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ABSTRACT To address the detection challenges of keypoints, such as misdetections and omissions caused
by backgrounds, occlusions, small targets, and extreme viewpoints in complex electrical power operation
environments for power workers. This study proposes a 2D pose estimation algorithm for power workers
based on YOLOv5s6-Pose: PW-YOLO-Pose. In this study, the detection rate of occluded keypoints is
improved by embedding the Swin Transformer encoder in the top layer of the backbone network. The
proposed BiFPN (a weighted bi-directional feature pyramid network) structure with a small target detection
layer improves the detection rate of small target characters and the precision of their keypoints’detection.
The keypoint regression precision is improved overall by using CA (coordinate attention) in the model neck
and improving the bounding box regression loss function to Wise-IoU. The algorithmic model in this study
demonstrates excellent detection and largely meets the real-time requirements on the proposed power worker
pose estimation dataset in this study. The mAP0.5(The mean average precision when the threshold for object
keypoint similarity is set to 0.5.) and mAP0.5:0.95 are 93.35% and 64.75% respectively, which are 5.22% and
1.53% higher than the baseline model. The detection time of a single image is 21.3 ms, respectively. It can
serve as a valuable theoretical foundation and reference for behavior recognition and state monitoring of
power workers in intricate electrical power operation environments.

INDEX TERMS Electrical power operation, pose estimation, YOLO-Pose, detection of keypoints.

I. INTRODUCTION
Energy is an important material basis for economic and social
development. Electricity is the core of the system to build
modern energy [1]. The normal operation of the power system
can’t be separated from the hard work of power workers.
However, power workers constantly face various dangers
in electrical maintenance [2]. Complex electrical operating
environments and the improper operations of power work-
ers lead to various safety hazards during electrical power
operations [3]. Therefore, developing an intelligent safety
warning system for power workers can help improve their
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safety awareness and reduce the occurrence of accidents
during power operations [4]. Skeletal keypoints detection of
power workers is a prerequisite for pose recognition and
abnormal behavior analysis during operations. It is the core of
implementing safety warnings for power workers, providing
a theoretical basis and reference for behavior recognition and
status monitoring of power workers [5].

Currently, significant advancements have been achieved
in deep learning-based algorithms for 2D multi-person
human pose estimation both domestically and internation-
ally. In comparison to traditional methods, these deep
learning-based approaches offer notable advantages such as
improved precision [6], real-time performance, end-to-end
learning capabilities, and adaptability to diverse scenarios,
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poses, and lighting conditions [7]. Consequently, they have
emerged as a prominent research area in contemporary
studies.

The design methodologies for deep learning-based 2D
multi-person human pose estimation can be broadly clas-
sified into two main approaches: top-down and bottom-
up methodologies. The top-down human pose estimation
algorithm initially identifies all human targets within the
image, followed by performing keypoint detection for each
individual target. Fang et al. proposed a novel pose estima-
tion framework consisting of three components: symmetric
spatial transformation network (SSTN), parameterized pose
non-maximal suppression (NMS), and pose-guided proposal
generator (PGPG), which efficiently solves the problem of
inaccurate human pose estimation with inaccurate human
bounding boxes [8]. Li et al. proposed a novel regression
paradigm with residual log-likelihood estimation to capture
potential output distributions, which enhances human pose
regression without any test time overhead [9]. The bottom-up
human pose estimation algorithm initially predicts the key-
points of all individuals in the image upon input, followed
by a matching algorithm that combines these key points to
obtain an individual representation. Subsequently, the joint
points are connected to derive the human skeleton map.
Cheng et al. proposed HRNet, which is capable of maintain-
ing high-resolution characterization throughout the process
as well as connecting multi-resolution sub-networks in paral-
lel for multiple multi-scale fusion, ensuring higher-precision
heat maps of keypoints and better positional precision [10].
Cao et al. proposed the OpenPose model, which presents the
first bottom-up representation of correlation scores through
partial affinity fields, where the partial affinity fields are used
to encode the location and orientation of the limb in the
image, doing so with high-quality results at a fraction of the
computational cost [11].

Currently, there is little research on pose estimation for
power operations and complex industrial scenarios. The algo-
rithms mentioned in this study have shown good detection
performance on some large public pose estimation datasets.
However, the complexity of the electrical power operation
environments gives rise to occlusion of keypoints, presence
of small targets, and extreme viewpoint poses due to the
worker’s flexible and changeable limbs as well as camera
view during work. The aforementioned situation may lead
to the absence of crucial feature information, disrupt the
correlation among joints, and result in the omission and
misdetection of keypoints. To address the issue of occlu-
sion, Bai et al. proposed CONet [12]. They introduced a
new structure called COHead, which uses two branches
to separately estimate the poses of the occluder and the
occluded. By incorporating an attention mechanism, the net-
work achieves differential learning between the two branches,
thereby enhancing feature representation. However, this net-
work structure lacks a multi-scale architecture, making it
unsuitable for multi-scale detection in complex scenarios.
Gu et al. proposed a new multi-task learning framework for

multi-person pose estimation, incorporating body orientation
andmutual occlusion information [13]. However, this method
uses Mask R-CNN as the baseline model, which inevitably
increases inference time compared to single-stage algorithms,
making it unsuitable for detection tasks with high real-time
requirements. To address the issue of small target human
detection, Yuan et al. proposed a clustering-based solution
to address the low detection efficiency caused by the sparse
and uneven distribution of small targets in human body detec-
tion [14]. Roy and Bhaduri enhanced the model’s ability to
detect small objects and multi-scale targets by introducing
additional detection heads and a Swin Transformer encoder
[15]. Roy et al. improved the feature extraction capability of
the network model by including DenseNet transition blocks
before the residual blocks of the original CSPDarknet53
and adding new residual blocks between the backbone and
the neck. Subsequently, they used an improved PANet to
retain fine-grained local information [16]. Li et al. proposed
PF_YOLOv4 [17], which introduces a soft threshold func-
tion to handle noise such as light in images, enabling more
accurate recognition of small target pedestrians. To address
extreme viewpoint poses, Linzhi Huang et al. proposed a
new 2D HPE (Human Pose Estimation) dataset based on
the WEPDTOF dataset, collected using overhead fisheye
cameras indoors. However, due to fisheye lens distortion,
most people captured in the dataset are from an overhead
view. Jingrui Yu et al. used a game engine to generate a
synthetic dataset, but this method often suffers from limited
pose variability, typically depicting a narrow range of walking
or everyday activities.

