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ABSTRACT This work presents an adaptive gain fixed-time synchronization of a seven-term hyperchaotic
4D system, along with its analog circuitry realizations. To facilitate a simplistic circuit realization of the
closed loop system, the control design process initiates with the design of a novel, simplified fixed-time
stability lemma that gives a lower convergence time, while being easier to compute. A nonlinear, fixed-
time adaptive-gain nonsingular terminal sliding mode controller was then designed to synchronize the
hyperchaotic 4D system. Theoretical analyses successfully achieved fixed-time synchronization, and
computer simulations verified the achievement of zero-error convergence across all states within 1 second,
irrespective of the initial conditions and even in the presence of significant parameter and disturbance
changes. Analog circuitry implementations of the adaptive gain fixed-time chaotic synchronization
configuration were realized using commercially available components, for instance, LF357 and AD633.
The circuit equations were devised to replicate those used in the controller, with the goal of facilitating
troubleshooting by ensuring simplicity. Electronics workability was tested using PSPICE simulation
program. The results demonstrated that active synchronization was achieved in fixed time with less than
1% error across the states in the presence of disturbances. Finally, the developed fixed-time chaotic
synchronization was applied to a secure communication system. The results indicate that the original and
recovered messages exhibit a high degree of similarity to each other after a fixed duration of 1 second.

INDEX TERMS Chaotic synchronization, adaptive gain fixed-time control, terminal sliding mode control,
closed-loop circuit implementation.

I. INTRODUCTION
Since the seminal discovery of the Lorenz system [1], chaos
theory has experienced continuous growth over the past
three decades. Chaotic systems have many characteristics
of interest, from their well-known pronounced sensitivity
to initial conditions, randomness, and non-periodicity [2],
and to their relevance in many natural phenomena, from
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atmospheric convection, which was the discovery of the
Lorenz system [1], to electronic circuits [3]. Since the days
of the classical Lorenz and Sprott systems, researchers have
also discovered continuous streams of chaotic systems. Some
of the examples include [4], [5], [6], [7], [8].

Chaos synchronization has been in the limelight of
recent chaotic research, requiring the use of various con-
trol algorithms, ranging from traditional linear feedback
control [9], [10], and adaptive and optimal controls [11],
[12], [13], [14]. Nonlinear and backstepping control methods
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have also been designed, for example [15], [16], [17], [18].
Another advanced technique, such as adaptive sliding mode
control, was designed in [19]. The conventional integral
sliding mode controller adds the integral action to the system
state variables. This gets rid of steady-state errors and
makes the system more robust overall [20]. In [21], the
construction of a cubic sliding mode controller was reported
to synchronize the chaos.

The earlier asymptotic stability designs in the literature
are somewhat limited. That is, even though stability is
guaranteed, the convergence time is not bounded and cannot
be determined by the control engineers. The concept of
finite-time stability was then proposed in [22]. In [23], the
researchers developed an adaptive controller with the aim
of suppressing chaotic vibrations in gyroscopes within a
specified time. A finite-time synchronization of a chaotic
system was designed via the sliding mode control framework
in [24], [25], and [26].

Nevertheless, the settling time of a finite-time control
is intricately linked to the initial states. This implies that,
if the initial conditions happen to be large enough, the
settling time would also be large, since the convergence rates
would ultimately be reduced. Hence, it is not possible to
achieve a unified and specified convergence time by utilizing
the finite-time control strategy. For this very reason, the
concept of a fixed-time control scheme was proposed [27].
The fixed-time stability retains the features of the finite-
time stability, with the exception that the time itself can
be expressed by selecting only the appropriate control
parameters. This new control strategy has recently gained
traction with recent works developing on the work of
Polyakov [28], [29]. Fixed-time output feedback control for
a double integrator system was designed in [30]. The work
conducted by [31] further explored the concept of fixed-time
output control for higher-order integrator systems. Other
applications of the fixed-time control are seen in [32], [33],
and [34].
The work of Polyakov in [27] introduced the fixed-time

stability condition V̇ ≤ −a1V α
− a2V β . Since then,

other fixed-time stability notions have also been proposed.
The work of Chen [35] designed the fixed-time stability
condition V̇ ≤ −a1(t)V α

− a2V β
− c. Chen then modified

the previous condition to read V̇ ≤ a1V α
− a2V β

−

a3V [28]. An alternative fixed-time stability notion includes

V̇ =
p
qT

V 1− q
p

1−tanh2( qp )
[36]. It is evident that the complexity

of fixed-time stability conditions has significantly escalated
over time. Consequently, a controller developed based on
these complicated stability conditions is inevitably intricate,
posing challenges, particularly with regards to electronic
circuit implementations.

The heart of chaotic secure communication lies in the
ability of a chaotic system to generate unpredictability that
makes it challenging to reproduce and predict. Chaotic
secure communication methods generally involve chaotic
masking, chaotic modulation, and chaotic shift keying [37].

