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ABSTRACT This study proposes a capacitated vehicle routing problem (CVRP) approach to optimise
Vehicle Routing Problem (VRP) and pesticides spraying. The VRP consists of finding the route which
covers every point of a certain area of interest. This paper considers a search and pesticides spraying
mission, using group of Unmanned Aerial Vehicles (UAVs). In this scenario, the objective is to minimise the
total battery consumption level and tank consumption level to not exceed their maximum battery and tank
capacities. A hybrid metaheuristic optimisation algorithm is formulated by integrating Genetic Algorithm
(GA) with a guided local search algorithm called guided genetic algorithm (GGA). The performance of
the proposed GGA algorithm is compared to four single-solution based metaheuristic algorithms (Guided
Local Search [GLS], Tabu Search [TS], Simulated Annealing [SA], and Iterated Local Search [ILS]) and two
population-based metaheuristics algorithms (GA and Particle Swarm Optimisation [PSO] algorithm). The
results revealed that the proposed GGA outperformed the other algorithms in most instances. GGA showed
competitive results, closely following the TS’s performance across different scenarios. The evaluation of
GGA is conducted by analysing its mean, standard deviation, best solution, and worst solution of ten
iterations. In addition,Wilcoxon signed-rank test is conducted across a total of 36 instances. The optimisation
results and discussion provide confirmation that the proposed GGA method beat the compared algorithms.

INDEX TERMS Capacitated vehicle routing problem, genetic algorithm, guided local search, path planning,
UAV.

I. INTRODUCTION
Agriculture is the main source of food globally and is
encountering serious difficulties such as rising food demand,
food safety, security issues, and the need for environmen-
tal protection, preservation of water, and sustainability. The
current practices are expected to persist due to the expected
worldwide population reaching 9.7 billion by 2050 [1]. Satel-
lites, drones, and human-crewed-aircraft can improve the
farming methods and be adependable solution in agriculture
sector [2]. Drones, often referred to as Unmanned-Aerial-
Vehicles (UAVs), Unmanned-Aircraft-Systems (UAS), and
remotely-piloted-aircraft, provide numerous advantages over

The associate editor coordinating the review of this manuscript and

approving it for publication was Geng-Ming Jiang .

other remote-sensing technologies. On cloudy days, for
instance, drones are capable of transmitting high-resolution
and high-quality images [3]. Other advantages are their trans-
fer speed and availability [4]. Drones are simpler to setup and
maintain and more cost-effective than aircraft [2]. Therefore,
using drones in agriculture consider as an effective solution
to address the mentioned challenges [4].

UAVs have revolutionised multiple sectors and tasks by
utilising their capability to fly autonomouslywithout a human
operator on board. Originally created for military use, UAVs
have smoothly moved into civilian sectors [5], [6]. In addition
to combat operations, reconnaissance, and surveillance [7],
they are employed in agricultural practices [8], drone deliv-
ery [9], traffic management [10], medical emergencies [11],
tracking operations [12], and smart cities’ tasks [13]. UAVs
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are essential for reaching inaccessible or remote locations and
are vital tools in emergency situations like disaster rescue
missions [14], [15].

Flight planning and UAV management tasks are closely
related and encompass area coverage, recharging and data
collection, search operations, routing for multiple locations,
route and mission planning, and operational aspects of a
drone network [16].

A. COVERAGE PATH PLANNING PROBLEM FOR
PRECISION AGRICULTURE
The Coverage Path Planning (CPP) is categorised as a
subtopic of motion planning in robotics. It involves the
creation of a path for a robot to systematically examine
all locations within a specified scenario [17]. The use of
UAVs for CPP has been extensively studied in the literature.
Researchers have explored numerous techniques for dividing
the area of interest and evaluating performance using metrics
such as path length, energy consumption, mission completion
time, and area overlapping [18]. To address the precision
agriculture issues, the task of CPP can be defined in two
categories [19]:
(i) CPP1 involves monitoring field and crop conditions

when the influence of the analysed surface is not anticipated.
(ii) CPP2 pertains to the application of pesticides, phyto-

cides, fertilizers, etc., while considering potential effects on
the cultivated fields.

The standard solution for CPP is to use the back-and-forth
algorithm [20]. Cabreira et al. [18] found that spiral and
waves are ineffective for the CPP2 task. Since many turns
consume battery power faster and negatively affect the quality
of spraying.

There is frequently a requirement for algorithms that opti-
mise the route of one or more UAVs for specific applications.
Linear or nonlinear programming methods are inadequate
for handling large-scale objects and complex objective func-
tions. Artificial intelligence technologies such as machine
learning, fuzzy logic, swarm optimisation, hybrid method-
ologies, and evolutionary programming are employed in such
situations [21]. The literature mentions several optimisation
techniques such as genetic algorithm (GA), particle swarm
optimisation (PSO), ant colony optimisation (ACO), Hybrid
Spider Monkey Optimization (HSMO) algorithm [22], Rac-
coon Family Optimization (RFO) algorithm [23], artificial
neural network (ANN), and learning-based methods. Among
the options mentioned, GA represents 21% of publications
and is considered one of the most widely used flight planning
algorithms [24].

The GA simulates the Darwinian concept of natural selec-
tion. GA involves the existence of certain potential solutions,
commonly referred to as organisms, individuals, or creatures.
During the execution of the GA, the population size remains
constant, and poorer solutions (individuals) are substituted
with better ones by stochastic selection based on the fitness
function [25], [26].

Throughout the initial stages of the research, GA was eval-
uated alongside other algorithms as a potential method for
addressing the challenge of UAV path planning. For instance,
[27] investigates the disparity in performance between PSO
and GA. According to the authors, PSO was able to obtain
high-quality solutions at a faster rate. Simultaneously, [28]
illustrated the outcomes of the comparison tests conducted in
a three-dimensional setting. Parallel GA outperformed PSO
in selecting superior trajectories. The cost function included
various factors like the length of the route, altitude of the
flight, presence of danger zones, power of the UAV, potential
collisions, fuel consumption, and trajectory smoothing for
UAVs equipped with rigid wings.

Later on, GA were applied to tackle increasingly intricate
problems including real-time flight planning [29]. The cost
function in such scenario included several factors: the path
length, the average path height, the intersection of radar
zones, the path exceeding the power and range of the UAV,
and paths intersecting with the earth’s surface. In order to
enhance the initial population of the GA, the authors of [30]
utilised ACO. This approach facilitated the acceleration of the
solution process in a simulated environment that had several
barriers.

In [21], the authors claimed that the GA, along with other
methods, is employed to optimise the coverage of a specific
area, while considering constraints such as time limitations
and path feasibility. Whereas [31] demonstrated the appli-
cation of GA with the ‘‘Travelling Salesman Problem’’ to
solve the problem of coverage with avoiding obstacles. The
field is partitioned into obstacle-free cells, and back-and-
forth motion is executed for covering the whole area within
each of these cells. in addition, [32] considered GA as a
strategy to reduce the energy consumption of the UAVs and
optimise the number of tours performed by them. However,
it is important to take into account that this optimisation
objective has certain constraints as it does not consider the
expenses associated with carrying out CPP.

B. VEHICLE ROUTING PROBLEM
Based on the review conducted by [33] and the analysis of
the previous section, it has been found that all the existing
UAV’s CPP solutions released in recent years are essentially
modified versions of either the Travelling Salesman Problem
(TSP) or the Vehicle Routing Problem (VRP).