The computational complexity of top-down algorithms
demonstrates a linear growth pattern in relation to the number
of individuals depicted in the image [18]. While, in bottom-
up algorithms, the use of heatmaps is common for keypoint
detection. Even with sophisticated post-processing tech-
niques, heatmaps can still be challenging to make sufficiently
clear. It can be difficult to distinguish between two spa-
tially close and similar keypoints originating from different
individuals. YOLO-Pose is a new heatmap-free pose estima-
tion method similar to top-down algorithms. This method
does not require the complex post-processing of bottom-up
algorithms, nor does it need multiple forward passes like
top-down algorithms. The complexity of the YOLO-Pose
algorithm is independent of the number of people in a single
image, and all keypoints are directly located in a single unidi-
rectional inference. It combines the advantages of both types
of algorithms: simple post-processing and constant running
time. This study is the first to unify and address the issues
of keypoint occlusion, small targets, and extreme viewpoint
poses. It proposes a keypoint detection algorithm for work-
ers in power operation environments based on YOLO-Pose
(YOLOv5s6-Pose), named PW-YOLO-Pose. This algorithm
achieves high precision and good real-time performance.
Additionally, a proprietary dataset for pose estimation of
power workers in complex electrical scenarios is created.
The algorithm proposed in this study, when tested on the
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FIGURE 1. Network structure of YOLO-Pose (YOLOv5s6-Pose).

power workers’ pose estimation dataset developed in this
study, shows an improvement of 10.74% and 7.2% over
the current state-of-the-art heatmap-based pose estimation
algorithms OpenPose and HRNet, respectively, in terms of
mAP0.5. In terms of metric mAP0.5:0.95( The average detec-
tion precision at object keypoint similarity thresholds of
0.5, 0.55, . . . , 0.95, respectively), it shows improvements
of 6.89% and 2.22%, respectively. Additionally, the number
of parameters is reduced by 16M and 15.4M, respectively.
The experiments demonstrate that the algorithm proposed
in this study has unique advantages in the task of pose
estimation for power workers, making it more suitable for
real-world applications and improving operational efficiency
and safety. Specifically, the contributions of this study are as
follows:

• By incorporating the Swin Transformer encoder, this
algorithm effectively addresses the challenges of keyp-
ionts’ misdetection and omissions caused by complex
power operation environments with background inter-
ference and occlusion.

• This study proposes a BiFPN feature extraction struc-
ture with a small target detection layer, enhancing the
algorithm’s feature fusion and multi-scale detection
capabilities. Combined with CA, it improves the pre-
cision of keypoints regression for power workers in
power operation scenarios, especially in the presence
of small targets.

• Modify the bounding box regression loss function to
Wise-IoU to make the model focus on anchor boxes of
ordinary quality, accelerate the convergence speed of

the model, and overall improve the model’s regression
performance on keypoints.

• A dataset was created for the purpose of power workers
pose estimation, and the RePoGen extreme view-
point poses dataset was introduced as an additional
resource to enhance the precision of the algorithm
model in predicting keypoints under extreme viewpoint
poses. Moreover, this study validates the performance
improvement achieved by incorporating the RePoGen
extreme viewpoint poses dataset into the dataset this
study created.

II. PRINCIPLE OF YOLO-POSE POSE ESTIMATION
ALGORITHM
YOLO-Pose is a novel heat-free pose estimation algorithm
based on the YOLO detection framework, which enables
end-to-end training [18]. This algorithm integrates object
detection and pose estimation tasks into a unified processing
pipeline. Such integrated processing allows obtaining both
the position and pose information of objects in a single for-
ward propagation process, reducing computational costs and
processing time.

The YOLO-Pose algorithm, which is based on the
YOLOv5 architectural model, employs CSP-darknet53 [16]
as the backbone network and PANet for multi-scale feature
fusion. The YOLO-Pose algorithm has 4 detection heads,
each containing 2 decoupled heads for predicting bounding
boxes and keypoints at different scales. The output includes a
human detection box and a skeleton graph connecting 17 key-
points. The network architecture is illustrated in Fig. 1.
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YOLO-Pose treats pose estimation as a single-person
human detection problem, primarily using the COCO dataset.
Within each detected individual, there are 17 key points. And
each keypoint information containing {x, y, conf }, where
(x, y) denotes the keypoints’ coordinates and conf denotes
the keypoints’ confidence level. For each anchor of YOLO-
Pose, there are 57 elements, 51 of which are predicted by the
keypoints header, and 6 are predicted by the boxes’ header.
The overall prediction definition vector for an anchor with n
keypoints is shown in Equation (1):

Pv = {Cx,Cy,W ,H , boxconf , classconf ,K 1
x ,K 1

y ,K 1
conf , . . .

. . . . . .,K n
x ,K n

y ,K n
conf } (1)

where Cx and Cy respectively represent the horizontal and
vertical coordinates of the center point of the anchor boxes;
W and H represent the width and height of the anchor
boxes respectively; bconf and cconf represent the confidence
of the anchor boxes and the confidence of the predicted class
respectively.

The YOLO-Pose algorithm utilizes CIoU [19] loss for
bounding box supervision. For a ground truth bounding box
located at position (i, j) and matched with the k-th anchor
boxes of scale s, the loss is defined as:

Lbox(s, i, j, k) = (1 − CloU (Boxs,i,j,kgt ,Boxs,i,j,kpred )). (2)

YOLO-Pose employs Object Keypoint Similarity (OKS) to
calculate the regression loss Lkpts for human keypoint coor-
dinates. For each anchor box, the entire pose information is
stored. If the ground truth bounding box matches the anchor
boxes located at position (i, j) and scale s, the algorithm
predicts OKS for each keypoint relative to the anchor boxes
center, then sums them to obtain the final OKS loss or key-
points’ IOU loss as follows:

Lkpts(s, i, j, k) = 1 −

Nkpts∑
n=1

OKS

= 1 −

∑Nkpts
n=1 exp

(
d2n

2s2k2n

)
δ(vn > 0)∑Nkpts

n=1 δ(vn > 0)
(3)

in this expression, dn represents the Euclidean distance
between the predicted position and the ground truth position
of the nth keypoint; Kn represents the specific weight of the
nth keypoint; s represents the target scale; vn represents the
visibility flag for each keypoint; δ is the impulse function
representing that only the LOKS values of the visible key-
points in the real annotation are computed. The loss function
of confidence in keypoints is defined as follows:

Lkpts_conf (s, i, j, k) =

Nkpts∑
n=1

BCE(δ(νn > 0), pnkpts) (4)

In the expression, BCE represents the binary cross-entropy
loss function, which determines whether individual keypoints
exist through binary classification; pnkpts represents the pre-
dicted confidence of the nth keypoint.