Although chaotic modulation does give a more secure
performance, it also requires a significantly higher channel
signal-to-noise ratio (SNR) [38]. Chaotic masking involves
adding a chaotic signal generated by the chaotic system to
the information signal at the transmitter end, while later
subtracting the synchronized chaotic signal from the received
signal at the receiver end. This process thus focuses on
the active synchronization of chaos. In this respect, many
approaches have existed; some examples include adaptive
control methods [39], impulsive control [40], backstepping
and slidingmode control methods [21], [41], [42]. Finite-time
chaotic synchronization was previously designed in [26].
Designing an adaptive fixed-time controller for a disturbed
chaotic system remains an interesting research topic, where
the overarching objective of this design is to incorporate a
practical circuit implementation, a facet that has not been
addressed in existing literature. Note also that the design
of [26] was too complicated and could not cope with
disturbances. The aim of this work is to attain a less intricate
electronic realization of active chaotic synchronization for
a disturbed 4D chaotic system through the design of a
simpler adaptive fixed-time controller that also uses a
newer, simplified fixed-time stability lemma. The fixed-time
synchronization is further illustrated by a chaotic masking
secure communication application.

The main contributions and features of this work are as
follows:

1) The design of a newer fixed-time stability lemma
that is more precise and simpler than the previous
popular fixed-time stability lemmas. Moreover, the
convergence time estimation is simpler to compute than
the ones used in popular fixed-time stability lemmas.

2) The design of a nonlinear, fixed-time adaptive gain
nonsingular terminal sliding mode synchronization of
the seven-term disturbed hyperchaotic 4D system that
is simpler to implement. A theoretical proof is given,
demonstrating a faster reaching time (Treach) than the
earlier works of [43] and [44].

3) The realization of the closed-loop response under
the effect of disturbances through analog circuitry is
easier to implement than the ones designed in [26],
along with its application in secure communications
applications.

The paper is now organized as follows: Section II offers
the preliminaries and gives the new simplified fixed-time sta-
bility lemma. In Section III, the adaptive fixed-time integral
terminal sliding mode control for the synchronization of the
seven-term chaotic system is designed. The implementation
of the circuit is described in Section IV. The conclusion of
this work is drawn in Section VI.

II. PRELIMINARIES AND THE SIMPLIFIED FIXED TIME
STABILITY LEMMA
This section thus outlines the general control problem
formulation with some lemmas and theorems relating to the
presented control design strategy.
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Definition 1 (Fixed-Time Stability) [45]: A nonlinear
dynamical system given by:

ẋ = f (x), x(0) = x0, (1)

is termed fixed-time stable if there exists a settling time Ts,
for any arbitrary initial condition, satisfying:

lim
t→Ts

||x(t)|| = 0, and ||x(t)|| = 0, for all t ≥ Ts (2)

where Ts is a settling time and || · || denotes the Euclidean
norm.
Lemma 1 [46]: The following inequality holds for some k,

l > 0 and a, b > 1 such that 1
a +

1
b = 1:

kl ≤
ka

a
+
lb

b
. (3)

Lemma 2 [29]: For a continuous differentiable positive
definite radially unbounded V (x) such that:

V̇ (x) ≤ −aV ρ1−bV ρ2 , (4)

for some a, b > 0, 0 < ρ1 < 1 and ρ2 > 1. System (1) is
global fixed-time stable with the settling time given by:

Ts ≤
1
a

(a
b

) 1−ρ1
ρ2−ρ1

( 1
1 − ρ1

+
1

ρ2 − 1

)
.

Proof: The proof of this lemma is given in [29]. □
Lemma 3 [28]: If there exists a continuous differentiable

positive definite radially unbounded V such that:

V̇ ≤ −aV ρ1−bV ρ2−c V , (5)

for some a, b, c > 0, 0 < ρ1 < 1 and ρ2 > 1. The dynamics
of (1) achieve fixed-time stability with the settling time given
by:

Ts ≤
1

c(1 − ρ1)
ln

(
1 +

c
a

)
+

1
c(ρ2 − 1)

ln
(
1 +

c
b

)
. (6)

Proof: The proof of this lemma is given in [28]. □
Lemma 4: Suppose there exists a radially unbounded,

continuous positive definite V satisfying:

V̇ ≤ −a1(a2V + a3V β )2 V−β . (7)

for some a1, a2, a3 > 0, 1 < β < 2 and V = 0 H⇒ x = 0,
then system (1) achieves fixed-time stability with the settling
time given by:

Ts ≤
1

a1a2a3(β − 1)
. (8)

Proof: Note that the expression given in (7) can easily be
rearranged to:

1
(a2V + a3V β )2

V β dV = −a1 dt. (9)

Now, let u = a2V and v = (a2V + a3V β ), then du = a2 dV
and dv = (a2+a3βV β−1) dV . Let us now attempt to evaluate
the following quantity:

u dv−v du
v2

=
a2V (a2 + a3βV β−1)dV − a2(a2V + a3V β )dV

(a2V + a3V β )2

=
a2a3(β − 1)V β dV
(a2V + a3V β )2

. (10)

It then follows that:

V β

(a2V + a3V β )2
dV =

1
a2a3(β − 1)