The TSP is a problem that involves finding the optimal
solution among a set of possible combinations. The algorithm
calculates the most efficient path, which includes all cities
in a given list, visiting each city only once and returning to
the starting city. The problem’s challenge lies in the objective
of the travelling salesman to minimise the overall distance
covered. In their study, the authors in [34] introduced a novel
routing model named theMultiple Travelling Salesman Prob-
lem (mTSP) with UAVs. This model incorporates both trucks
andUAVs for efficient last-mile delivery. The CPP-TSP prob-
lem is addressed in [35] by employing a Fast NN-2Opt based
GA to efficiently determine the path for the UAV in order
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to rapidly cover all regions. The study [36] introduced a
piecewise linear inter-region path method to address the CPP-
TSP problem. The technique aims to minimise travel distance
while assuring comprehensive coverage of the entire area. It is
important to note that the primary focus of this study is on
the VRP as it can be formulated as CVRP which consider the
capacity of UAVs’ tank and battery.

The VRP is a problem that involves optimising combi-
nations and making decisions using integer programming.
It provides a general solution for the travelling salesman
problem. The VRP aims to optimise the routes for a fleet
of vehicles to efficiently deliver goods to a specific group of
clients. The goal of the VRP is to minimise the overall cost of
the routes. VRP is commonly employed in the scenario where
items stored at a central depot are transported to clients who
have made orders for these items. For solving the CPP-VRP,
four algorithms of the ACO framework are implemented
in [37], two versions of the ACO and the Min–Max Ant. The
purpose of the algorithms was to minimise the overall energy
consumption by focusing on the main non-constant and con-
trollable factor that affects energy consumption in a delivery
vehicle (Electric ground vehicles [EGVs] with UAVs), which
is the weight of the payload. In their study, [38] examined
the CPP-VRP by incorporating a Time Windows variant.
In this variant, the agents’ capacity is considered as one, and
the goal is to supply each client (target region) with many
vehicles simultaneously while adhering to the specified time
windows. Their objective was to create a strategy to ensure
that all locations were adequately covered within specific
time frames, while minimising the total distance travelled.
Additionally, they aimed to provide a prompt solution by
taking into account the constraint that each agent has limited
fuel. In order to address the problem at hand, [38] introduced
the Simplex VRP Algorithm (SVA), which utilises the tech-
nique of clustering the target locations based on their time
windows. Subsequently, transportation problems are gener-
ated gradually by considering each cluster and the available
UAVs. Xie et al. [35] studied the CPP-VRP for rechargeable
UAVs with a constraint on mission time. The study focused
on scenarios where many trips per round are necessary due to
restricted battery capacities. The objective was to determine
the optimal quantity of UAVs to be deployed and the flight
trajectories that minimise the overall mission cost. Their
problem was expressed as a mixed-integer programming
(MIP) model with the objective of minimising the total cost
of electric charging, UAV usage, and penalties incurred due
to mission time limit violations. This optimization model was
solved by using the branch-and-bound algorithm.

A cumulative VRP approach was proposed by [39] to
optimise humanitarian CPP. They considered conducting a
search and rescue operation, employing a fleet of UAVs.
The goal was to minimise the total sum of arrival times at
all places inside the designated area, hence achieving the
search with the least amount of delay. Three iterations of
a Parallel Weighted Greedy Randomised Adaptive Search

Procedure-Variable Neighbourhood Descent (GRASP-VND)
algorithm have been implemented to solve the cumulative
VRP for humanitarian CPP. In their research, [40] exam-
ined the cumulative CPP-VRP, which was utilised for the
distribution of humanitarian assistance following a natural
disaster. UAVs were employed to aid trucks in the trans-
portation of packages to clients. A mathematical model was
developed to account for battery usage and solved using a
heuristic algorithm based on a widely recognised cluster-
first, route-second methodology. In the study conducted
by [41], a Parallel GA with Variable Neighbourhood Search
(PGA-VNS) was designed to address a mixed integer linear
programming model aimed at minimising the total losses
caused by fire spots. This model considered the constrained
flying range and load impact limitations of UAVs. The find-
ings could aid in optimising the timing and routing of fire
engines or UAVs to minimise the damages caused by forest
fires. In a study conducted by [42], the researchers exam-
ined the CPP-VRP for numerous rechargeable heterogeneous
UAVs with multiple journeys, taking into account mission
length and payload carrying limits. The objective was to
ascertain the specific categories and number of UAVs to be
deployed, as well as their flight trajectories, in order to
minimise monetary cost. This expenditure encompasses the
combined costs of recharging energy for each UAV, renting
the UAVs, and the penalties incurred for failing to meet the
mission time deadline. GA was implemented to resolve the
mathematical model in this study.

Recently, [43] solved capacitated VRP with objective to
optimize the cost in terms of distance. Hybrid Genetic and
Simulated Annealing (HGSA) Algorithm was proposed to
optimize the total travelled distance. Vinh et al. [44] cre-
ated an efficient computational framework for assigning
tasks and planning for a diverse group of UAVs partici-
pating in a search mission. The UAVs were autonomously
assigned to survey the designated region of interest using
the Mixed Integer Linear Programming (MILP) technique.
The algorithm was used to assign tasks and coordinate the
movements of many UAVs as they searched a certain area
on a farm. The researchers in [19] examined the CPP-
VRP involving a multiple UAVs used to address coverage
problems that may arise during monitoring and the exe-
cution of agrotechnical treatments. The proposed approach
involves utilising GA to strategically plan the flight of a
group of UAVs. This planning was done in conjunction
with a mobile ground platform, which serves the purpose of
recharging and refuelling the UAVs. This approach enables
the computation of a flyby to address the problem of cov-
ering fields with various shapes and allows for the selection
of the most efficient subset of UAVs from a given set of
devices.

Therefore, a Guided Genetic Algorithm (GGA) algorithm
is proposed to solve the current problem. Following [45], the
brief literature gap for current CPP-VRP, and their solution
approaches is reported in Table 1.
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TABLE 1. Literature of CPP-VRP with solution approaches.

In addition, many studies have shown that the GGA
that can be constructed by incorporating the Guided Local
Search (GLS) on top of a specialised GA [16]. The GGA
algorithm has been utilised to address many problems, such
as permutation flowshop scheduling problems [17], auto-
mated crash reproduction [18], multidimensional Knapsack
problem [19], analogue circuit optimisation problem [20],
multi-objective power distribution system reconfiguration
problem [21], larger constraint assembly problem [22], opti-
mising performance of convolutional neural networks, the
processor configuration problem [23], the generalised assign-
ment problem [24], and the radio link frequency assignment
problem [25], [26].

Despite these incredible efforts, no study has yet proposed
the use of GGA to address the capacitated VRP (CVRP),
which is considered a theory gap in the existing literature.

It is worth mentioning that the CPP necessitates the use
of a discrete algorithm because of the significant variability
in the problem space. Combining GLS with GA is strongly
suggested for solving these types of issues, since it provides
notable benefits. GA has specialised versions that are specif-
ically tailored to efficiently solve discrete issues.

Employing continuous algorithms, such as the hybrid
spider monkey optimisation technique or the raccoon fam-
ily optimisation algorithm, alongside GLS would augment
the intricacy of the challenge owing to the fundamentally
disparate characteristics of these algorithms. Implementing
these continuous methods would necessitate a two-stage
methodology, which is not straightforward andmay introduce
additional computational complexity.

Considering these factors, we chose GA for this study
because of its established effectiveness in addressing discrete
optimisation problems and its compatibility with GLS.

C. RESEARCH CONTRIBUTIONS
The primary contributions of the research can be briefly
summarised as follows:

• The implementation of a CVRP aims to minimise the
total battery consumption level and tank consump-
tion level in determining the nodes required pesticide
application.

• The CVRP presentation emphasises the reduction of
overall battery consumption level and the optimisation
of pesticide application capacity by considering specific
nodes.

• The CVRP mathematical formulation makes a theoreti-
cal contribution to the VRP literature.

• The implementation of a meta-heuristic algorithm,
specifically hybrid GA and GLS, to tackle the complex-
ity of this problem.

• This paper reformulates GGA to solve CVRP with
UAVs.

• The proposal of an efficient methodology for addressing
the CVRP, derived from the findings of the computa-
tional tests.

