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ABSTRACT In many real classification problems where a limited number of training samples is available,
the linear classifiers based on discriminant analysis are unable to deliver accurate results. Moreover, the
testing and/or the training data can be erroneous due to noise contamination which further degrades their
performance. Regularization techniques become imperative to deal with these problems. However, the
existing regularization techniques, to some extent, mainly focus on data scarcity issues but completely
ignore the noisy nature of the testing and/or the training data. We propose a novel regularized quadratic
discriminant analysis (R-QDA) classifier which addresses both issues simultaneously. The procedure
involves a reformulation of the discriminant function of the conventional QDA classifier into least square
problems and then solving them by using regularized least squares (Reg-LS) based on ℓ2-norm. In contrast
to existing R-QDA techniques, the proposed R-QDA classifier employs two regularization parameters
pertaining to each class, which can be independently selected by various robust techniques. Numerical results
demonstrate the effectiveness of the proposed method over classical R-QDA methods, especially in high
noise regimes.

INDEX TERMS Discriminant analysis, LDA, QDA, regularization, data classification.

I. INTRODUCTION
Classification is a supervised learning approach in machine
learning, in which a computer program learns from the input
training data set and then uses this learning to classify new
unseen observations [1]. Classification problems may be
categorized as binary-class or multi-class problems. In the
former, the data set belongs to only two classes while in the
latter it may belong to more than two classes. The statistical
classifier aims to use object characteristics to declare which
class it belongs to. Speech and handwriting recognition,
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biometric verification, and documents classification are some
of the common examples of classification problems.

Classifiers based on discriminant analysis (DA) are
used numerously in various classification problems and
applications [2], [3]. DA aims to categorize the objects to
one of the predefined classes by thresholding a discriminant
function of the data. Two distinct types of DA are linear
discriminant analysis (LDA) and quadratic discriminant
analysis(QDA) which are distinguished from one another
by linear and quadratic decision boundaries respectively [4].
Linear classification classifies the data by making decisions
based on the value of a linear combination of features.
It is a simple and computationally attractive approach that
works better when the data is linearly separable. Due to
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the simplicity of LDA, it has been used effectively in
various classification and face recognition problems [5], [6],
[7]. Some standard assumptions associated with LDA are:
(i) Data from each class has the same mean vector and the
same covariance matrix (ii) Data are multivariate normally
distributed and (iii) Data entities exhibit independence.
Classification problems that are dealt with the QDA are
those where the data pairs are discriminated by boundaries
modeled by quadratic functions [8]. Decision boundaries are
in the form of curves in this case. Gaussian assumption
is maintained in case of the QDA as well, but covariance
matrices are considered different for each class. If LDA is
used in case of different class covariances, it may result in
high variability. Although both approaches can handle static
data very well, QDA is more suitable for complex decision
boundaries.

DA classifiers produce least misclassification error under
Gaussian/Normal assumption if the mean vector and the
covariance matrix of each class are known exactly. However,
these parameters are not available in practice and must be
estimated. Generally, an independent set of data along with
known labels, called training data, is used to estimate these
class parameters that are used in discriminant functions.
In many practical problems, the number of data samples
is less than the number of features which is often referred
to as data scarcity. Moreover, the performance of the
DA-based classifiers deteriorates significantly when the test
data is also contaminated with noise that is not observed
during the training stage. The data scarcity problem results
in ill-conditioning or even non-invertibility of covariance
matrices as the number of features is usually large. Different
techniques can be considered to address these issues. One
way is to use dimensionality reduction to retain the most
important features from the data and discard the ones which
are not important from a classification perspective [1], [3].
However, it is often challenging to decide which features
should be retained and to what extent the dimensions be
reduced. Also, the dimensionality reduction results in some
loss of information that cannot be recovered. Although the
issue of robustness of QDA has been addressed using various
techniques in recent works [9], [10], an alternative and finest
way is to employ regularization techniques which give rise to
regularized discriminant analysis (RDA) classifiers [11], [12]
and they are the main focus of this paper.