[
u dv−v du

v2

]
,

=
1

a2a3(β − 1)
d

(u
v

)
. (11)

As a result of (11), we get

d
(u
v

)
= −a1a2a3(β − 1) dt. (12)

Integrating both sides of (12) yields:
u
v

=
u0
v0

− a1a2a3(β − 1)t

=
a2V (0)

a2V (0) + a3V (0)β
− a1a2a3(β − 1)t. (13)

If the time t is chosen such that:

t =
1

a1a2a3(β − 1)
a1V (0)

a2V (0) + a3V (0)β
. (14)

Then it can be deduced that:
a1V (0)

a2V (0) + a3V (0)β
= 0, ⇔ V = 0 if x = 0, (15)

thereby implying that V is indeed monotonically decreasing
in t ∈ (0, ∞). Thus, there must exist a settling time Ts such
that V = 0. We can estimate such time by:

Ts <
1

a1a2a3(β − 1)
a2V (0)

a2V (0) + a3V (0)β
<

1
a1a2a3(β − 1)

.

(16)

□
Remark 5: Note that for the fixed-time stability lemma

given in lemma 3, by setting a = a1a22, b = a1a23, c =

2 a1a2a3, ρ1 = β and ρ2 = 2−β, it is seen that lemma 4 can
be written in the same form as given in lemma 3. This implies
that lemma 4 is also a generalization of the previous popular
fixed-time stability lemma.
Remark 6: The system of equations {a = a1a22, b =

a1a23, c = 2 a1a2a3} actually has infinitely many solutions.
For c = b

3
2
√
a, to obtain the setting time Ts given by (8) for a

given Lyapunov inequality written in the form of (5), one may
set the value of a3 arbitrarily to ease this particular process.
In other words, setting a3 =

p1
p2
for some p1, p2 > 0, yields:

a1 =
b p22
p21

, a2 =

√
a
b
p1
p2

, a3 =
p1
p2

. (17)

To demonstrate that the given settling time in (8) is indeed
less than that given by (6), we simply apply (6) with the
parameters ρ1 = β and ρ2 = 2− β, a = a1a2, b = a1a3 and
c = 2 a1a3:

T ∗
s =

1
2a1a2a3(β − 1)

ln (1 + 2 a3)

+
1

2a1a2a3(β − 1)
ln (1 + 2 a2)

=
1

2a1a2a3(β − 1)
ln(1 + 2 a3)(1 + 2a2)
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≥
1

2a1a2a3(β − 1)
ln(6)

≥
1

2a1a2a3(β − 1)
ln(e) ≥ Ts. (18)

It should be noted that since β is between 1 and 2,
it thereby follows that the settling time in (8) is also less
than the one presented in [45]. Hence, the boundary of our
proposed convergence time is even more precise than the
previous popular fixed-time stability lemmas. Furthermore,
the expression for estimating this convergence time is simpler
to compute compared to those provided in the previously
popular fixed-time stability lemmas.

III. FIXED-TIME ADAPTIVE NONSINGULAR TERMINAL
SLIDING MODE SYNCHRONIZATION OF A SEVEN-TERM
HYPERCHAOTIC SYSTEM
In this section, we discuss the design of the fixed-time
adaptive nonsingular terminal sliding mode controller for the
synchronization of the 4D hyperchaotic system.

The dynamics of the six-term chaotic system presented
in [26] are given as follows:

ẋ1 = ax1 + x2x3,

ẋ2 = x1 − x2,

ẋ3 = 1 − x21 . (19)

By inserting an x4 feedback term into the first equa-
tion of (19), and writing a dynamics equation for x4,
a 4-dimensional system can be obtained. The dynamic
equations of the system are described by:

ẋ1 = ax1 + x2x3 + x4,

ẋ2 = x1 − x2,

ẋ3 = 1 − x21 ,

ẋ4 = x1x3 − b x4. (20)

where the variables a and b are the system’s parameters. Due
to our primary focus on the control design and its circuit
implementation, we defer the formal dynamical analysis of
this particular system to our next scientific report.

A. CONTROL DESIGN
The primary goal of an active synchronization problem is to
achieve synchronization between a chaotic system, referred to
as the slave system, and an original chaotic system known as
themaster system [47]. Here, themaster system is the original
system of (19), rewritten here for convenience:

ẋm,1 = axm,1 + xm,2xm,3 + xm,4,

ẋm,2 = xm,1 − xm,2,

ẋm,3 = 1 − x2m,1,

ẋm,4 = xm,1xm,3−bxm,4. (21)

The slave system includes both the controller to be designed
and the disturbance, and is given by:

ẋs,1 = axs,1 + xs,2xs,3 + xs,4 + u1 + d1,

ẋs,2 = xs,1 − xs,2 + u2 + d2,

ẋs,3 = 1 − x2s,1 + u3 + d3,

ẋs,4 = xs,1xs,3−bxs,4 + u4 + d4. (22)

For the active synchronization problem, define the error states
as ei = xs,i − xm,i where i = 1, 2, 3, 4. The error dynamics
are given by:

ė1 = ae1 + xs,2xs,3 − xm,2xm,3 + e4 + d1 + u1,

ė2 = e1 − e2 + d2 + u2,

ė3 = x2s,1 − x2m,1 + d3 + u3,

ė4 = xs,1xs,3 − xm,1xm,3−be4 + d4 + u4. (23)

Assumption 7: The disturbances are bounded, that is,
there exist some constants δi > 0, such that |di| < δi.
The error system in (23) facilitates the design of an integral

nonsingular terminal sliding mode control. For each error
state e1 − e4, design now the integral terminal fast sliding
surface as:

si = ei + ki

∫ t

0
sig(ei)ηidt. (24)

where ki > 0 is the sliding surface gain. The parameters
ηi are chosen to be fractions of odd numbers in a similar
fashion to [48]. Note also that the sig function, defined
in [48] and [49], is a lot more challenging to implement
electronically. To allow for smooth circuit implementation
of the sig function in the control design, the sigr function
introduced in [26] and [50] is used to implement the sliding
surface of (24). The modified integral terminal fast sliding
surface is now rewritten as:

si = ei + ki

∫ t

0
sigr(ei)ηidt. (25)

The control signals u1(t) − u4(t) may now be designed
based on the integral terminal fast sliding surface (25). For
the first error state e1, the time derivative of the sliding
surface s1 is:

ṡ1 = ė1 + k1sigr(e1)η1

= ae1 + xs,2xs,3 − xm,2xm,3 + d1 + u1 + k1sigr(e1)η1 .

(26)

Note that we now design u1 as:

u1 = −ae1 − e4 − xs,2xs,3 + xm,2xm,3 − k1sigr(e1)η1

− D1sigr(s1) − ks1s
η1
1 . (27)

Note that the disturbance d1 was not brought into the design
of u1. To account for the disturbance and other uncertainties
and to eliminate the process of having to compute the
uncertainties’ upper bound, the following adaptive law is used
to adjust the D1 parameter:

Ḋ1 =

{
m1|s1|signr(s− σ1), if D1 ≥ σ1

σ1 − m2|s1| − p1D1, if D1 < σ1
(28)

where σ1 denotes some arbitrary threshold value that is
assumed to be less than the disturbance upper bound δ1. For
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the second state error e2, the time derivative of the sliding
surface s2 is:

ṡ2 = ė2 + k2sigr(e2)η2

= e1 − e2 + d2 + u2 + k2sigr(e2)η2 . (29)

The control signal u2 is easily designed as:

u2 = −e1 + e2 − k2sigr(e2)η2 − D2sigr(s2) − ks2s
η2
2 . (30)

In similar fashion to the design of D1, the D2 parameter is
adjusted through the adaptive law:

Ḋ2 =

{
m2|s2|signr(s2 − σ2), if D2 ≥ σ2

σ2 − m2|s2| − p2D2, if D2 < σ2
(31)

where σ2 is again the arbitrary threshold value, which is again
less than the upper bound δ2. The time derivative for the
sliding surface s3, corresponding to the state error e3, is:

ṡ3 = ė3 + k3sigr(e3)η3

= e1(xs,1 + xm,1) + d3 + u3 + k3sigr(e3)η3 . (32)

The control signal u3 is now designed as:

u3 = −e1(xm,1 + xs,1) − k3sigr(e3)η3 − D3sigr(s3) − ks3s
η3
3 .

(33)

The adaptive law for the adjustment of the D3 parameter is
given by:

Ḋ3 =

{
m3|s3|signr(s3 − σ3), if D3 ≥ σ3
σ3 − m3|s3| − p3D3, if D3 < σ3

. (34)

where σ3 denotes the arbitrary threshold, assumed to be less
than δ3. Lastly, the time derivative for the sliding surface s4 is
now written thus:

ṡ4 = ė4 + k4sigr(e4)η4

= −be4 + xs,1xs,3 − xm,1xm,3 + d4 + u4 + k4sigr(e4)η4 .

(35)

The control signal u4 is designed thus:

u4 = be4 − xs,1xs,3 + xm,1xm,3 − k4sigr(e4)η4

− D4sigr(s4) − ks4s
η4
4 , (36)

where the adaptive law for the parameter D4 is:

Ḋ4 =

{
m4|s4|signr(s4 − σ4), if D4 ≥ σ4

σ4 − m4|s4| − p4D4, if D4 < σ4.
(37)

In (37), σ4 is the arbitrary threshold, which is again
considered to be less than the upper bound δ4.
Remark 8: Note that this new controller is designed with

the goal of ensuring easy electronics implementation and
simplifying the design from [26]. Additionally, it incorporates
disturbance rejection, a feature not included in [26].