The remaining of the article is structured as follows.
In section II, CPP problem is explained. The mathematical
representation of the UAVs routing problem is presented
in section III. Section IV includes the formulation of the
proposed GGA. The experimental results and discussion are
explained in section V followed by the conclusion and future
work in section VI.

II. CPP PROBLEM
This study focuses on a path planning and search scenario
using a group of UAVs that can take off and land vertically.
The objective is to have the UAVs cover all points in a specific
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region of interest while minimising the overall battery and
tank consumption. The following assumptions are made:

• All UAVs are taken off and land from a predetermined
location, known as the control centre.

• Each UAV is equipped with a camera or sensor that is
positioned to face downwards and has a square field of
vision.

• The speed of the UAVs during flight remains constant
to enable the camera or sensor to effectively observe the
desired features on the ground.

• Themaximumbattery capacity and tank capacity of each
UAV are finite and known in advance.

• The UAVs are not affected by any external forces, such
as weather conditions.

Recently, [46] evaluated UAVs to identify the best one based
on their endurance, payload, and dimensions. The authors
found that DJI Agras MG-1 was the best among 6 UAVs
under the 8 routers category. It is specifically designed for
agricultural applications, including pesticide spraying and
aerial monitoring. The battery of the DJI Agras MG-1 is
sufficient to spray one tank of liquid. This battery has run
out within a flying time of 8-12 minutes. The DJI Agras MG-
1 is designed for crop management and has a liquid loading
capacity of up to 10 kilogrammes. It can reach a maximum
speed of 8 metres per second. The experiments focus on the
features of the DJI Agras MG-1. The idea is that UAVs are
used to collect data and determine the specific areas that need
to be sprayed with pesticide.

Task assignment is integral components of CPP, involv-
ing the exploration or coverage of specific areas of interest.
The CPP with multiple UAVs, can be transformed into
a VRP, by construction a graph that coverage is reached
when a set of nodes is visited at least once by a UAV.
The decisions to be made when formulating the CPP to a
VRP pertain to the process of constructing the graph, the
way coverage is obtained, the constraints imposed by the
vehicles and the objective function to be minimized [47].
The capacitated VRP (CVRP) [48] is NP-hard as it is an
extension of the classical VRP. Its objective function is
formulated in a way which minimises the sum of arrival
times at the nodes instead of the total routing cost in the
classical VRP.

The aim of this study is to minimise the total battery
consumption level and tank consumption level of UAVs
by determining the optimal routes to apply pesticides. The
process involves the UAV departing from control centre,
collecting data within the target area, identifying specific
locations requiring pesticide application, and then returning
to the control centre for recharging. Then, one or more UAVs
start a route based on the collected data for spraying pesti-
cides. The challenge of the first route is the minimisation of
the total battery consumption level, whereas the challenges
of the second route are the minimisation of the total battery
consumption level and tank consumption level of pesticides.
The motivation of this research is to provide a valuable con-
tribution to solve VRP based UAVs.

Therefore, a metaheuristic algorithm is proposed in this
study to determine the best rout of each UAV during each
trip. The battery and tank consumption levels of UAV are
minimized using a meta-heuristic based hybrid GA with a
GLS. The proposed solution manages better the usage of
the UAV’s charging and tang of pesticides by eliminating
many unneeded returns to the control centre and therefore
minimizes the total battery consumption level and tank con-
sumption level of pesticides.

As the UAVs dealing with capacity of tang and the capacity
of battery, the topic being addressed is strongly connected to
the CVRP. Nevertheless, the capacity of the UAVs to carry
pesticides and the requirement for frequent recharging add
complexity to the problem being studied, beyond that of the
CVRP. As far as we know, no previous research has inves-
tigated our problem within the specified constraints, which
considered a research gap.

III. MATHEMATICAL REPRESENTATION OF THE UAVS
ROUTING PROBLEM
Let the node set N , which consists of the nodes 0, 1, . . . ,
n, and n+1. Node 0 represents the initial node, while node
n+1 represents the last node. The set of edges E connects
every pair of nodes. The problem is defined on an undirected
graph G = (N ,E), where each edge (i, j) is associated with
a battery consumption uij and tank consumption zij. The set
of nodes to be visited, denoted as N ′, is defined as N ′

=

N \ {0}. Each node i ∈ N ′ must be visited exactly once by
one of the UAVs. The number of UAVs is set to R ≥ 1,
while the maximum battery and tank capacities of each UAV
are Cb, and Ct , respectively. Variables bki and tki denote the
battery and tank consumption levels of UAV k at node i. The
xkij is a binary variable, where xkij = 1 if UAV k traverses
edge (i, j) from node i to node j, and xkij = 0 otherwise.
The objective of the CVRP, given in Eq. (1), minimizes
the total battery consumption level and tank consumption
level while ensuring that each route starts and terminates
at node 0, and the total battery and tank consumption
do not exceed Cb, and Ct , respectively. The mathemati-
cal formulation of the CVRP model can be expressed as
follows:

minimize
∑R

k=1

∑
i∈N ′

(
bki + tki

)
(1)

s.t.
∑

j∈N
xkji =

∑
j∈N

xkij, ∀i ∈ N ′, (2)∑R

k=1

∑
j∈N

xkij = 1, ∀i ∈ N ′ (3)∑
j∈N

xk0j = 1, (4)∑
j∈N

xk0j = 1, (5)∑
i∈N

∑
j∈N

xkijuij ≤ Cb, (6)∑
i∈N

∑
j∈N

xkijzij ≤ Ct , (7)

bki + uij −
(
1 − xkij

)
G ≤ bkj , (8)
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FIGURE 1. Flowchart of the proposed GGA.
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tki + zij −
(
1 − xkij

)
G ≤ tkj , (9)

bki , t
k
i ≥ 0, ∀i ∈ V , (10)

xkij ∈ {0, 1}, ∀i ∈ N , ∀ j ∈ N , i̸=j, (11)

where

∀i ∈ N \ {n+ 1} , ∀ j ∈ N , ∀k ∈ {1, . . . ,R}

In the above constraint (2), a UAV arriving at node i must
depart from it. Constraint (3) ensures that the UAV visits each
node only once. Constraints (4)-(5) ensure that a route must
start and end at node 0, which represents the UAV control
centre. Constraints (6)-(7) ensure that the total battery and
tank consumption of each UAV must not exceed their maxi-
mum battery capacity Cb and tank capacity Ct , respectively.
Constraints (8)-(9) calculate the battery and tank consump-
tion at the nodes. By utilising a large positive constant G,
the formation of sub-tours is prevented. The formulation
of the constraints is derived from the formulas commonly
used for VRPs with time windows. Constraints (10) ensures
the values battery and tank consumption are non-negative.
Constraint (11) restrict the values of xkij to binary.
The set of N ′ vertices in the CVRP application on the

CPP is obtained by the cellular approximation method. Each
UAV route starts and terminates at node 0, and this node
can be determined apart from the grid formation. The bat-
tery consumption level bki and tank consumption level tki
between nodes i and j are determined as the Euclidean dis-
tance between them.

IV. THE PROPOSED GGA
This section focuses on the solution techniques for the model
specified in equations (1) to (11). The proposed GGA is
given in Figure 1. This figure shows the sequential stages of
the GA algorithm. The initial step involves determining the
algorithm’s parameters, such as the probability of crossover
and mutation, the population size, and generating the neigh-
bourhood structure for the problem. Then the subsequent step
involves creating the initial population and evaluating the
objective function for each solution within the population.
Afterword executing each of the GA’s steps to generate a
new population. This involves the selection of new solutions,
followed by the implementation of the crossover operation,
and finally, performing of the mutation process. The next
step involves selecting the new population by an elite pro-
cess, wherein the new solutions are merged with the existing
population. The selection of the new population is based on
the value of the objective function.