In literature, different regularized versions of LDA and
QDA, namely R-LDA and R-QDA respectively, have been
proposed [13], [14]. The basic premise behind these methods
is to replace the covariance matrices’ estimates with their
ridge estimates [15], [16], thereby stabilizing the inverse
of covariance matrices. The performance of the resulting
R-LDA and R-QDA classifiers heavily depends on the value
of the ridge or regularization parameter and, therefore,
it must be chosen appropriately. Different techniques have
been proposed in the literature for finding the best value
of the regularization parameter, such as, generalized cross-
validation [17], L-curve [18], quasi-optimal [19] etc. These

methods use grid search to find the best value of the
regularization parameter, which has its drawbacks as the
grid size and grid interval are not always well defined.
More recently, the authors in [20] and [21] have proposed a
bounded perturbation regularization (BPR) and a constrained
perturbation regularization approach (COPRA), where the
regularization parameter is found by minimizing the mean
squared error (MSE). These methods have been shown to
perform faster than the grid search methods as the regular-
ization parameter is obtained by solving non-linear equations
via Newton’s method [22]. In another line of research,
[23], [24] and [25] developed R-LDA classifiers by using
asymptotic analysis of the probability of misclassification
based on random matrix theory. In [26] the results of
R-LDA were extended to the case of R-QDA as well. The
regularization parameter in these methods is found by the
grid search technique where the asymptotic misclassification
error rate has to be computed over a fine grid of predefined
parameter values. Moreover, these methods are strongly
built on Gaussian assumptions of the data as well as on
a few specific assumptions on covariance matrices. These
assumptions do not apply equally well to the real data (that
might not be Gaussian) and to the case of generic covariance
matrices. Furthermore, all the existing R-LDA and R-QDA
methods do not address the noise contamination problem,
and therefore, suffer from performance degradation. This has
been the motivation for the present work.

In this paper, we present an improved binary R-QDA
classifier based on a robust regularization approach by
reformulating the score function of conventional R-QDA as
a regularized least square (Reg-LS) problem. The resulting
Reg-LS problem can be solved by using any of the robust
regularization techniques as mentioned above.1 The proposed
method takes care of the ill-conditioning of the covariance
matrices due to data scarcity as well as the perturbations in
the training and/or the test data due to noise contamination.
The proposed method has the following distinctive features:

• Two regularization parameters are calculated corre-
sponding to each class based on both the training and
the test data which can be tuned independently to
cope with the perturbations in the test data. This is to
be contrasted with existing approaches which utilize
a single regularization operation based solely on the
training data. This feature makes the proposed approach
more robust to noise that is unobserved in the training
data but occurs in the test data.

• The regularization parameter selection approach is
agnostic to the underlying distribution of the data
contrary to existing works [23], [24], [25], [26] which
strongly rely on the Gaussian assumption.

A. NOTATIONS
Throughout this paper, we used non-bold letters to denote
scalars (e.g.,W ), boldface lowercase letters to denote column

1The authors have recently developed a similar technique for the LDA
classifier [27], where the COPRA gave the best performance.

114952 VOLUME 12, 2024



A. Zaib et al.: Improved Binary QDA Classifier by Using Robust Regularization

vectors (e.g., x), and boldface uppercase letters to denote
matrices (e.g., H). The notation Ip denotes an identity matrix
of dimension p, and 0p1×p2 represents a p1 × p2 matrix with
all zero elements. We use tr(.) and (.)T to denote the matrix
trace and matrix/vector transpose operations, respectively.
The notation x̂ indicates an estimate of the variable x. The
set of real numbers is denoted by R and the l2 norm of a
vector is denoted by ∥.∥2. The probability density function
and the statistical expectation of a random variable x are
denoted by P(x) and E(x), respectively. The symbol ≈ stands
for ‘‘approximately equivalent to,’’ while := means ‘‘defined
to be equal to’’. Finally, ‘‘s.t.’’ is an abbreviation for ‘‘subject
to.’’