B. FIXED-TIME STABILITY ANALYSES
Here we present the stability analyses for the fixed-time
stability of the proposed controller. We then furnish the
following theorem.
Theorem 9: Consider the error system (23) with the

control signals u1 designed by (27)-(28), u2 as designed
in (30)-(31), u3 as designed in (33)-(34), and u4 given
by (36)-(37). Suppose also that the upper bound of the
disturbance estimation is such that |D∗

i − Di| < δi, where
D∗
i represents the actual disturbance. The error trajectories

can be made to converge to zero in a fixed time. The estimated
settling time is:

Ts = max(Ts1 ,Ts2 ,Ts3 ,Ts4 ), (38)

where

Tsi =
2

3
2√

δiksi

1
ηi − 1

. (39)

Proof: We consider two cases, namely si > σi and
si < σi.
Case 1: si > σi. In this respect, we first prove the stability

of the closed-loop error systems. For each error system,
define the following Lyapunov candidate:

Vi =
1
2
s2i +

ξi

2
(D∗

i − Di)2. (40)

Its time differentiation yields:

V̇i = siṡi + ξi(D∗
i − Di)Ḋi. (41)

Substituting the control signal ui, and the adaptive law Ḋi
given in (28), (31), (34), (37) into (41) for the case where
si > σi gives:

V̇i = si(−Disigr(si) − ksis
ηi
i )

− ξi(D∗
i − Di)[mi|si|signr(si − σi)]. (42)

It is obvious that as si > σi, the time differential of the
Lyapunov candidate V̇i ≤ 0. In applying Babalat’s lemma,
we note that (42) can be written as:

V̇i ≤ max(ξi, δi,mi)ksi2
ηi+1
2 V

ηi+1
2 . (43)

Integrating, (43) then gives

Vi ≤

[
V (0)

1−ηi
2 − max(ξi, δi,mi)ksi2

ηi+1
2 t

(
1 − ηi

2

)] 2
1−ηi

,

which implies that
∫ t
0 Vi(τ ) dτ is finite. Thus V → 0 as

t → ∞, implying that s → 0 as t → ∞, which implies
the global stability of the closed-loop system.

To prove the fixed-time stability, we note that (44) can be
obtained by applying Young’s inequality to (42):

V̇i ≤ −δi|si| − ksis
ηi+1
i − miξi(D∗

i − Di)|si|

≤ −δi|si| − ksis
ηi+1
i − miξi

[
1
2
s2i +

1
2
(D∗

i − Di)2
]

≤ −δi2
1
2V

1
2 − ksi2

ηi+1
2 V

ηi+1
2 − ξimiV . (44)
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Applying lemma 4 with a = δi2
1
2 , b = ksi2

ηi+1
2 and c = miξi,

along with (17) and simplifying, yields the estimation of the
settling time for the i-th sliding surface as:

TsMi =

√
2

δiksi

[
1

(η − 1)

]
.

Case 2: si < σi. Consider again the Lyapunov candidate
of (40) with its time differentiation given by (41). When
si < σi, the second adaptive law for Ḋ is invoked. Substituting
the control law ui, and the second adaptive law for Ḋi,
we have:

V̇i = si(−Disignr(si) − ksis
ηi
i )

− ξi(D∗
i − Di)(σi − mi|si| − piDi),

≤ −δi|si| − ksis
ηi+1
i

+ ξi(D∗
i − Di) ((1 + pi)σi − mi|si|) . (45)

As si < σi, the second adaptive law then brings the time
differential of the Lyapunov candidate back to V̇i ≤ 0,
so that the global stability for the closed loop system is
again proven. To prove the fixed-time stability for this case,
applying Young’s inequality to (45), we obtain:

V̇i ≤ −δi|si| − ksis
ηi+1
i + ξi(D∗

i − Di) ((1 + ρi)σi − mi|si|)

≤ −δi|si| − ksis
ηi+1
i − (2m2 − (1 + ρi)σi) ξi

·

[
1
2
s2i +

1
2
(D∗

i − Di)2
]

≤ −δi2
1
2V

1
2 − ksi2

ηi+1
2 V

ηi+1
2 − (2m2 − (1 + pi)σi) ξiV .

(46)

Applying lemma 4 with a = δi2
1
2 , b = ksi2

ηi+1
2 and c =

[2m2 − (1 + ρi)σi] ξi, along with (17) and simplifying gives
the settling time estimation to be:

TsLi =
2

1
2√

δiksi

[
1

ηi − 1

]
. (47)

The total settling time is now given by:

Tsi = TsMi + TsLi

=
2

3
2√

δiksi

[
1

ηi − 1

]
. (48)

Taking the maximum of all the settling times gives the total
estimate of the reach time. □
Remark 10: In many practical engineering systems, it is

reasonable to assume that the disturbances are bounded,
so that Assumption 7 is reasonable. In previous works,
the disturbances were taken care of by inserting the term
δisign(ei) into the controller ui, which did not force the
disturbance itself to converge to zero. However, the proof of
Theorem 9 analyzes the effects of the adaptive gain rule to
ensure that the overall closed-loop system can be stabilized
in fixed time, even in the effect of disturbances.
Remark 11: Note that the value of the settling time Ts

given in (39) is influenced mainly by the control gain

parameter ksi and the power parameter ηi, therefore,
choosing a larger value for these parameters would result
in a lower Ts. However, the ksi is also the multiplier of the
signr function; thus, the main cost of choosing a larger ksi
is the increment of the chattering. A good guideline therefore
is to tune all the control parameters using a metaheuristic
optimization algorithm with the constraint ksi ∈ (0.1, 5).