The second section outlines the procedures of the GLS
algorithm. This algorithm aims to improve the best solution
identified within the GA population. In the first stage, the
solution is improved by incorporating the best neighbour
discovered in the GLS algorithm. Subsequently, the utility
and penalty function are updated based on the solution’s
quality. The quality of the solutions for each neighbourhood.
In the second solution, the GA’s population is combined with

the new solution generated by the GLS algorithm. This com-
bined population is then used to select a new population for
subsequent iterations. The aforementioned steps are repeated
till the end of the predetermined number of iterations.

Initial experimental findings indicate that themixed integer
programming (MIP) model poses significant challenges in
solving, even for very minor occurrences. As an example, the
process of calculating an instance with 20 nodes and 5 UAV
exceeds 3600 seconds. Therefore, we use meta-heuristic
methods to acquire answers that are close to optimum within
an acceptable timeframe. We present hybrid GA with a
guided local search algorithm called guided genetic algorithm
(GGA) to address the issue. The GGA utilises the first-in-
first-out (FIFO) node sequence as a baseline to construct
UAV’s routes.

The FIFO based GGA operates in a manner similar to
a generic GA. Let T represent the population size and M
represents the maximum number of multiplication iterations.
In the context of the UAV delivery challenge, we examine
a scenario with N nodes and O UAVs. The chromosomes
undergo random initialization using a permutation process,
starting from 1toN and continuing until the population size T
is attained. Here, we analyse each individual drone individu-
ally, rather than focusing on various categories of drones. For
every individual UAV a, a = 1, 2, . . . ,O, we use timea to
denote the overall duration required for UAV a to complete
its delivery mission and return to the control center.

To convert chromosomes into UAV routes, we use the
First-In, First-Out (FIFO) principle to allocate nodes. on this
context, we consider the chromosome as a queue of nodes
(O1,O2, . . . ,ON ) and a queue of drones (d1, d2, . . . ,dO),
where each node or UAV is now represented by a gene on
the chromosome.

Subsequently, the nodes comprising the node queue are
allocated to the first UAV inside the UAV queue. If the weight
of the node surpasses the residual load capacity of the first
available UAV, or if the battery’s flight range is insufficient
to allow the UAV’s completion of this tour, we allocate the
package to the subsequent UAV in the queue. The preceding
UAVwill proceed to visit its nodes in the designated sequence
and thereafter return to the control center. In the event that
the last UAV in the queue is unable to successfully load the
remaining packages, the queue is reset to its initial state,
and the remaining items are allocated to the first UAV as
its subsequent delivery assignment after its first trip. In this
approach, the order inwhichUAVs return to the control center
is disregarded, and the node assignment is solely determined
based on the sequence of the UAV queue.

Figure 2 depicts a demonstrative instance of the procedure.
Before the delivery, as seen in Figure 2, the nodes are allo-
cated to the first UAV in the order of the nodes list. Regarding
node 3, the charge of its cargo above the remaining charge
level of UAV1, or the distance of the journey exceeds the
flying range of UAV1. Consequently, the first journey of
UAV1 will begin at coordinates control center → 4 → 12 →

6 → control center. Subsequently, the subsequent packages

VOLUME 12, 2024 106339



A. N. Jasim, L. C. Fourati: GGA for Solving CVRP With UAVs

will be disseminated, starting withUAV2 and the subsequent
UAVs. Nevertheless, the weight of node 3’s cargo surpasses
the flying capability of UAV2, preventing it from travelling
to node 3 and returning to the hub due to its limited flight
range. Consequently, the UAV2 has the responsibility of
delivering this cargo to other nodes in a sequential manner
until the remaining capacity becomes insufficient or reaches
its maximum flying range.

FIGURE 2. UAV allocation based on FIFO.

This study used a hybrid method that combines the genetic
algorithm with the guided local search algorithm to address
the issue at hand. The concept of the memetic algorithm
was embraced as a means of integrating two algorithms,
enabling the enhancement of the optimal solution within
the population via the utilisation of the guided local search
algorithm. In this approach, the genetic algorithm’s oper-
ations are executed in the first stage to address the issue
at hand. Subsequently, the guided local search is used to
enhance the optimal solution acquired inside the neighbor-
hood throughout each iteration. Presented below are the
sequential instructions for executing the proposed algorithm
in order to solve the problem:

1) ENCODING AND DECODING
In the present work, the chromosomal coding methodology
used involves the partitioning of genes into distinct sections,
denoted asChrom = {Chr1, . . . ,Chrn}where n represents the
total number of regions separated. The composition of each
gene consists of all customers inside a certain subregion. Each
gene, denoted as Chri{i = 1, . . . ,n}, reflects the outcome
of path-planning for each respective subregion. The genetic
sequence Chri is represented as a collection of numbers,
including the distribution sequence comprising the nodes of
the given area.

Figure 3 illustrates a chromosome with 12 nodes and a
total of four tours. This chromosome may be further split
into four sub-regions. Chr1 comprises three distinct customer
sites, namely 4, 12, and 6. Within this chromosome, the
sequence of customer access follows a sequential pattern,
commencing with the control center and proceeding to visit
node 4, followed by node 12, and concluding with a visit to
node 6, before returning to the control center.

2) GENETIC ALGORITHM STAGE
The execution of the genetic algorithm is contingent upon
three fundamental steps, namely selection, crossover, and
mutation. The solutions included in the crossover stage were
chosen using a roulette wheel selection method during the
selection step. This approach computes the likelihood of each
solution’s contribution to the population, and subsequently,

FIGURE 3. Genetic algorithm chromosome consists of four routes and
twelve nodes.

two solutions are randomly chosen from the population. Solu-
tions with a high potential for contribution are more likely to
be chosen.

During the crossover step, the two selected solutions from
the selection stage are randomly divided into two halves.
Subsequently, two new solutions are generated by replacing
each piece of each solution with its corresponding section,
In Figure 4, the crossover phase of two solutions is shown,
with each solution consisting of 10 nodes, this study will use
a two-stage crossover methodology. The first stage involves
random crossing, as previously elucidated. The second stage
is performing the crossover procedure using the best solution
identified within the population.

FIGURE 4. Genetic crossover of GA (ten nodes).

During the mutation phase, the process will be executed
according to three distinct procedures. In each cycle, a ran-
dom selection is made for each process. This research will
use the approach of swop, Reversion, and Insertion. The swop
technique involves the random selection of two points from a
given solution, followed by the execution of a swap operation
between them. The Reversion procedure involves selecting a
random part inside the solution and then inverting it within
the solution. In the process of insertion, a randomly selected
piece is picked and then put into a different location inside the
solution. The mutation processes using the three approaches
are shown in Figure 5.

3) GUIDED LOCAL SEARCH STAGE
In the directed local search algorithm stage, the algorithmwill
be relied upon to improve the best solution found in the popu-
lation of the genetic algorithm. This stage helps in improving
the performance of the genetic algorithm by integrating the
solution obtained in this algorithm with the solutions of the
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FIGURE 5. Genetic mutation of GA in three strategies.

genetic algorithm in the crossing stage with the best solution.
The operation of this algorithm occurs through the following
stages:

a: NEIGHBORHOOD STRUCTURE
Based on one of the local search approaches, all potential
neighborhoods are delineated inside each solution at this
juncture. The local search techniques in this research will
use the swop approach. Consequently, the local search will
include all conceivable points. The size of the solution is
assumed to be equal to n, which represents the total num-
ber of feasible neighborhoods. The value is equivalent to
(n(n−1)/2). The technique of generating the neighborhood
matrix is shown in Figure 6.