The rest of the paper is organized as follows. Section II
gives an overview of binary discriminant analysis based
classification, in Section III we develop the proposed R-QDA
classifier, Section IV describes various techniques to find the
regularization parameter and also summarizes the R-QDA
algorithm, simulation results are presented in Section V and
finally, Section VI is conclusion.

II. DISCRIMINANT ANALYSIS BASED CLASSIFICATION
In this paper, we consider a binary classification problem
based on the discriminant rule that assigns an input data
vector to one of the two classes it most likely belongs to.
The classifier is designed based on n available training data
samples with known class labels. We consider Bayesian
discriminant rule and assume that observations from each
class Ci, i ∈ {0, 1} are independent and sampled from a
multivariate Gaussian distribution with mean µi ∈ Rp×1

and non-negative covariance matrix 6i ∈ Rp×p. More
specifically, a multivariate data vector x ∈ Rp×1 is assigned
to the class Ci, if

x = µi + 6
1/2
i ω, ω ∼ N

(
0, Ip

)
. (1)

For different covariance matrices 60 and 61, the score
function of QDA classifier reads as [1]:

WQDA(x) = −
1
2
log

|60|

|61|
−

1
2
xT

(
6−1

0 − 6−1
1

)
x

+ xT6−1
0 µ0 − xT6−1

1 µ1 −
1
2
µT
06−1

0 µ0

+
1
2
µT
16−1

1 µ1 − log
π1

π0
, (2)

where πi represents prior probability of class i. The class
assignment rule for x is given by,

x ∈

{
C0, ifWQDA(x) > 0
C1, otherwise.

(3)

Applying the assumption of equal class covariance matrices,
i.e., 60 = 61, the QDA reduces to LDA having the score
function,

WLDA(x) =

(
x −

µ0 + µ1

2

)T

6−1 (
µ0 − µ1

)
. (4)

Note that WLDA(x) is a linear function of data, and
hence called linear discriminant function. The corresponding
decision rule in this case is the same as given in (3) with
WQDA(x) replaced by WLDA(x). As clear from (2) and (4),
the computation of discriminant functions requires the
knowledge of class statistics in the form of class mean vectors
and class covariance matrices. Since these class statistics are
rarely available in practice, they must be estimated from the
training data with known labels. Therefore, we assume that
ni, i ∈ {0, 1} independent training samples T0 = {xl ∈ C0}n0l=0
and T1 = {xl ∈ C1}n0+n1=nl=n0+1 are available to estimate the
class statistics. In particular, the sample estimates of the mean
vector and covariance matrix of each class i are given as
follows:

µ̂i =
1
ni

∑
l∈Ti

xl, i ∈ {0, 1}

6̂i =
1

ni − 1

∑
l∈Ti

(xl − µ̂i)(xl − µ̂i)
T, i ∈ {0, 1}. (5)

A major source of error in the above formulation is the
inversion of the covariance matrix 6̂i. In many practical
setups where n is comparable to p, 6̂ becomes ill-
conditioned, or even singular. To get around this issue, the
inverse of covariance matrix 6̂

−1
i is often replaced with a

ridge estimator Hi = (Ip + γ 6̂i)−1, where γ ∈ R+ is
the regularization parameter and Ip is the identity matrix
of dimension p. The resulting classifier is referred to as
regularized QDA (R-QDA). Hence, the discriminant function
of R-QDA based on sample estimates takes the form,

WRQDA(x)

=
1
2
log

|H0|

|H1|
−

1
2
xT (H0 − H1) x + xTH0µ̂0

− xTH1µ̂1 −
1
2
µ̂
T
0H0µ̂0 +

1
2
µ̂
T
1H1µ̂1 − log

π1

π0
(6)

As opposed to the above strategy, we employ a different
form of regularization to that in (6). In the proposed regu-
larized QDA classifier, we apply two separate regularization
operations for each class, which help in accounting for
singularities of the covariance matrix of each class and
providing robustness against error contributions that are
present in the noisy test data.