C. COMPUTER SIMULATION RESULTS
In the computer simulations of the proposed controller,
we assign the system parameters as a = −0.042 and
b = −0.06. The initial conditions of the master system xm0
are taken to be:

xm0 = [5, 1.1, 0.5, −0.06]. (49)

The initial states of the slave system is given by:

xs0 = [1.1, −1.1, 0.1, 0.1]. (50)

Notably, due to the lack of space, our focus will be on the
case where the disturbances are set in a chaotic system. The
disturbance functions are:

d1 = 0.05 sin(1.4 t), d2 = 0.2 sin(1.6 t), (51)

d3 = 0.3 sin(1.6 t), d4 = 0.5 sin(1.6 t). (52)

The control parameters are tuned using the extended
exploration grey wolf optimization presented in [50] and [51]
with the constraint of ksi ∈ (0.1, 5) and are given by:

k1 = 2, k2 = 5, k3 = 8, k4 = 6, (53)

ks1 = 0.7, ks2 = 0.5, k3 = 2.0, ks4 = 0.002, (54)

p1 = 0.1, p2 = 0.005, p3 = 0.005, p4 = 0.005,

(55)

m1 = 0.5, m2 = 0.5, m3 = 0.6, m4 = 0.8, (56)

η1 = 1.025, η2 = 1.025, η3 = 1.025, η4 = 1.025.
(57)

Fig. 1 now depicts the phase portraits for the synchroniza-
tion between the (x1(t), x2(t)) and (x3(t), x4(t)) states. Fig. 2
shows the synchronization errors e1, e2, e3, and e4. As seen,
the active synchronization is achieved within about 1 second,
which is of course faster than those reported in previous
works [18], [52]. The control efforts u1 - u4 are plotted in
Fig. 3. Note that higher ki values could, of course, be used,
but the resulting control signals would be excessively high
and constrained by the supply rails, thereby elongating the
convergence times. The control efforts used in our design are
about 30, which electronically means that for x1 - x4 signals in
the order of mV, themain control signals would just be around
300 mV, which is well within the supply rails for the IC of
12V-15 V. Note also that our previous design through the
nonterminal integral backstepping sliding mode control [26]
had a maximal control effort of approximately 1200, which is
significantly higher than our design, thereby expending more
energy.
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FIGURE 1. Synchronization between the master and slave signals.

FIGURE 2. Synchronization errors e1, e2, e3, e4.

FIGURE 3. Control inputs u1, u2, u3, u4.

To explore how the initial conditions impact the uniformity
of convergence time, the initial states of the slave system are
altered to the following:

xs0 = [2.1, −2.1, 0.4, −0.1]. (58)

FIGURE 4. Synchronization errors e1, e2, e3, e4 for the initial condition
given by (58).

FIGURE 5. Synchronization errors e1, e2, e3, e4 under 50% system and
disturbance parameters uncertainties.

The disturbance functions are still given by (51)-(52). Fig. 4
shows the synchronization errors e1, e2, e3 and e4 for this
particular case. It is easily seen from Fig. 4 that the trajectory
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FIGURE 6. Overall schematic for the electronic circuit realization of the proposed seven-term hyperchaotic 4D system.

FIGURE 7. Circuit implementation of the master and slave systems for
proposed hyperchaotic 4D system.

of the modified system converges to zero quickly, even
though the initial conditions have significantly changed.
Specifically, the convergence time for this case is also found
to be around 1 second, which is similar to the case shown
in Fig. 2. Thus, the numerical results obviously testify to the
fixed-time feature of the developed control strategy.

An additional significant proof-of-concept concerns the
synchronization of our chaotic system under parameter

errors and disturbance bounds uncertainties. In this light,
we consider the case where the parameters a and b are set to
–0.063 and –0.09, respectively, representing a 50% decrease.
The disturbance functions are then given by:

d1,u(t) = 0.75 sin(2.1 t), d2,u(t) = 0.3 sin(2.4 t), (59)

d3,u(t) = 0.45 sin(2.4 t), d4,u(t) = 0.75 sin(2.4 t). (60)

Note that the amplitudes and frequencies of d1,u(t) -
d4,u(t) are incremented by 50% from their original values
in (51)-(52). These values provide significant bounds for
the uncertainties in the system and disturbance parameters,
which could actually take any values in between. The
synchronization errors under these systems and disturbance
parameters uncertainties are plotted in Fig. 5. As is seen,
it can be concluded that no significant differences could
be discerned between the results of Fig. 5 and Fig. 2,
which was the case of the true value. These results imply
that the designed adaptive terminal fixed-time sliding mode
controller is definitely robust to extreme parameter and
disturbance changes. This is definitely an advantage for the
electronic implementation, where the designer does not have
to set a precise value of atrue and btrue to obtain the exact
results as in the ideal case.