FIGURE 6. Neighborhood structure for the swop method.

b: PROCEDURES
The application of this technique is based on the maximise of
utility derived from each search operation conducted inside
the neighbourhood structure. Put simply, the neighbourhoods
that exert a more significant influence on the solution quality
are granted a higher advantage in order to enhance their
utilisation in the process of improvement. This advantage is
determined by the following equation:

util (s, fi) = Ii (s) ·
ci

1 + pi
(12)

where

ci: the objective function of solution s after use
feature fi

pi: penalty function

Ii (s) =

{
1 solution s has property i;
0 otherwise

The detailed GGA is shown in Algorithm 1.

Algorithm 1 Guided Genetic Algorithm GGA
Input:
Pop size : population size NC :number of Crossover NM : number of
mutations
max iter : maximum number of iterations
Nk = {N1,N2 · · · ,Nm}: neighborhood
structure
Nm is the mth neighborhood structure
penk =

{
pen1, pen2 · · · , penm

}
// penalty function for

each neighborhood
Ik = {I1, I2 · · · , Im} // Indicator function for each neigh-
borhood
uitk = {uit1, uit2 · · · , uitm} // Uitility function for each
neighborhood
//Genetic algorithm stage

1: Initialize pop; Generate initialized populations
2: for gen = 1 to max iter do
3: for i = 1 to pop size do
4: calculate the fitness value for each solution
5: end for

found the best solution in the population best_sol
// Crossover
Pop_C = [];

6: for i = 1 to NC/2 do
7: select two solutions s1 & s2 using roulette strategies
8: crossover and get two new solutions ns1 & ns2;
9: Pop_C = [ Pop_C+ns1 & ns2]

10: end for
//Mutation
Pop_M = [];

11: for i = 1 to NMdo
12: select a random solution from the population
13: mutation using swop and get a new solutions ns1;
14: Pop_M = [ Pop_M+ns1]
15: end for
16: select new population from [pop+ Pop_C+ Pop_M]
17: find the best solution in population best_pop

//Guided local search algorithm stage
18: for k = 1 to m do
19: if uitk = max(uit) then
20: new_best_solution = local_search(best_sol,Nk )
21: calculate the fitness value for the new solution
22: if the fitnessofnew solution best of fitness best_pop
23: bestpop = new solution
24: penk = penk + 1 //update penalty function
25: Else
26: Ik = 1
27: end if
28: end if
29: uitk = Ik ·

ck
1+pk

//update utility function
30: end for

// Crossover with the best solution
Pop_C_best = [];

31: for i = 1 to NC/2 do
32: select random solutions s1 using roulette strategies
33: crossover with the best solution and get new solutions ns1;
34: Pop_C_ best = [ Pop_C_ best +ns1]
35: end for
36: select new population from [pop + Pop_C_ best]
37: repeat
38: end for
39: Best solution
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V. COMPUTATIONAL EXPERIMENT
In this section, simulation studies are conducted to evaluate
the performance of proposed GGA algorithm. Firstly, the
evaluation methodology is discussed and the results of the
experiments are presented. Secondly, the performance of the
GGA algorithm is compared with six benchmark techniques.
Thirdly, the findings are discussed in detail.

A. EXPERIMENTAL SETTINGS AND COMPARATIVE
METHODS
All methods are implemented using MATLAB R2023a, and
the experiments are conducted on a Windows 10 Pro (64bit)
operating systemwith an Intel Core i7-11375H, CPU running
at 3.30 GHz, 32GB RAM and 500GB storage. The number of
nodes is set to 25, 36, 49, 64, 81, 100, 121, 144, 169, 225, 256,
with the number of UAVs varying between 1 UAV to 6 UAVs
depending on the number of nodes. The distance between
nodes is assumed to be uniform and the path of UAVs are
expected to be square, except when the UAVs need to return
to the control centre. The UAVs return to the control centre
in three situations: when the battery needs to be recharged,
when the tank needs to be refilled with pesticides, and when
the tour is completed.

The parameter settings (parameter tuning) for the exper-
iment are given in Table 2. The performance of GGA is
substantially influenced by the crossover rate, mutation rate,
number of chromosomes in the population, and maximum
number of population iterations. We systematically vary the
crossover andmutation rates at values of 0.2, 0.4, 0.5, 0.6, 0.7,
0.8, and 0.9. We then execute the GGA ten times and measure
the average objective value for each combination of crossover
and mutation rates. The optimal outcome is obtained when
the crossover rate is set to 0.4 and the mutation rate is set to
0.8. Thus, we set the crossover rate to 0.4 and the mutation
rate to 0.8 in the subsequent experiments. In the experiments,
the performance of proposed GGA algorithm is compared to
four single-solution based metaheuristic algorithms and two
population-based metaheuristics algorithms:

Guided Local Search (GLS) [49] is a metaheuristic
approach that was developed to address combinatorial opti-
misation problems. GLS utilises a penalty-based method to
effectively engage with the local improvement procedure.
such a mechanism can escape local optima, hence enhancing
the efficiency and robustness of the classical local search
algorithms.

Tabu Search (TS) [50] is an algorithm that iteratively
searches across different neighbourhoods, with the neigh-
bourhoods changing dynamically. TS improves the effective-
ness of local search by excluding nodes that have already been
visited. To do so, loops in the search space can be prevented
and it becomes possible to avoid being stuck in local optima.

Simulated Annealing (SA) [51] is a common metaheuris-
tic approach for optimising problems characterised by large
search spaces. The search process in SA begins with an initial
solution and iteratively decreases a control parameter until

it converges to the best solution. The main benefit of SA is
its ability to avoid being stuck in local minima and instead
converge towards a global minimum.

Iterated Local Search (ILS) [52] is a popular metaheuris-
tic approach that is based on a single solution. ILS utilised
by many academic due to its ability to effectively handle
complex optimisation problems. The success of ILS can be
attributed to the possession of several desired attributes com-
monly seen in metaheuristics, including simplicity, accuracy,
flexibility and speed.

Genetic Algorithm (GA) [53] is a population-based tech-
nique. It is a metaheuristic approach that utilises population
characteristics to direct the search. GAmanages and enhances
many solutions that can yield a high-quality solution to the
optimisation problems.

Particle Swarm Optimisation (PSO) algorithm [54] is
inspired by the collective behaviour observed in swarms of
particles (animals and insects), such as birds and fish. In the
PSO, those particles are used to guide the search. To identify
the food regions, particles rely on their personal memories of
the event, as well as the information shared by their group.

TABLE 2. Parameter settings for the experiment.

B. EVALUATION PROCEDURE
The experimental findings are shown using the mean, stan-
dard deviation, minimum value (best solution), maximum
value (worst solution), and the Wilcoxon signed-rank test.

• Mean (x̄) represents the average value of a number of
runs. It is calculated by summing up all the ran values
and then dividing by the total number of runs.

x̄ =
1
n

∑n

i=1
xi (13)

where

xi represents each run of the algorithm.
n represents the total number of runs.

• Standard Deviation (STD) measures the dispersion or
spread of a number of runs from the mean. It indicates
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how much individual run deviate from the average.

STD =

√
1

n− 1

∑n

i=1
(xi − x̄)2 (14)

where

xi represents each run of the algorithm.
n represents the total number of runs.
x̄ represents the mean value.

• Best Solution (Min): the best solution is the minimum
value achieved by the optimisation algorithm, such as
the lowest objective function value attained by the com-
pared algorithms.

• Worst Solution (Max): the worst solution is the max-
imum value among the solutions obtained by the
optimisation algorithm, representing the least desirable
outcome.