III. THE PROPOSED R-QDA CLASSIFIER
It is clear from above that simply replacing the covariance
matrix inverse 6̂

−1
i by ridge estimator H only caters to

singularity of covariance matrices when ni < p. As such,
it does not address the noise perturbation in training and/or
the testing data. Further, the regularization parameter γ in (6)
is usually computed using only the training data. Hence
existing methods are more prone to error perturbations in
the training and/or the testing data, especially when the error
statistics of the test data deviate from those of the training
data.
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To address these issues, we reformulate the QDA score
function in (2) as follows. Using the sample estimates of class
mean vectors and covariance matrices, (2) can be re-written
as,

ŴQDA(x) = −
1
2
log

|6̂0|

|6̂1|
−

1
2

(
x − µ̂0

)T
6̂

−1
0

(
x − µ̂0

)
+

1
2

(
x − µ̂1

)T
6̂

−1
1

(
x − µ̂1

)
− log

π1

π0
(7)

In case that ni < p, the samplemean and covariance estimates
in (7) are not accurate hence, the discriminant function will
be subsequently modified using the regularization parameters
that take care of these problems. Note that the two quadratic
terms

(
x − µ̂i

)T
6−1
i

(
x − µ̂i

)
for i ∈ {0, 1} appearing in (7)

can be expressed as the inner product of two vectors as
follows:(

x − µ̂i
)T

6̂
−1
i

(
x − µ̂i

)
=

(
x − µ̂i

)T
6̂

−
1
2

i 6̂
−

1
2

i

(
x − µ̂i

)︸ ︷︷ ︸
zi

= zTi zi, i ∈ {0, 1}

where,

zi := 6̂
−

1
2

i (x − µ̂i), i ∈ {0, 1}. (8)

By using (8) in (7) we get,

ŴQDA(x) = −
1
2
log

|6̂0|

|6̂1|
−

1
2
zT0 z0 +

1
2
zT1 z1 − log

π0

π1
.

(9)

To avoid the singularity issue associated with the covari-
ance matrices, we define xi := x−µ̂i, so that (8) is equivalent
to a set of linear equations:

xi = 6̂
1
2
i zi, i ∈ {0, 1}. (10)

Now, considering the error perturbations in training and/or
testing data due to unknown noise, (10) can be modeled as:

xi = 6̂
1
2
i zi + vi, i ∈ {0, 1}. (11)

where vi is the additive noise term for the class i. Note that
the noise term includes the error perturbations in training
and/or testing data (through xi), the estimation noise due to
insufficient training as well as the modeling inaccuracies.
To simplify our derivations we assume that, the noise vector
vi has zero mean and an unknown covariance matrix σ 2

v Ip,
the unknown random vector zi is also assumed as zero mean
with an unknown positive semi-definite diagonal covariance
matrix and the vectors vi and zi are mutually independent.
In Section V, we will see that these simplifying assumptions
still work for different classification examples.

Focusing on (11), different regularization methods, com-
monly called ridge regression or Tikhonov regulariza-
tion [16], [28], [29], can be applied to obtain a stable estimate
of zi in the presence of noise and the singularity of the

covariance matrix. This estimate can be expressed in a closed
form as [28]

ẑi = (6̂i + γiIp)−16̂
1
2
i xi, i ∈ {0, 1}, (12)

where γi is the regularization parameter associated with
class i. Let 6̂i = UiD2

i U
T
i be the eigenvalue decomposition

(EVD)2 of the covariance matrix 6̂i, where Ui is the matrix
of eigenvectors satisfying orthonormality property UiUT

i =

UT
i Ui = Ip and D2

i is the diagonal matrix consisting of the
eigenvalues of 6̂i. Then, invoking the EVD of covariance
matrix in (12), the vector estimate ẑi can be expressed as,