IV. CIRCUIT REALIZATION OF THE CLOSED-LOOP
SYSTEM
A. CIRCUIT DESIGN AND REALIZATION
In this section, we focus on the electronic circuit implemen-
tation of the closed-loop system for the proposed seven-term
hyperchaotic 4D system. The overall design is shown in
Fig. 6. The operational amplifier (OA) holds significant
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FIGURE 8. Adaptive integral terminal sliding mode controller used in the proposed seven-term hyperchaotic 4D system.
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FIGURE 9. Adaptive rule used in adaptive integral terminal sliding mode controller.

FIGURE 10. Circuit realization results for the synchronization between
the master- and slave- systems.

importance as a well-established electronic component in
circuit design. Various circuit configurations utilizing rep-
utable OA-based functions, such as integrators, differential
amplifiers, and signal inverters, have been successfully
implemented with actual physical circuitry [53]. Further-
more, the proposed system utilized not only the OA, but also
the analog multiplier circuit described in [26]. The proposed
closed-loop hyperchaotic 4D system is shown in Fig. 7, along
with the analog circuits for both the master and slave systems.
Moreover, the adaptive integral nonterminal sliding mode
controller and its associated adaptive rules are implemented
as shown in Figs. 8-9. By analyzing the proposed circuit with
the terminal relationships of the OA, the master system for
a seven-term chaotic 4D system in (21) can be rewritten in
terms of the voltages as follows:

Vẋm,1 = aVxm,1 + Vxm,2Vxm,3 + Vxm,4 ,

Vẋm,2 = Vxm,1 − Vxm,2 ,

Vẋm,3 = 1 − V 2
xm,1

,

Vẋm,4 = Vxm,1Vxm,3−bVxm,4 , (61)

FIGURE 11. The synchronization errors e1, e2, e3, e4 of the proposed
system in Fig. 6 with disturbance parameters.

a =
R1
R

, (62)

b =
R2
R

. (63)

It is noted from (62)-(63) that the values of the system
parameters a and b can be tuned simply through resistors
R1 and R2, respectively [26]. Likewise, the slave system,
together with the controller and the disturbance, is also
represented as:

Vẋs,1 = aVxs,1 + Vxs,2Vxs,3 + Vxs,4 + Vu1 + Vd1 ,

Vẋs,2 = Vxs,1 − Vxs,2 + Vu2 + Vd2 ,

Vẋs,3 = 1 − V 2
xs,1 + Vu3 + Vd3 ,

Vẋs,4 = Vxs,1Vxs,3−bVxs,4 + Vu4 + Vd4 . (64)

The state errors for the synchronization of the master and
slave systems are computed as:

Vė1 = aVe1 + Vxs,2Vxs,3 − Vxm,2Vxm,3 + Ve4 + Vd1 + Vu1 ,

Vė2 = Ve1 − Ve2 + Vd2 + Vu2 ,
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FIGURE 12. Block diagram schematic for the secure communication application.

Vė3 = Vx2s,1
− V 2

xm,1
+ Vd3 + Vu3 ,

Vė4 = Vxs,1Vxs,3 − Vxm,1Vxm,3−bVe4 + Vd4 + Vu4 , (65)

where Vei = Vxs,i − Vxm,i . To implement the control signal
designed in (27), (30), (33), and (36) based on the analog
circuitry, we first implement the terminal fast sliding surface
by:

Vsi = Vei + Vki

∫ t

0
sigr(Vei)ηidt, (66)

then the control signal parameters can be rewritten as:

Vu1 = −aVe1 − Ve4 − Vxs,2Vxs,3 + Vxm,2Vxm,3

− Vk1sigr(Ve1)η1 − VD1sigr(Vs1) − Vks,1V
η1
s1 , (67)

Vu2 = −Ve1 + Ve2 − Vk2sigr(Ve2)η2 − VD2sigr(Vs2)

− Vks,2V
η2
s2 , (68)

Vu3 = −Ve1(Vxm,1 + Vxs,1 ) − Vk3sigr(Ve3)η3

− VD3sigr(Vs3) − Vks,3V
η3
s3 , (69)

Vu4 = bVe4 − Vxs,1Vxs,3 + Vxm,1Vxm,3

− Vk4sigr(Ve4)η4 − VD4sigr(Vs4) − Vks,4V
η4
s4 . (70)

Note that the electronic implementation of the sigr function
was presented previously in [50], thereby alleviating the
chattering that resulted from the terminal fast sliding mode
surface.

B. PSPICE ELECTRONICS WORKABILITY TEST
As a further demonstration of the concept, the PSPICE
program is employed to simulate the comparison of the
master and slave systems for the proposed hyperchaotic 4D
system, which is based on the off-the-shelf IC OA LF357
macro-model provided by National Semiconductor [54] and
the analog multiplier AD633 macro-model provided by
AnalogDevices [55], as illustrated in Fig. 7. In the simulation,
the supply voltages are applied at ±10 V. The system
parameters a and b are set as –0.042 and –0.06, respectively,
in order to generate either chaotic flows or stable equilibria.
The initial states of the master system (Vxm,0) and slave
system (Vxs,0 ) are set to be: Vxm,0 = [5, 1.1, 0.5, −0.06] V
and Vxs,0 = [1.1,−1.1, 0.1, 0.1] V, in accordance with the

FIGURE 13. The original, chaotic masked, and recovered message signals
for the secure communication application.