• Wilcoxon signed-rank test: it is a statistical method that
measures the disparity between two sets of data [55].
It offers an alternative way to assess the position of
the data, taking into account both the size and direc-
tion of the disparities. The test examines the following
hypotheses:

H0 : mean (Algorithm1) = mean (Algorithm2),

H1 : mean (Algorithm1) ̸= mean (Algorithm2),

where
Algorithm1 and Algorithm2 represent the outcomes of two

algorithms.
The statistical test also serves to assess the relative per-

formance between two algorithms. In this context, let di
represent the disparity in performance scores between two
algorithms in solving the ith out of n problems. The R+

is defined to represent the total ranks for the problems in
which Algorithm1 performs better than Algorithm2 and R

− to
represent the total ranks for the problems inwhichAlgorithm2
performs better than Algorithm1. It is worth noting that the
ranks of di = 0 are evenly divided among these sums. In cases
where these sums contain an odd number of elements, one of
them is excluded from consideration.

R+
=

∑
di>0

rank (di) +
1
2

∑
di=0

rank (di) (15)

R−
=

∑
di<0

rank (di) +
1
2

∑
di=0

rank (di) (16)

In the experiment, MATLAB serves as the tool for computing
the p − value to compare the algorithms at a predetermined
significance level of α = 0.05. The null hypothesis is invali-
dated when the calculated p− value falls below the specified
significance level. Notably, R+ denotes a high-performing
algorithmwith a superior mean value compared to other algo-
rithms across various experimental scenarios. Specifically,
when

(
R+

=
n×(n+1)

2

)
, it indicates that this algorithm beats

all others algorithms across all experimental settings.

C. EXPERIMENTAL RESULTS AND DISCUSSION
The experimental results are presented based on the number
of nodes and UAVs in Tables 2, 3, 4, and 5. The Mean, Min,
and Max represent the average, minimum, and maximum
values of the 10 runs of each algorithm. STD represents the
results of the standard deviation. In Table 2, the number of
nodes is 25, 36, and 49. The number of UAVswith these nodes
were one, two, and three.

In the experimental scenario where 25 nodes and 1 UAV
were utilised, the GA yielded the most optimal solution,
achieving a minimum value of 508.60, as illustrated in
Table 3. Subsequently, the proposed GGA closely followed
with a minimum value of 513.93. Over 10 iterations, the
GA demonstrated superior performance compared to all other
algorithms, achieving a mean value of 511.26. Following the
GA in terms of performance were the GGA, SA, PSO, TS,
GLS, and ILS. When 25 nodes and 2 UAVs were used, GLS
emerged as the top performer, achieving the most optimal
solution with a minimum value of 298.26. Followed by the
proposed GGA and SA, both of which resulted in a minimum
value of 312.79. In addition, GLS consistently outperformed
the other algorithms across 10 iterations, demonstrating a
mean value of 316.05. The subsequent algorithms that were
evaluated in terms of performance were ILS, SA, TS, GGA,
GA, and PSO. By utilising 3 UAVs with 25 nodes, the GGA
algorithm obtained the most optimal solution, achieving a
minimum value of 236.17. The GGA consistently surpassed
all other algorithms, with 10 iterations mean value of 240.84.
The GA, SA, GLS, TS, PSO, and ILS algorithms performed
well, following the GGA in terms of performance.

When the number of nodes is increased to 36, the GA
was the best algorithm, followed by the proposed GGA,
achieving superior performance across all experiments. For
10 iterations, GA algorithm demonstrated mean values of
610.13 with single UAV and 360.1581 with two UAVs. Fol-
lowed by GGA, GLS, TS, SA, ILS, and PSO algorithms
with single UAV, and the GGA, SA, TS, GLS, ILS, and
PSO algorithms with two UAVs. By utilising 3 UAVs, the
GGA maintained its superiority, with a minimum value of
276.75, while the GA had a mean value of 284.74 across
10 iterations, outperforming all other algorithms. Following
the GA in terms of performance were the GGA, GLS, SA,
TS, PSO, and ILS algorithms. The graphical representation
in Figure 20 in Appendix illustrates the performance of the
algorithms using 1, 2, and 3 UAVs with 36 nodes.

Upon further increase to 49 nodes, the proposed GGA
emerged as the top performer, surpassing all algorithms in
terms of both the most optimal solution and mean val-
ues across 10 iterations, regardless of the number of UAVs
employed. The performance of the algorithms using 3 UAVs
with 25, 36 and 49 nodes is visually depicted in Figures 7, 20
and 21 in Appendix.

In Table 4, the number of nodes is 64, 81, 100, and 121. The
number of UAVs with these nodes were, two, three, and four.
The analysis of the best solution (min values) revealed that
GGA consistently demonstrated competitive performance,
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TABLE 3. Experimental results with 25, 36, and 49 nodes.

FIGURE 7. Algorithms’ performance with 25 nodes and 3 UAVs.

with minimum values ranging from 509 to 703 across dif-
ferent settings of nodes and UAVs. Furthermore, the mean

value of GGA across different scenarios provided valuable
insights into its overall effectiveness. The analysis of mean
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TABLE 4. Experimental results with 64, 81, 100, and 121 nodes.

values indicated that GGA generally achieved mean values
ranging from 514 to 725, showingGGA ability to consistently
deliver satisfactory performance across diverse settings of
nodes and UAVs. GGA was capable of providing reliable
optimization solutions for CVRP contributing to improved
efficiency and performance. In comparison to the other six
algorithms, GGA exhibits competitive performance in terms
of both minimum and mean values. While specific perfor-
mance may vary depending on the settings of nodes and
UAVs. GGA consistently demonstrates its efficacy in opti-
mizing UAV networks, often closely followed by TS, GLS,
and TS, in terms of minimum and mean values. The per-
formance of the algorithms using 4 UAVs with 64, 81, 100,
and 121 nodes is illustrated in the graphic representation

shown in Figures 8 and 22, 23, and 24 in Appendix,
respectively.

In Table 5, the number of nodes is 144, 169, 196, and
225. The number of UAVs with these nodes were, three,
four, and five. Similar to the results given in Table 4, the
GGA consistently emerged as a strong performer, exhibiting
competitive mean values across all nodes and UAVs scenario.
For instance, in scenarios with 144 nodes and 3 UAVs, GGA
demonstrated a mean value of 613.15, with a minimum of
around 601.76, showing its ability to consistently deliver
efficient solutions. Moreover, TS,GLS, and ILS also got
robust mean values, though slightly lower than GGA in most
cases. These algorithms, while not surpassing GGA, still
demonstrated strong optimization capabilities. In contrast,
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FIGURE 8. Algorithms’ performance with 64 nodes and 4 UAVs.

algorithms such as SA, GA, and PSO exhibited relatively
lower mean values across different scenarios. The perfor-
mance of the algorithms using 5 UAVs with 144, 169,
196, and 255 nodes is illustrated in the graphic representa-
tion shown in Figures 9 and 24, 25, and 26 in Appendix,
respectively.

In Table 6, the number of nodes is 256 and the number of
UAVs utilised were, four, five, and six. The proposed GGA
consistently emerged as a strong performer. For instance,
in scenarios with 256 nodes and 4 UAVs, GGA demonstrated
a mean value of 859.70, with a minimum of 852.03, indi-
cating its ability to consistently deliver efficient solutions.
Additionally, TS, GLS, and ILS algorithms also demon-
strated robust mean values, although slightly lower than
GGA in most cases. These algorithms gave competitive
mean values, ranging from 1156.22 to 1229.37, highlighting
their effectiveness in solving CVRP. Conversely, SA, GA,
and PSO algorithms exhibited relatively lower mean values
across different configurations. Despite showing some level
of optimization effectiveness, their mean values suggested
potential variability in performance. For example, in scenar-
ios with 6 UAVs, GA exhibited a mean value of 1564.99,
indicating its effectiveness but also highlighting variability
in performance compared to GGA and other algorithms.
Figure 10 shows the results of the algorithms’ performance
with 256 nodes and 6 UAVs.

