were the weakest.
However, in practical usages of the system, such as
in human-machine interaction, the user is more likely
to utter speech for long durations which improves the
performances either by giving the possibility to use
longer frames or by using short frames and exploiting

their respective azimuth estimates in a majority voting
for the correct azimuth for example.

• the ability of the system to classify sound signals which
are in reality in classes not known in the training, with
classes that are the closest to the classes used in the
training.

While this system under-performs localization systems
based on two or more microphones, and while better
performances can still be achieved, the aim of the presented
study, which is to explore the possibility of azimuth
estimation with monaural features, was accomplished. One
of the system parameters that were not tackled in the study,
is the neural network architecture. Indeed, in all the reported
tests, the number of hidden layers and cells remained the
same. These parameters were reached after a series of
trials and were seen to provide better results than others.
Optimizing this architecture can be done for purposes of
performance and computation load, but it was not in the
objectives of this study. Some tests were done with a network
with more hidden layers but they showed no significant
advantage in terms of performances. However, other archi-
tectures and types of cells can be investigated in future
work.

A comparison with microphone-array-based or binaural-
based sound source localization systems favors those over the
proposed approach in terms of accuracy. Indeed, themonaural
context provides less information to process while in binaural
and microphone-array paradigms, there is more freedom
to conceive the localization with more possible features
to extract and more freedom in configuring microphones
that gives a higher chance of localizing sources accurately.
An example of this is that in a binaural context, the monaural
system proposed in this paper can be used twice, once with
each ear, and their outputs can be combined into a single,
more robust output. In binaural context, biologically-inspired
time difference of arrival and time level of arrival exhibit a
higher dependence on azimuth than the monaural features
and thus can lead to better results. Also, in microphone-array
contexts, techniques like beamforming and MUSIC allow to
reach localization performances adjustable by the number
of microphones and their locations in space. However,
a comparison of a single-microphone approach like the
one presented in this paper with binaural or microphone
array-based approaches from other points of view exhibits
some advantages for it.

• In terms of cost-effectiveness, the proposed approach
uses one microphone, thus reducing the hardware
demands.

• The proposed approach is also simpler to setup and
maintain, and requires less space, making it advanta-
geous in situations where space for sensors is limited.

• The proposed approach is more energy-efficient in
terms of microphones to power and subsequent signal
processing demands.

• The proposed approach is less prone to synchronization
issues and potential phase mismatches that can occur in
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TABLE 2. Comparison between different single-microphone sound source localization systems.

systems where signals from more than one microphone
are acquired simultaneously.

• In systems using more than one microphone, mathe-
matical models in most cases consider that the different
microphones used have a uniform frequency response
characteristic. However in real implementation situa-
tions, this may not be the case and slight differences in
frequency response characteristics can potentially affect
the results. Thus calibration of the microphones can be
needed, which can be time-consuming.

• Also in systems with more than onemicrophone, models
often rely on a hypothetical placement and orientation
of the different microphones. Misalignment can degrade
the performances. A single-microphone localization
system is less prone to this issue as there is one
microphone to place instead of more.

These aspects thus make the proposed approach more
advantageous in situations where considerations of space,
cost-effectiveness, energy-efficiency and robustness to
deployment problems weigh more than localization preci-
sion. Moreover, in terms of computational load, and for
the specific single-microphone sound source localization
approach shown in this paper, a comparison can be made
with some recently proposed approaches and show that the
proposed approach is computationally less demanding. For
instance, a binaural sound source localization system was
presented in [39] and was shown to be advantageous in
comparison with other work and to be able to localize several
sources. This system used gammatone filtering for both
ear signals, cross-correlation between the two signals and
a neural network framework. The system proposed in this
paper uses gammatone filtering for the single signal available,
and a neural network architecture less complex than the one
proposed in [39], making it less complex computationally.

As for other single-microphone sound source localization
approaches, a comparison of the proposed approach with
two previously proposed approaches that were obtained
and accessed is shown in Table 2. This comparison is
made from different points of view, as a comparison of
accuracy alone cannot be made, either for an approach
being designed for a specific context that is not applicable
in the context of the proposed approach in this paper or

for lack of enough information to reproduce the whole
system. Other criteria in which the proposed approach is
more or less advantageous could have been used, but of less
importance. For example, consider the size of the receiver,
the computational complexity and power consumption, and
the cost of training the system. From these comparisons, the
approach proposed in this system shows several merits:

• its ability to be applied to other sound capturing
contexts. The system has been evaluated in this study
with recordings made in a human-like ear but the
processing steps can be done with any other context and
can give accurate results as long as the sound receiver
has direction-dependent filtering. This not the case for
the system shown in [21] as it was designed to work with
a structure of pyramidal horns specifically.

• its ability to track moving sources, which was not
reported in the other studies.

• its flexibility with all the parameters used, like the num-
ber of frequency channels considered, and time frame
duration. This can allow to adjust the dimensionality of
the data used and the complexity of the neural network
depending on the processing capabilities of the platform
where it can be implemented, with the awareness that
this may affect performances. This has not been seen
in [14] where even though the dimensions of the input
data were not given, the feature calculation starts with
the Short Time Fourier Transform which is potentially
of a high dimension.

• its ability to localize speech sources with short durations,
which was not studied in the other work.

VI. CONCLUSION
The study presented in this paper relied on recordings made
with one ear of a binaural receiver to estimate the azimuth of
a sound source emitting speech. Unlike most of the previous
work relying on microphone arrays or binaural receivers and
features for this task, monaural features allowed to provide
information that was efficiently exploited by a MLP.

Future work will tackle different aspects. For instance,
the effects of noises, room acoustics, receiver position in
the room, speaker distance, and the presence of more than one
source in the environment. Also, contexts of sound reception
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other than human-like ears can be explored. Naturally,
focus will be put on single-microphone systems with no
symmetry in the receiver’s design with respect to azimuth.
Such geometrical configurations lead to uneven filtering of
sound signals reaching the ears from different directions and
thus can contribute in creating direction-dependent features.
On the other hand, symmetrical receivers can cause similar
sound filtering effects on symmetrical sound locations, which
would lead to similar features and high confusions between
these azimuths. Also, such systems can be used not only
to estimate the azimuth, but also the elevation of the sound
source, thus requiring databases covering more directions
for their training. Additionally, the performances of these
systems depend on their parameters and an optimization of
parameters should be addressed for each environment and
sound reception context.
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