Finally, the total loss function is defined based on all the
individual loss functions as follows:

Ltotal =

∑
s,i,j,k

(λclsLcls + λboxLbox + λkptsLkpts

+ λkpts_conf Lkpts_conf ) (5)

where Lcls represents the classification loss, λcls =

0.5, λcls = 0.5, λkpts = 0.1 and λkpts_conf = 0.5 are
hyper-parameters chosen to balance losses at different scales.

III. PW-YOLO-POSE ALGORITHM MODEL
To address the detection challenges of keypoints, such as
misdetections and omissions caused by backgrounds, occlu-
sions, small targets, and extreme viewpoint poses in complex
electrical power operation environments for power workers,
this study proposes a 2D pose estimation algorithm model
specifically designed for detecting keypoints of power work-
ers in complex electrical operation environments based on
YOLOv5s6-Pose. We name it PW-YOLO-Pose.

The algorithm proposed in this study mainly made the
following improvements on the existing algorithm: 1. Embed-
ding Swin Transformer encoder in the top C3 layer of the
backbone network, enhancing the algorithm’s capability to
detect occluded key points through its unique SW-MSA
(Shifted Window Multi-head Self Attention) mechanism. 2.
BiFPN with a small target detection layer is proposed to
construct a new feature fusion network structure, strengthen
the information exchange between shallow features and deep
features, enrich the scale and source of feature fusion for
powerworkers’ pose estimation, improve the detection ability
of keypoints of small-target power workers, and alleviate
the problems of misdetections and omissions. 3. The CA is
embedded in each C3 layer connected to the head to enhance
the sensitivity of the algorithm to the location information of
keypoints at different scales and improve the precision of the
keypoint regression. 4.Wise-IoU is introduced to redefine the
bounding box regression loss function to reduce the harmful
gradient generated by low-quality examples, accelerate the
convergence speed of the model, and further improve the
algorithm’s ability to detect the keypoints of the human body
as a whole. PW-YOLO-Pose’s network architecture is shown
in Fig. 2.

A. SWIN TRANSFORMER ENCODER
The Swin Transformer encoder is the core module and basic
computational unit of the Swin Transformer [20], whose
structure is illustrated in Fig. 3. A single Swin Transformer
encoder consists of two Swin Transformer blocks, with one
block composed ofW-MSA (window-basedMulti-head Self-
Attention) and MLP(Multilayer Perceptron), and the other
composed of SW-MSA (Shifted Window Multi-head Self-
Attention) and MLP, where the MLP [21] is a multi-layer
perceptron with an embedded GELU activation function.
Layer normalization (LN) is applied before each MSA mod-
ule andMLP, and residual connections are used between each
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FIGURE 2. Structure of PW-YOLO-Pose network. The PW-YOLO-Pose network structure consists of three parts: the backbone
network, the neck, and the head. The red lines represent the new fusion paths. The portion enclosed in the transparent red box
represents the newly added small target detection layer in this study. BiFPN_Concat is the module used in this study to construct
the BiFPN. The other modules will be introduced in Chapter 3.

FIGURE 3. Swin transformer encoder structure.

MSA (Multi-head Self-Attention) and MLP. In this study,
we solve the global information loss problem caused by con-
stant downsampling in the backbone network by embedding a
Swin Transfomer encoder in the top C3 layer of the backbone
network, and we name this module C3STR. Its structure is
shown in Fig. 4.
Compared to the traditional ViT [22] architecture, the

advantages of the Swin Transformer encoder lie in its

FIGURE 4. C3STR structure.

utilization of both W-MSA, which confines attention com-
putation within each window of the feature map to save
computational resources, and SW-MSA, enabling interac-
tion of information between different windows. Additionally,
it employs a masking mechanism to isolate invalid informa-
tion exchange between non-adjacent pixels in the original
feature map. Fig. 5 illustrates the principle of SW-MSA,
where the self-attention [23] computation is formulated as
Equation (6):

Attention(Q,K,V ) = softmax

(
QKT
√
dk

+ B

)
V (6)

In Equation (6), Q, K and V represent the query matrix, key
matrix, and value matrix, respectively, obtained by multiply-
ing the input matrix with three trainable parameter matrices;
√
dk Represents the square root of the number of channel

sequences; QKT represents the information interaction pro-
cess between different feature matrices, while QKT divided
by

√
dk is to prevent the softmax function’s values from

becoming too large, which could lead to gradient vanishing
in the network; B represents relative positional encoding.
Unlike the position encoding in the ViT architecture, Swin
Transformer incorporates positional encoding into attention
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FIGURE 5. Chematic of SW-MSA self-attention principle. 1-9 represent the 9 Windows that divide the feature map
after the shift window self-attention calculation; A, B, C, and D represent four Windows of the same size that have
been reassembled after a loop shift and window reorganization operation.

and utilizes relative positional information instead of absolute
positional information, enabling it to focus on shifted window
information. In summary, embedding the Swin Transformer
encoder into the C3 layer, named C3STR, helps the network
model in this study to better understand contextual infor-
mation, effectively capture long-range dependencies, and
obtain global information from the feature maps while main-
taining relatively low computational costs. Moreover, it can
also suppress local interference information to some extent,
enhancing the model’s sensitivity to occluded keypoint fea-
tures in complex electrical work environments.