Overall, the proposed GGA outperformed the other algo-
rithms in most instances. GGA showed competitive results,
closely following the TS’s performance across different sce-
narios. In addition, GA shew good performance particularly
when the number of nodes and UAVs was limited. Addition-
ally, the remaining algorithms (i.e. GLS, ILS, SA, GA, and

PSO) demonstrated effectiveness, although generally trail-
ing behind the GGA and TS. However, as the number of
nodes increased, the superiority of the GGA became more
noticeable, surpassing all other algorithms in terms of both
optimal solutions and mean values across iterations. This
scalability of the GGA underscores its potential as a robust
optimization technique for CVRP across various problem
sizes and configurations.

D. COMPUTATIONAL TIME AND EFFICIENCY
The main objective of our proposed model is to minimise
the overall consumption of batteries and tanks, while ensur-
ing that they do not exceed their maximum capacities. This
strategy places a higher importance on conserving energy
(batteries and tanks) rather than minimising distance.

This section reports and analyses the computation time of
the proposed GGA and the benchmark algorithms, including
GLS, TS, SA, ILS, GA, and PSO. More precisely, the com-
putation time of the models being compared is determined in
second. Although the proposed method is a hybrid of GA and
GLS, it functions efficiently within an acceptable duration,
as given in Table 7.

The table presents a comparison of the computational
durations for several metaheuristic algorithms in different
scenarios, which are determined by the number of nodes
and UAVs. With an increase in the number of nodes and
UAVs, there is a consistent pattern of increased processing
time observed across all methods. This pattern demon-
strates the increasing complexity of problem. For instance,
the computational time for GGA grows from 3.48 sec-
onds when using 25 nodes and 1 UAV to 18.01 seconds
when using 256 nodes and 4 UAVs. Other methods exhibit
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TABLE 5. Experimental results with 64, 81, 100, and 121 nodes.

TABLE 6. Experimental results with 256 nodes.

similar patterns, suggesting that greater problem sizes require
increased processing resources.

The PSO consistently demonstrates the shortest process-
ing times among the algorithms in all cases, suggesting its
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FIGURE 9. Algorithms’ performance with 144 nodes and 5 UAVs.

FIGURE 10. Algorithms’ performance with 256 nodes and 6 UAVs.

computational efficiency and applicability for situations that
demand prompt responses. GLS exhibits excellent compu-
tational efficiency, frequently ranking as the second fastest.
As an example, when there are 25 nodes and 1 UAV, the
GLS algorithm requires 1.25 seconds, whereas the PSO

algorithm takes 2.19 seconds. On the other hand, TS and
ILS typically exhibit the longest computational durations.
As an instance, the TS algorithm requires 2,619.14 seconds
to complete while using 256 nodes and 5 UAVs. In contrast,
the ILS algorithm takes 2,734.84 seconds to complete under
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TABLE 7. Computational time.

the identical conditions. These findings indicate that TS and
ILS may not be the most suitable options for applications
requiring fast computing.

Increasing the number of UAVs has an ability to increase
the computational duration for all algorithms. This is clearly
demonstrated by the increase from 1 to 3 UAVs in all
node configurations. For instance, when there are 25 nodes,
the computing time for GGA grows from 3.48 seconds
with 1 UAV to 2.50 seconds with 3 UAVs, despite a tem-
porary drop at 3 UAVs. This highlights the occurrence of
non-linear behaviour in certain instances. The GLS algorithm
demonstrates a more consistent and predictable increase in
processing time as more UAVs are added, suggesting a more
reliable scaling pattern.

Each algorithm can be analysed using certain observations.
The GGA algorithm, which is a combination of GA and GLS,
has a complex structure that results in considerable calcula-
tion times. However, it is highly efficient in terms of tank and
battery use. GGA and GA demonstrate moderate computing
speeds, striking a balance between the rapid PSO and GLS,
and the slower TS and ILS. Their performance exhibits a
proportional rise with the addition of nodes and UAVs. The
SA has shorter computational durations in comparison to TS
and ILS, however it is often slower than PSO and GLS. The

data illustrates an obvious correlation between the number of
nodes and UAVs and the corresponding rise in computational
time. Both TS and ILS exhibit considerable processing times,
rendering them less favourable for large-scale applications
where rapid computation is crucial.

The PSO has superior performance compared to other
algorithms like GGA and TS in highly complex scenar-
ios, such as those involving 256 nodes and 6 UAVs. PSO
achieves a processing time of 6.09 seconds, while GGA takes
16.52 seconds and TS takes 2,719.14 seconds.

E. STATISTICAL ANALYSIS
The Non-Parametric Wilcoxon signed-rank test was utilised
to assess if there is a statistically significant difference
between the proposed GGA and six other algorithms (i.e.
GLS, TS, SA, ILS, GA, and PSO). Table 8 presents the
statistical results of this test. The p − value higher than
0.05 indicate statistically significant differences among the
algorithms being compared. If R+ > R−, then the pro-
posed GGA significantly outperforms the compared method;
otherwise, the compared algorithm outperforms GGA signif-
icantly. Bold denote the optimal outcomes of the comparative
algorithms. The indicator (ind) represents the disparity in
performance scores between the two algorithms. If ind = +1,
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then the proposed GGA outperforms the other algorithm.
If ind = −1, then the other algorithm outperforms the
proposed GGA. If ind = 0, then the performance of the two
algorithms is equal.

Based on the test results given in Table 8, the null hypothe-
sis is rejected if the computed p−value is less than 0.05. This
indicates that there is a substantial difference between the
suggested GGA and the other algorithms. When comparing
GLS and ILS toGGA, the value ofR+ was consistently higher
than R− in all instances, except for the second instance where
ind = −1. When comparing TS, SA, and TSO to GGA, the
value of R+ was consistently higher than R− in all instances,
and the value of ind was equal to 1. When comparing GA to
GGA, the value of R+ was consistently higher than R− in all
instances, except for the first and fourth instances where the
value of ind was −1.

F. THEORETICAL AND PRACTICAL IMPLICATIONS
The study has important theoretical implications for the ongo-
ing development in CVRP field and optimisation techniques.
This research expands the current body of knowledge on
metaheuristic methods for tackling intricate routing problems
by reformulating the GGA specificaly for CVRP. The com-
bination of GA and GLS enhances the set of methods used to
address VRP, particularly in the context of UAVs-based pesti-
cide sprayingmissions. The study shows that GGA is not only
a feasible alternative, but also a superior approach in many
instances when compared to other well-known metaheuristic
algorithms. This study enhances the theoretical knowledge of
how hybrid algorithmsmight utilise the strengths of their own
approaches to obtain improved performance in optimisation
tasks. In addition, future researchers and developers can ben-
efit from the proposed method to solve their own problems.

Practically speaking, the results of this study have signifi-
cant implications for the practical use of UAVs in agricultural
environments. Efficiently managing the consumption of bat-
teries and tanks is essential for maximising the effectiveness
and efficiency of UAV operations, especially in precision
agriculture where limited resources are a major concern.
The suggested GGA algorithm can result in cost savings
and improved operational efficiency by reducing battery con-
sumption and optimising pesticide usage. The real-world
benefits are apparent in the enhanced performance mea-
sures, such as decreased average and variability in solution
quality, resulting in more dependable and foreseeable UAV
operations. Moreover, the comprehensive assessment, which
incorporates the Wilcoxon signed-rank test across several
scenarios, offers strong proof of the GGA’s efficacy, estab-
lishing it as a realistic tool for UAV routing and spraying
assignments. This can result in a wider acceptance of UAVs
for pesticide application, ultimately promoting more sustain-
able farming practices.

VI. CASE STUDY AND MANAGERIAL INSIGHTS
The case study utilises the proposed GGA in conjunction
with six benchmark algorithms to address the CVRP in

which three UAVs are assigned to spray pesticides over the
Baqubah farm in Iraq. This comparative analysis evaluates
the effectiveness of GGA in optimising UAV routes, specif-
ically designed for agricultural pesticide application. The
geographical map is uplouded into a specialised software
toolkit, as depicted in Figure 11. Through the graphical user
interface, users establish the Region of Interest (ROI), out-
lining 61 nodes that represent distinct pesticide application
zones, as shown in Figure 12.