Matlab simulation. The disturbance functions of (51)-(52)
were applied to the chaotic system as:Vd1 = 0.05 sin(1.4 t) V,
Vd2 = 0.2 sin(1.6 t) V, Vd3 = 0.3 sin(1.6 t) V, and
Vd4 = 0.5 sin(1.6 t) V. Furthermore, the control parameters
offered in (53)-(57) are applied in terms of voltage to the
proposed controller in Figs. 8-9. Depending on the provided
parameters, the simulation results of the synchronization
between the master system (Vxm,3 ,Vxm,4) and the slave system
(Vxs,3 ,Vxs,4 ) are presented in Fig. 10. Fig. 11 shows the
synchronization errors e1, e2, e3, and e4 of the proposed
system in Fig. 6 with disturbance parameters. Attributable to
theOA slew rates, the synchronization time of all error signals
Ve1, Ve2, Ve3, and Ve4 approached 0 V within 70 seconds
with offset voltages of 0.462 mV, –8.999 mV, 0.203 mV, and
–1.923 mV, respectively. Note that although we have used the
macro model that was tried and tested by the manufacturer in
the SPICE simulations, which would already be close enough
to the actual circuit realization, these models may still not
reflect fully the reality of the realization. Numerous factors,
such as component tolerances, non-idealities, and so forth,
would still have to be considered, which may also affect the
setting time performance of the control. To enhance these
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response capabilities, controllers could be implemented with
high-performance active elements possessing a higher slew
rate.

V. APPLICATION TO SECURE COMMUNICATION
The main features of a chaotic system, namely sensitivity
to initial conditions, unpredictability, and anti-interception
capability, make it challenging to produce and predict, and
therefore ideal for applications in secure communications.
Three main types of chaotic secure communication exist,
namely chaotic masking, chaotic modulation, and chaotic
shift keying [37]. Chaotic Masking is preferred in this work
due to the fact that it does not require high channel signal-to-
noise ratio (SNR). The variable M (t) is the message signal,
XT (t) is the transmitted signal, XR(t) is the synchronized
chaotic signal, andMR(t) is the receivedmessage signal. Note
that since identical chaotic systems are employed for both
the transmitter and receiver sides, the chaotic signal from
the receiver side is synchronized with the transmitter side.
For synchronization, the initial conditions of (49) and (50)
are used for the master and slave systems of the 4D chaotic
system. Note that the control parameters of (53)-(57) are
used for the secure communication system. Fig. 12 shows
the schematic of secure communication using the 4D chaotic
system.

For the numerical simulation, the message signal M (t)
is taken to be a pulse signal with an amplitude of 0.1 V,
which is around 25 dB weaker than the chaotic signal. It is
then seen from Fig. 13 that, after a fixed-time transient
state of around 1 s, the original and recovered messages are
nearly identical to one another, thereby implying that the 4D
chaotic system, when combined with its fixed-time adaptive
gain nonsingular terminal sliding mode controller, can be
efficiently applied in secure communication applications.

VI. CONCLUSION
In this work, an adaptive gain fixed-time nonsingular terminal
integral sliding mode control controller was designed with a
view to simplifying a closed-loop electronic implementation
of active synchronization of chaotic systems, as well as
achieving convergence in fixed-time. The overall control
design starts with designing a novel fixed-time stability
lemma, which was theoretically demonstrated to provide a
lower convergence estimate of the settling time than the
previous popular stability notions, as well as being simpler
mathematically to compute. A seven-term hyperchaotic
system was presented, and a nonsingular terminal integral
sliding mode controller was then designed to actively
synchronize the system. An adaptive gain law was also
incorporated into the controller to facilitate disturbance
rejection. A theoretical proof was subsequently presented,
demonstrating that synchronization was achieved within a
fixed time. Simulation results confirm that synchronization
was indeed achieved at a fixed time in the presence of
disturbances. As further proof-of-concept, the parameters of
the system as well as the disturbances were significantly

altered. Results show that the designed controller was robust
to these changes, whilst still achieving the fixed-time control.
An application to secure communication was also presented,
whereby the developed controller is used to effectively
synchronize the chaotic masked signal from the receiver side
to the transmitter side. The outcomes demonstrate that the
original and recovered messages are nearly identical to one
another within a fixed time.

Finally, adaptive fixed-time active synchronization was
realized through the use of commercially available active
devices such as LF357 op-amps and AD633 analog multipli-
ers. The descriptive circuit equations are formulated to emu-
late the control equations, aiming to simplify and facilitate
troubleshooting. Workability of the electronic realizations
was evaluated via PSPICE simulation program. Results show
that the master and slave systems synchronized with a 1%
maximal error, even under the effect of disturbances. Future
research may highlight the development and implementation
of the design using other electronically tunable active
building blocks, such as transconductance amplifier-based
active devices.
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