B. BIFPN WITH SMALL TARGET DETECTION LAYER
The YOLO-Pose network model, based on the YOLOv5
architecture, utilizes PANet for feature fusion from the back-
bone network. The PANet structure is depicted in Fig. 6(b).
Deeper feature maps contain richer semantic information
suitable for object classification, while shallower feature
maps contain better positional information suitable for object
localization. PANet builds upon the Feature Pyramid Net-
work (FPN) by establishing a bottom-up pathway [24]. The
structure of FPN [25] is shown in Fig. 6(a). This enables
the feature maps predicted by PANet to possess both strong
semantic and positional information simultaneously. While
using PANet relative to FPN has resulted in a significant
improvement in detection precision, it also comes with a
corresponding increase in computational overhead.

In previous feature fusion methods, the equal treatment
of feature information for different scales fails to adequately

consider the varying importance of input features, which in
reality exhibit unequal contributions to the output features.
This suggests that features at specific scales may demon-
strate heightened significance and exert a more pronounced
influence on the ultimate outcome. In pursuit of this research
objective, this study utilizes a novel neck feature fusion
network known as BiFPN (a weighted bi-directional feature
pyramid network).

This innovative approach incorporates additional weights
to each input, facilitating the selective integration of diverse
input features [26]. The structure of BiFPN is depicted in
Fig. 6(c). The BiFPN model outperforms PANet in several
aspects. First, to streamline the network and reduce parameter
complexity, nodes with only one input edge and low con-
tribution are eliminated; Second, under the premise that the
number of parameters is slightly increased, the original power
workers’ profile features extracted from the shallow network
are weighted and fused with the profile features extracted
from the deep network through the jump connection mech-
anism, which strengthens the information exchange between
the shallow features and the deep features, making the net-
workmodel focus on key information prediction, avoiding the
problem of omissions and misdetection caused by the single
source of fusion features in the original network, and improv-
ing the prediction precision. BiFPN uses a fast normalized
weighted feature fusion method, which is computed as

O =

∑
i

ωi

ε +
∑
j
wj

.Ii (7)
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FIGURE 6. Comparison of different feature pyramid network structures.

FIGURE 7. Feature Fusion and result prediction network after Introducing BiFPN and Adding Small Target Detection Layer.
Detection-P2 is the new detection head for better prediction of bounding boxes and keypoints of small target characters.

where ωi represents the learnable weights; Ii represents the
input features, and ε = 0.0001 is used to avoid instabil-
ity of the values. The backbone network of YOLO-Pose
downsamples the input image to generate feature maps of
sizes proportional to 1/2, 1/4, . . . , 1/64 compared to the
original image size. According to principles in computer
vision, it is known that deeper feature maps with larger
receptive fields are suitable for detecting large objects and
contain more global information, while shallower feature
maps with smaller receptive fields are suitable for detecting
small objects and contain more detailed information [27],
[28], [29]. This achieves consistency between the receptive
field and target scale. Therefore, feature maps P1, P2, P3, P4,
P5, and P6 in Fig. 7 are gradually suitable for detecting targets
of increasing sizes. To address the issue of small targets
for power workers in electrical operation environments, this

study introduces a small target detection layer at the neck,
capable of fusing features from the P2 layer of the backbone
network, which downsamples the original image twice. Addi-
tionally, the detection heads in the network model’s head part
are increased to five and used for detection, thereby enhanc-
ing the algorithm’s ability to detect small target individuals
and improving the precision of keypoint regression in this
situation. The improved network fusion and result prediction
structure are illustrated in Fig. 7.

C. C3_CA BLOCK
In this study, the CA (Coordinate Attention) is embedded in
each C3 layer connected to the head of the model to improve
the sensitivity of the model to the location information of
keypoints at different scales, enhance the ability to locate key-
points, and improve the precision of keypoints’ regression.
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FIGURE 8. C3_CA network structure.

In this study, the C3 module embedded with the attention CA
is named C3_CA. The structure of C3_CA is shown in Fig. 8,
and the network structure of CA is shown in Fig. 9 below.
Previously, the CBAM [30] attention could also attend

to both channel and spatial information. However, CBAM
utilizes convolutional operations for spatial attention to lever-
age positional information, which cannot model long-range
dependencies and overlooks the importance of such relation-
ships in visual tasks. In contrast to CBAM, the CA embeds
positional information into channel attention, thereby encod-
ing both channel relationships and long-range dependencies.
The CA [31] can be specifically divided into coordinate
information embedding and coordinate attention generation.

1) COORDINATE INFORMATION EMBEDDING
In order to globally encode spatial information into channel
descriptors, it is common to use global pooling. However,
this method may lead to the loss of positional information.
To address this issue, the CA attention mechanism decom-
poses global pooling into two separate one-dimensional
feature encoding operations. Specifically, for the input feature
map, it undergoes global average pooling separately along the
width and height directions. In Fig. 9, we can observe that
the shape of the input feature map is [C, H, W], where C, H,
and W represent the number of channels, height, and width
of the feature map, respectively. After performing average
pooling along the width direction, the resulting feature map
has a shape of [C, H, 1]. At this point, the features are mapped
to a higher dimension. The output of the channel c at height
h can be represented as:

zhc(h) =
1
W

∑
0≤i<W

xc(h, i). (8)

Similarly, for an input feature map with shape [C, H, W],
after performing average pooling along the height direction,
the resulting feature map has a shape of [C, 1, W]. At this
point, the features are mapped to a higher dimension along
the width. The output of the channel c at width w can be
represented as:

zwc (w) =
1
H

∑
0≤j<H

xc(j,w). (9)

These two clever transformations enable the CA to cap-
ture long-range dependencies in one spatial direction while

FIGURE 9. CA network structure.

preserving precise positional information along another spa-
tial direction. This helps the network in this study to more
accurately locate keypoints.

2) COORDINATE ATTENTION GENERATION
After obtaining the feature maps zhc and z

w
c in the height and

width directions, respectively, generated by Equation (8) and
Equation (9). As shown in Fig. 9, first, the Concat operation
will be performed on zhc and z

w
c . Then, the result after Concate-

nation will be fed into the 1 × 1 convolution transformation
function F1 for dimensionality reduction. Subsequently, nor-
malization and nonlinear activation operations will be carried
out to obtain:

f = δ(F1([zh, zw])) (10)

The generated feature map f ∈ RC/r×(H+W)×1, where δ

represents the non-linear activation function, and r indicates
the downsampling factor.