FIGURE 11. The uploaded map of Baqubah farm to be surveyed by three
UAVs.

FIGURE 12. ROI with 61 nodes represent distinct pesticide application
zones.

Following the parameters configuration based on Table 1
for the algorithms, the case study problem undergoes a
defined capacity. The GGA and the 6 benchmark algorithms’
simulations yield results are shown in Figures 13-19. It can
be observed that GGA took the shortest path between nods.
However, PSO shows the worst scenario in terms of coverage
path by the three UAVs.

The computational costs and time of executing the algo-
rithms in the case study are given in Table 9. Out all
the algorithms examined, the GGA exhibits the highest
level of computing efficiency, with a time requirement of
181.92 second. This metric measures the algorithm’s capac-
ity to minimise the computational resources required while
efficiently optimising routes for pesticide application. On the
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FIGURE 13. The path based on GGA.

FIGURE 14. The path based on GLS.

FIGURE 15. The path based on SA.

FIGURE 16. The path based on TS.

other hand, ILS has the greatest computational time of
287.45 second, which suggests that it requires more time and
processing resources compared to other methods.

FIGURE 17. The path based on ILS.

FIGURE 18. The path based on GA.

FIGURE 19. The path based on PSO.

The computational costs for the remaining methods are as
follows: GLS is 158.02, TS is 283.20, SA is 128.50, GA is
121.39, and PSO is 127.47. The results demonstrate differing
levels of efficiency and resource utilisation across several
metaheuristic approacheswhile solving theUAV routing opti-
misation problem.

The high efficiency demonstrated by GGA indicates that
it has the potential to be successfully used in real-world
applications, as it is able to effectively optimise routes while
still being computationally practical.

This research focuses on the CVRP for UAV-based pes-
ticide spraying missions. However, the principles of the
proposed GGA can be applied to a wider range of opti-
misation problems. The GA can be customised to enhance
the efficiency of routing and resource allocation in sev-
eral scenarios, including: Municipalities can utilise GGA to
strategically plan optimal routes for waste collection vehicles,
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TABLE 8. Wilcoxon signed-rank test results.

TABLE 9. Algorithms’ computational costs and time in the case study.

ensuring an optimal distribution of load capacities and
thus minimising operational expenses. Emergency-services,
including ambulances and fire engines, can gain advan-
tages from optimised routing to decrease response times and
enhance service coverage. GGA is capable of optimising the
allocation of goods from warehouses to sellers, guaranteeing
the effective utilisation of vehicle capacity and minimis-
ing transportation expenses. Transportation authorities can
utilise GGA to strategically plan bus routes that optimise
geographical coverage, taking into account factors such as
vehicle capacity limitations.

The GGA is a versatile and robust algorithm because it
combines the explorative abilities of GAs with the GLS. The
ability of this model to maintain a balance between explo-
ration and exploitation is extremely beneficial for a range of
optimisation problems where the nearly optimum solutions
is the highest priority. Notable characteristics that improve
its usefulness include:

• The GGA’s ability to effectively handle larger problem
sizes, as shown in the CVRP scenarios with differ-
ent numbers of nodes and UAVs, suggests its potential
for scaling in other optimisation problems of large
scale.

• The GGA can be customised by adjusting the GA oper-
ators and GLS to match the specific constraints and
objectives of various optimisation tasks.

• The statistical analysis and comparison of GGA
with other metaheuristic algorithms demonstrate its
resilience, confirming it as a dependable option for var-
ious applications.

This research highlights the adaptability and potential for
broad application of the GGA, making it a valuable optimi-
sation tool that may be utilised in many domains beyond just
UAV-based pesticide spraying.

VII. CONCLUSION AND FUTURE WORKS
The successful application of precision agriculture relies on
the efficient optimisation of agrotechnical procedures in order
to greatly enhance crop yields. UAVs serve as invaluable
tools for data collection and carrying out specific agricultural
operations. Nevertheless, despite their potential, numerous
unsolved obstacles hinder the broad implementation of UAV
technology for precision agriculture. One of these tasks
is VRP to solve CVRP. These tasks might be more chal-
lenging when taking into account the limitations of battery
and tank capacities in UAV operations. In this paper, the
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FIGURE 20. Algorithms’ performance with 36 nodes.

FIGURE 21. Algorithms’ performance with 49 nodes.

authors have proposed a hybrid metaheuristic optimisation
algorithm known as the GGA, which integrates GA with a
GLS algorithm.

For the experiment, the number of nodes was set to 25, 36,
49, 64, 81, 100, 121, 144, 169, 225, 256, with the number of
UAVs varying between 1 UAV to 6 UAVs depending on the

number of nodes. The results confirm that the proposed GGA
successfully resolves the CVRP for UAV-based pesticide
spraying missions. Regardless of the number of nodes and
UAVs involved, GGA continually demonstrated competitive
performance by consistently reaching lower mean and mini-
mum values and maintaining low standard deviations across
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FIGURE 22. Algorithms’ performance with 81 nodes.

FIGURE 23. Algorithms’ performance with 100 nodes.

most iterations. At first, the GA provided better performance
when there were fewer nodes and UAVs. However, as the
complexity increased, it became clear that theGGAwas supe-
rior. With an increasing number of nodes, GGA consistently
outperformed competing algorithms, demonstrating its robust
performance even in the largest cases with 256 nodes. When

compared to other metaheuristic algorithms such as TS, GLS,
ILS, SA, and PSO, GGA consistently achieved superior
results, especially as the size of the problem increased.

According to the Wilcoxon signed-rank test results, GGA
consistently outperformed GLS and ILS in most instances,
except for one where the performance was slightly lower.
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FIGURE 24. Algorithms’ performance with 121 nodes.

FIGURE 25. Algorithms’ performance with 169 nodes.

When compared to TS, SA, and PSO, GGA showed superior
performance in all instances. Similarly, GGA outperformed
GA in most cases, with only two exceptions where GA per-
formed better. Overall, the statistical analysis confirms that
GGA generally outperforms the other algorithms, demon-
strating its effectiveness and robustness in solving CVRP.

The limitations of the proposed method: (i) the proposed
method may rely on certain assumptions or simplifications

of the real-world agricultural environment, which could limit
its applicability in complex and dynamic agricultural settings.
(ii) Deploying UAVs for precision agriculture involves practi-
cal challenges such as flight regulations, weather conditions,
equipment reliability, and operational costs. (iii) While the
proposed method has shown promising results, its scalability
to large-scale agricultural operations with numerous UAVs
and complex constraints remains a challenge. (iv) Many
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FIGURE 26. Algorithms’ performance with 196 nodes.

FIGURE 27. Algorithms’ performance with 225 nodes.

agricultural tasks involve optimizing multiple objectives
simultaneously, such as minimizing cost, maximizing cover-
age, and reducing environmental impact, which is not covered
in this paper.

In the future research these limitations can be addressed by:
(i) exploring more realistic models and incorporating addi-
tional constraints and factors into the optimization model.
(ii) the proposed method should be evaluated and validated
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under real-world conditions to assess its feasibility and
effectiveness in practical agricultural settings. (iii) devel-
oping scalable algorithms and techniques that can handle
larger problem instances efficiently. (iv) exploring multi-
objective optimization techniques to find trade-offs between
conflicting objectives. (v) Future studies can investigate the
utilisation of other meta heuristic algorithms such ashybrid
spider monkey optimisation approach and the raccoon family
optimisation algorithm with GLS in a two-stage procedure to
tackle the CVRP. (vi) Future research can employ mTSP to
solve CVRP or VRP. (vii) Incorporating distance metrics to
the proposed model to further enhance the model’s applica-
bility and efficiency.

APPENDIX
See Figures 20–27.
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