Along the spatial dimension, the feature map f is split into
fh ∈ RC/r×H×1 and fw ∈ RC/r×1×W using the split operation.
Then, each part is upsampled using 1 × 1 convolution and
subsequently activated using the sigmoid activation function,
resulting in two attention vectors for each direction:

gh = σ (Fh(fh)) (11)

gw = σ (Fw(fw)) (12)

The output Y of the generated attention block can be repre-
sented as:

yc(i, j) = xc(i, j) × ghc(i) × gwc (j) (13)

D. INTRODUCE WISE-IOU TO IMPROVE CIOU
The well-defined loss function for bounding box regression
is crucial for human object detection. Since the YOLO-Pose
algorithm resembles a top-down approach, and all keypoints
regressions occur within a single forward pass, the precision
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FIGURE 10. Bounding box regression loss function visualization. wi and hi
represent the width and height of the rectangle intersecting the ground truth
bounding boxes and the predicted bounding boxes, respectively.

of human object detection will impact the precision of key-
points’ regression.

The YOLO-Pose algorithm employs CIoU as the regres-
sion loss for human object bounding boxes. The definition is
as follows:

LCIoU = 1 − IoU +
ρ2(b,bgt )

c2
+ αv (14)

CIoU builds upon DIoU [19] by introducing a penalty term to
address the issue when the center points of the true bounding
box and the predicted bounding box coincide, but their aspect
ratios differ while maintaining the same IoU (Intersection
over Union) [32]. As shown in Equation (14), where αv rep-
resents the newly introduced penalty term. In this equation, v
is defined as:

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2 (15)

In Equation (15), w
gt

hgt and
w
h respectively represent the aspect

ratios of the ground truth bounding boxes and the predicted
bounding boxes. In Fig. 10: Visualization of bounding box
regression loss function, the relationship between the two can
be more clearly understood. Here, α is a balancing parameter
that assigns priority to IoU, defined as:

α =
v

(1 − IoU ) + v
(16)

The v in the CIoU formula reflects the difference in aspect
ratios rather than the differences in width and height com-
pared to their confidence. Therefore, it can sometimes hinder
effective optimization of similarity. Additionally, since the
dataset used in this study is manually annotated, it inevitably
introduces low-quality examples. CIoU was introduced as a
bounding box regression loss function under the assumption
that all examples in the training dataset are of high quality.
Training with the assumption that all examples in the training

dataset are of high quality would emphasize strengthening the
fitting capability of the bounding box loss function. Assum-
ing that all training examples in the dataset are of high quality
will emphasize strengthening the fitting capability of the
bounding box regression loss function. If the fitting capability
of the bounding box regression loss function for low-quality
samples is blindly strengthened, it will decrease the model’s
generalization performance. Therefore, this study introduces
the bounding box loss function Wise-IoU [33] proposed by
Zanjia Tong et al., based on a dynamic non-monotonic focus-
ing mechanism. This allows the algorithmmodel in this study
to focus on anchor boxes of ordinary quality during training,
speeding up the model convergence speed, and improving the
model’s performance in keypoints regression [33].

In response to the unavoidable presence of low-quality
examples in the training data, where geometric factors exacer-
bate the algorithm’s penalty on low-quality instances, leading
to the inability to optimize high-quality and ordinary samples
properly, Wise-IoU v1 with a two-layer distance attention
mechanism was first constructed:

LWIoUv1 = RWIoULIoU

RWIoU = exp(
(x − xgt )2 + (y− ygt )2

(W 2
g + H2

g )∗
) (17)

Next, dynamic non-monotonic FM (focusing mechanism) β

is introduced:

β =
L∗
IoU

LIoU
∈ [0, +∞) (18)

Finally, by constructing non-monotonic focusing coeffi-
cients r and combining them with Equation (17) obtain the
Wise-IoUv3 used in this study, which incorporates a dynamic
non-monotonic focusing mechanism.

LWIoUv3 = rLWIoUv1, r =
β

δαβ−δ
(19)
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FIGURE 11. Example of the composition of the power workers pose estimation dataset.

In the three equations used to construct Wise-IoUv3 above,
RWIoU ∈ [1, e) represents the penalty term of Wise-IoU
that will significantly strengthen the normal quality LIoU .
LIoU ∈ [0, 1] represents the IoU loss that will significantly
reduce the penalty of Wise-IoU for high quality anchor and
focus on the distance between the center point when the
anchor overlap well with the predicted bounding boxes. LIoU
represents the exponentiallymoving averagewithmomentum
m. FM β represents the outlierness. A smaller outlierness
indicates higher quality of anchor boxes, thus assigning them
a smaller gradient gain. At the same time, smaller gradi-
ent gains are also assigned to predicted boxes with larger
outlierness. This approach effectively reduces harmful gra-
dients generated by low-quality training samples, allowing
the bounding box regression loss to focus more on anchor
boxes of ordinary quality and thereby improving the overall
network performance. α and δ are hyperparameters, set to
1.9 and 3 respectively. This study combines the visualization
of the bounding boxes regression loss function in Fig. 10.
Wg,Hg denote the width and height of the smallest closed
box that can wrap both the predicted bounding boxes and the
ground truth bounding boxes, respectively. The superscript
∗ in Equation (17) and Equation (18) indicates that these
parameters are not involved in back propagation, which elim-
inates the factors that impede the convergence of the model.
x and y represent the horizontal and vertical coordinates of
the center point of the predicted bounding box, respectively;
xgt and ygt represent the horizontal and vertical coordinates
of the center point of the ground truth bounding boxes.

IV. ANALYSIS OF EXPERIMENTS AND RESULTS
A. COLLECTION AND PROCESSING OF EXPERIMENTAL
DATASETS
Part of the dataset used in this study is captured from real
scenes inside substations, while the remaining portion is
collected from publicly available images on the internet.
These images cover various scenarios such as substation
operations, high-altitude operations on power towers, opera-
tions on high-voltage power lines, emergency operations, etc.
As shown in Fig. 11, some examples are listed in this study.As
evident from the dataset examples shown above, the working

environment in power operations is highly complex, prone to
occlusion, small targets, and uncommon extreme viewpoints.
However, most official COCO datasets for pose estimation
consist primarily of images with normal viewpoints, fewer
small targets. This is a significant reason why this dataset was
created for this study. To enhance the robustness and gener-
alization capability of the model, this study utilized common
data augmentation techniques such as random cropping, ran-
dom flipping, HSV color space transformation, Mosaic, and
Mixup, provided by the algorithm. Additionally, to address
extreme viewpoint angle poses, this study introduced a new
synthetic data generation method called RePoGen (Rare
Poses Generator), proposed by Miroslav Purkrabek et al. The
RePoGen dataset, generated using this method, serves as a
supplement to the dataset used in this study.

The authors mentioned in the original paper that incorpo-
rating this dataset as a supplement to the COCO-keypoint
dataset has improved the performance of some algorithm
models. Through subsequent analysis of experimental results,
it was found that using this computationally synthesized vir-
tual dataset with extreme viewpoint pose data has improved
the detection precision of the models in this study. Examples
of the RePoGen [34] dataset are shown in Fig. 12. This study
dataset is divided into training and test sets in an 8:2 ratio.
The composition of this study’s dataset is shown in Table 1.
The images in this study mostly have occlusions, so they have
not been classified.

In this study, the dataset was annotated using the Microsoft
official COCO Annotator for key points and bounding boxes.
The annotation format follows the COCO format, including
annotations for 17 keypoints and 1 bounding box per person.

The label numbers corresponding to the keypoints are
shown in Fig. 13, where 0 represents the nose, 1 represents
the left eye; 2 represents the right eye; 3 represents the left
ear; 4 represents the right ear, 5 represents the left shoulder,
6 represents the right shoulder; 7 represents the left elbow;
8 represents the right elbow; 9 represents the left wrist; 10 rep-
resents the right wrist; 11 represents the left hip; 12 represents
the right hip; 13 represents the left knee; 14 represents the
right knee; 15 represents the left ankle; 16 represents the right
ankle. During the labeling process, coco-annotator provides
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FIGURE 12. Example of RePoGen synthesized extreme viewpoint poses dataset.

TABLE 1. Composition of datasets.

FIGURE 13. COCO human body keypoints skeletal map and labeling example: (a) skeletal map.
(b) examples of labeling.

three keypoint visual states i.e. LABELED VISIBLE, which
is the presence of keypoints as stated in this study. It is
represented in the algorithm as a value of 2. The second
state is LABELED NOT_VISIBLE, which is described in
this study as the keypoint is occluded and is represented by a
value of 1 in the algorithm. The third state is NOTLABELED,
which means that the keypoint is not visible outside the field
of view, it is not labeled in this study and is represented by a
value of 0 in the algorithm. Fig. 13 shows a human skeleton
map in COCO format consisting of 17 keypoints with an
example of the labeling in this study.

B. SETTING OF EXPERIMENT ENVIRONMENT AND
PARAMETERS
The PW-YOLO-Pose: a 2D pose estimationmethod for power
workers in the power operation environment proposed in this
study was tested on Windows 10 with a 64-bit operating
system, programming software using PyCharm Commu-
nity Edition, deep learning framework PyTorch, and GPU
acceleration using CUDA and cuDNN. The comprehensive
parameters of the test platform are shown in Table 2.
During training, this study set the number of epochs to 300,

batch size to 16, initial weight decay coefficient to 0.0005,
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TABLE 2. Configuration of the experiments environment.

initial learning rate to 0.001, and final learning rate to 0.02.
The optimizer used was stochastic gradient descent (SGD)
with a momentum of 0.937. This study employed a warm-up
strategy during training to stabilize the model. The warm-up
initial bias learning rate was set to 0.01, and the number
of epochs for warm-up was set to 3. During training, input
images were uniformly resized to 640× 640 dimensions. For
transfer learning, this study utilized weights pretrained on the
COCO 2017 dataset.

C. EVALUATION METRICS
To evaluate the similarity between the ground truth keypoints
and the predicted keypoints, this study adopts the official
evaluation standard OKS (Object Keypoint Similarity) from
the COCO human keypoints detection dataset:

Loks =

∑
i

exp
(

−
d2i

2s2k2i

)
δ(νi > 0)


∑
i

δ(νi > 0)
(20)

In Equation (20), i represents the keypoints number; di repre-
sents the Euclidean distance between the predicted location
and the true location of the ith keypoint; Ki represents the
keypoints’ specific weight; s represents the target scale; δ is
the impulse function, which indicates that only the value of
Loks is calculated for the visible keypointss in the true anno-
tation; and νi denotes the visibility flag for the ith keypoints.
The three visual states represented by νi are illustrated in this
study in this chapter A

This study uses Precision and Recall as evaluation metrics
for human target detection. They are defined as follows:

Precision =
TP

TP+ FP
(21)

Recall =
TP

TP+ FN
(22)

where TP represents the number of true positive samples cor-
rectly classified; FP represents the number of false positive
samples incorrectly classified; FN represents the number of
false negative samples incorrectly classified. In this study,
mAP0.5 and mAP0.5:0.95 are used as evaluation metrics for
keypoint detection. Here, mAP0.5 represents the average
detection precision of keypoints when the threshold of

Loks is 0.5, and mAP0.5:0.95 represents the average detec-
tion precision of keypoints when the threshold of Loks is
0.5,0.55,. . . 0.90,0.95, respectively. Model size is evaluated
using the parameter count, and the inference speed of the
model on a single image is utilized to evaluate the model’s
inference speed.

D. ANALYSIS OF RESULTS
1) ABLATION EXPERIMENT
To assess the impact of each improvement module and the
RePoGen dataset on the overall performance of the model,
this study conducted ablation experiments. The design of
the ablation experiments is presented in Table 3, and the
experimental results are shown in Table 4. From the results in
Table 4, it can be observed that the PW-YOLO-Pose models
in this study exhibited improvements in various indicators
compared to the baseline model (YOLOv5s6-Pose) on the
electrical power operation pose estimation datasets created in
this study. In terms of human target detection, the precision
of the algorithm in this study is 92.61%, up 1.06% from
the baseline, and the recall rate is 89.18%, which is a large
improvement, up 5.2% from the baseline model. At the same
time, it also indicates that through the improvement methods
proposed in this paper, the algorithm has indeed improved
its recognition rate for power operation personnel targets in
complex power operation environments. For the algorithm
proposed in this study, due to its specific keypoint regression
method, the recognition rate of human targets will directly
affect the probability of keypoint omissions. In terms of
keypoints detection, mAP0.5 and mAP0.5:0.95 are 93.35% and
64.75%, respectively, which are 5.22% and 1.53%higher than
the baseline model. The detection time of a single image is
21.3 ms, which basically meets the requirements of real-time
detection.

From the results of improvement 2 in Table 4, it is evident
that introducing the Swin Transformer encoder in this study
led to a slight increase in parameters compared to the base-
line model, but the average detection precision of keypoints
improved significantly. The reason behind this improvement
lies in the unique characteristics of the Swin Transformer
encoder, such as the shift window multi-head self-attention
computation and relative position encoding, which help the
algorithm model capture long-distance dependencies bet-
ter, enhance the model’s global modeling capability, and
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TABLE 3. Design of the ablation experiment. STDL stands for small target detection layer.
√

means that the improved methods is used, - means that it is
not used.

TABLE 4. Experimental results of ablation.

improve the detection ability of occluded keypoints. Com-
paring the results of improvement 3 with improvement 2,
it can be observed that the CA attention mechanism enhances
the sensitivity of the algorithm model to keypoint posi-
tional information, thereby improving the precision of key-
point regression. Comparison between improvement 4 and
improvement 3 demonstrates that BiFPN can better integrate
multi-scale information. Moreover, comparing improvement
5 with improvement 4 indicates that the proposed small
object detection layer in this study enhances the detection
ability of small target power workers and their keypoints
by the algorithm model. Contrasting improvement 6 with
improvement 5, and referring to Fig. 14, it becomes evi-
dent that Wise-IoU can accelerate the model convergence
speed and improve the precision of keypoint regression.
Finally, by comparing improvement 7 with improvement 6,
it can be inferred that the algorithm model of this study
has enhanced its ability to detect extreme viewpoint human
targets and regress their keypoints by learning the RePoGen
extreme viewpoint poses dataset, thereby improving the
overall precision of keypoints regression. In summary, com-
bined with Table 4, it can be concluded that although the
algorithmmodel of this study has slightly increased in param-
eters and detection time compared to the original algorithm
model, it has achieved a significant improvement in detection
precision.

To highlight the adaptability of our algorithm to com-
plex power operation environments, three specific scenarios

FIGURE 14. The comparison of mAP0.5 (mAP0.5 represents the average
detection precision of keypoints when the threshold of Loks is 0.5).

with significant occlusion, extreme viewpoint poses, and
small target individuals were selected for visual comparison.
In Fig. 15, it can be observed that the original algorithm
model (YOLOv5s6-Pose) performs poorly in situations with
significant occlusions because occlusions severely disrupt the
correlation between joints, resulting in low precision in some
keypoints regressions. In contrast, our algorithm embeds
the Swin Transformer encoder in the top C3 layer of the
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FIGURE 15. Comparison of the effect of pose estimation in the case of occlusion. (a) Original algorithm. (b) Algorithm of this study. The red
circles labeled in the figure represent the points that the original algorithm incorrectly detected in this case.

backbone network, enhancing information exchange between
adjacent pixels through the SW-MSA, thereby improving the
model’s perception of spatial positional information. There-
fore, compared to the original algorithm, our algorithm can
still accurately regress keypoints. In Fig. 16, severe errors in
keypoint regression occur in some extreme viewpoint poses
situations with the original algorithm. Our algorithm embeds
the CA in each C3 layer connected to the detection head and
uses the RePoGen virtual extreme viewpoint poses dataset as
a supplement to our self-made dataset, thereby improving the
precision of keypoints’ regression under extreme viewpoint
poses conditions. In the case of small targets shown in Fig. 17,
the original algorithm’s precision of keypoint regression is
insufficient, and there are even cases where background infor-
mation is detected as human targets. In contrast, our algorithm
can still maintain good detection performance in this special
scenario. The main reason is that we replaced the PANET
used for feature extraction in the original algorithm with the
more powerful feature extraction capability of BiFPN. Addi-
tionally, we introduced a small target detection layer, further
enhancing the feature extraction capability of our network in
this special scenario.

2) COMPARISON EXPERIMENTS OF DIFFERENT POSE
ESTIMATION ALGORITHMS
In order to further verify the improvement effect of the
algorithms in this study, two current mainstream algorithmic
models based on generating heatmaps and one algorithmic
model based on regression coordinates with a similar struc-
ture to the algorithmic model in this study are selected
for comparison. They are OpenPose, HRNet-W32, and
YOLOXs-Pose, respectively. The experimental results are

shown in Table 5. Compared to other algorithmic models,
the model in this study has the lowest number of parameters
but the highest detection precision for keypoints under the
power workers pose estimation dataset produced in this study.
In Comparision to OpenPose, the algorithmic model of this
study reduces the number of parameters by 16M, mAP0.5
and mAP0.5:0.95 improves by 10.74% and 6.89% respec-
tively. Compared with HRNet-W32, the model parameters
are reduced by 15.4M, mAP0.5 and mAP0.5:0.95 improved
by 7.2% and 2.22%, respectively. Compared with YOLOXs-
Pose, the number of model parameters is reduced by 21.3 M,
mAP0.5 and mAP0.5:0.95 improved by 4.12% and 1.27%,
respectively.

Fig. 18 illustrates the pose estimation performance of the
three compared algorithms in occluded scenarios. In cases
where occlusion occurs in the forward view, the two
heatmap-based pose estimation methods exhibit slightly
better keypoint detection performance than YOLOx-Pose.
However, when the human body is in a side-view angle caus-
ing occlusion, YOLOx-Pose demonstrates better detection
performance.

Fig. 19 shows the pose estimation performance of the
three compared algorithms in extreme viewpoint poses situa-
tions. It is noticeable that the heatmap-based pose estimation
algorithms perform poorly in some extreme viewpoint poses
scenarios. This is because even with complex post-processing
to optimize the heatmap, the heatmap remains unclear in such
extreme cases, and is significantly influenced by background
factors in the complex power operation environment. Com-
pared to the two heatmap-based pose estimation algorithms,
YOLOXs-Pose algorithm exhibits better detection perfor-
mance in these situations. However, as shown in Fig. 19 (c),

116854 VOLUME 12, 2024



Q. Su et al.: PW-YOLO-Pose: A Novel Algorithm for Pose Estimation of Power Workers

FIGURE 16. Comparison of the effect of extreme viewpoint poses estimation. (a) Original algorithm. (b) Algorithm of this study. The red circles
labeled in the figure represent the points that the original algorithm incorrectly detected in this case.

FIGURE 17. Comparison of the effect of small target pose estimation. (a) Original algorithm. (b) Algorithm of this study.

this algorithm’s detection is also susceptible to background
factors in some cases, leading to misdetection in human
targets and keypoints.

Fig. 20 presents the pose estimation performance of the
three compared algorithms in scenarios with small targets.
OpenPose performs the worst, with severe omissions of
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FIGURE 18. Comparison of the detection effect of different pose estimation algorithms in the case of occlusion. (a) Detection
effects of the OpenPose algorithm and its generated heatmaps. (b) Detection effects of the HRNet-W32 algorithm and its generated
heatmaps. (c) Detection effects of YOLOXs-Pose algorithm.

keypoints and human target. This is attributed to OpenPose
using the VGG19 first 10 layers as the backbone network for
feature extraction, followed by two stages. In this process,
feature information flows in one direction, and there is not
enough communication between high-layers, mid-layers, and

low-layers feature information, resulting in severe loss of
low-level information. However, in the image pyramid, the
feature maps in the lower layers contain more detailed infor-
mation, which is crucial for predicting keypoints of small
targets. HRNet-W32 maintains high resolution throughout
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FIGURE 19. Comparison of the detection effect of different pose estimation algorithms in extreme viewpoint poses. (a) Detection
effects of the OpenPose algorithm and its generated heatmaps. (b) Detection effects of the HRNet-W32 algorithm and its generated
heatmaps. (c) Detection effects of YOLOXs-Pose algorithm.

the feature extraction process by parallelizing multiple res-
olution branches and continuously exchanging information
between different branches, thus having strong semantic
information and precise positional information simultane-
ously. Therefore, in this scenario, HRNet-W32’s detection

performance is superior to OpenPose. Compared to Open-
Pose, YOLOXs-Pose, which has a similar structure to our
research algorithm, exhibits better performance in small tar-
get pose estimation. This is because YOLOXs-Pose uses
PANET, allowing more information fusion between different
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FIGURE 20. Comparison of the detection effect of different pose estimation algorithms in
small target human state. (a) Detection effects of the OpenPose algorithm and its generated
heatmaps. (b) Detection effects of the HRNet-W32 algorithm and its generated heatmaps.
(c) Detection effects of YOLOXs-Pose algorithm.

feature layers, and is more adaptable to keypoint prediction
at different scales. However, there is still a gap in precision

between YOLOx-Pose and our research algorithm. The rea-
son lies in our research network structure, which not only
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TABLE 5. Comparison of detection performance of different algorithms.

utilizes the stronger feature extraction capability of BiFPN
but also adds a small target detection layer to improve the
regression precision of keypoints of small target individuals.
Overall, our research algorithm demonstrates better detection
of keypoint and pose estimation for power workers in power
operation environments.

V. CONCLUSION
For complex electrical power operation environments, this
study proposes a pose estimation algorithm for electrical
workers in electrical power operation environments based on
YOLO-Pose, termed PW-YOLO-Pose. It is primarily aimed
at addressing challenges of keypoints’ omission and mis-
detection for power workers in complex environments of
electrical power operation due to background complexity,
occlusion, small targets, and extreme viewpoint. The effec-
tiveness of the algorithm is validated through training and
testing on a dataset specifically created for power workers
pose estimation in this study.

To enhance the detection rate of occluded keypoints,
a Swin Transformer encoder is embedded in the top C3 layer
of the backbone network. Additionally, a BiFPN with an
added small target detection layer is utilized to improve the
detection rate of small target individuals and the regression
precision of their keypoints. The incorporation of a CA into
the C3 layer connected to the model head enhances the sen-
sitivity of the algorithm to positional information, thereby
improving overall keypoints’ regression precision. The intro-
duction of the Wise-IoU bounding box loss function prevents
harmful gradients caused by low-quality anchor boxes anno-
tated due to human factors during training, accelerating
model convergence speed and enhancing overall detection
performance.

In this study, the RePoGen dataset, generated using a
novel synthetic data generationmethod proposed byMiroslav
Purkrabek et al., is used as a supplement to the dataset created
for this study to improve the model’s detection performance
under extreme viewpoint poses. Experimental results show
that compared to the original algorithm model, the mAP0.5
(The average detection precision based on object keypoint
similarity threshold of 0.5.) and the mAP0.5:0.95 (The average
detection precision at object keypoint similarity thresholds of
0.5, 0.55, . . . , 0.95, respectively) have improved by 5.22%

and 1.53%, respectively. Compared to OpenPose and HRNet,
which use heatmaps for pose estimation, our algorithm shows
improvements of 10.74% and 7.2% in mAP0.5, respectively.
Moreover, in terms of model parameters, our algorithm is
more lightweight than these two algorithms. In conclusion,
the proposed algorithm model outperforms current main-
stream human keypoint detection network models in complex
environments of electrical power operation, particularly in
extreme viewpoint poses and small target states, offering
theoretical support for monitoring the status and identifying
behaviors of electrical workers. Of course, our proposed
algorithm is not only suitable for environments of electrical
power operation but also applicable in other settings, such as
construction site scenarios.

However, our proposed algorithm still has certain limita-
tions. In cases with extensive occlusion, the regression of key
points remains suboptimal. Nonetheless, this is a crucial issue
that needs to be addressed in complex scenarios. To address
this issue, we plan to implement the following improvements:
(1) Data augmentation, specifically by increasing the pro-
portion of heavily occluded samples; (2) Using multi-task
learning methods, such as combining pose estimation with
instance segmentation tasks to share feature representations,
allowing the model to better understand occlusions and
improve its robustness. Additionally, the complexity of our
algorithm model has significantly increased compared to the
baseline model, which is detrimental to real-time detection.
Moving forward, we will continue to pursue a smaller num-
ber of model parameters and reduced algorithm complexity.
Finally, we aim to deploy the model on edge AI devices such
as the Jetson NANO, utilizing TensorRT for model inference
acceleration and DeepStream for video acceleration to main-
tain good real-time detection performance. We also plan to
conduct application tests in actual electrical work scenarios.
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