ẑi = Ui(D2
i + γiIp)−1DiUT

i xi, i ∈ {0, 1}. (13)

Now, by replacing zi in (9) with their estimates ẑi given in
(13) and simplifying the resulting expression, the modified
form of R-QDA score function is obtained as,

ŴRQDA(x)

= −
1
2
log

|6̂0|

|6̂1|
−

1
2
ẑT0 ẑ0 +

1
2
ẑT1 ẑ1 − log

π0

π1

= −
1
2
log

|6̂0|

|6̂1|
−

1
2
xT0U0DT

0 (D
2
0 + γ0Ip)−2D0UT

0x0

+
1
2
xT1U1DT

1 (D
2
1 + γ1Ip)−2D1UT

1x1 − log
π0

π1
(14)

SinceDi is diagonal matrix and so is the matrix (D2
i +γiIp)−2,

we can combine Di’s on either side of parenthesis in (14) to
get (D2

i +γiIp)−2D2
i . Finally, by approximatingD2

i with (D
2
i +

γiIp) i.e., by adding the regularization term, we get

ŴRQDA(x) =
1
2
log

|H0|

|H1|
−

1
2
xT0H0x0 +

1
2
xT1H1x1 − log

π0

π1

(15)

where, the matrix Hi, which essentially represents the
regularized estimate of the inverse of covariance matrix of
the class Ci, is defined as

Hi = 6̂
−1
i ≊ Ui

(
D2
i + γiIp

)−1
UT
i , i ∈ {0, 1}. (16)

From above we observe that the proposed method employs
Hi defined in (16) with two independent regularization
parameters pertaining to each class. Further, these parameters
are found based on both the training and the testing data,
as can be seen from (11). In contrast, the classical methods
employHi= (Ip + γ 6̂i)−1, as the regularized estimate of the
inverse of the covariance matrix, with common regularization
parameter γ for both classes. Further, the common parameter
γ is computed based only on the training data. Also, from the
noisy data model (11), it is clear that the proposed R-QDA
classifier not only takes care of the singularity of the class
covariance matrix but also the noise perturbations in testing
and/or training data. Therefore, the proposed classifier is

2The rationale behind using EVD is to partition the significant and
insignificant eigenvalues of the covariance matrices so that the inversion of
these matrices is stable.
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robust as it is less prone to errors, and is expected to yield
a solution with better stability than the the existing methods.

Now, it only remains to set the values of the regularization
parameters γi, i ∈ {0, 1} pertaining to each class. In the
following section, we present different robust methods to
compute these regularization parameters for the Reg-LS
solution in (12).

IV. REGULARIZATION PARAMETER SELECTION
There exist several methods for finding the regularization
parameter γ , such as the L-curve [18], the GCV [17],
the quasi-optimal method [19], the BPR method [20] and
COPRA [21]. These methods use different criteria which
results in different values of the regularization parameter
(see [30]). In practice, the performance of each of these meth-
ods may vary significantly depending on the data distribution
or the problem at hand. The BPR and COPRA have shown
immense success in signal estimation and beamforming [20],
image restoration [21] and LDA classification [27]. They also
have the advantage of being robust against data distributions
and the fastest runtime.

In this section, we give a brief account of these methods
and see how they can be applied to find two regularization
parameters for the proposed R-QDA classifier developed in
Section III. Towards this end, we first re-state the linearmodel
of (11) in a more generalized form as follows:

y = Az + v, (17)

where matrixA plays the role of the square-root of the sample

covariance matrix i.e.,A :=6̂
1
2
i and y=x−µ̂i is the observed

data vector contaminated with the noise vector v. The Reg-LS
solution of (17) based on Tikohonov regularization [28],
is given by:

ẑγ = (ATA + γ Ip)−1ATy, (18)

where the subscript γ used with ẑ explicitly shows the γ

dependency of the estimate ẑ. Note that, in the absence of
any regularization i.e., γ = 0, the Reg-LS solution converges
to the ordinary least squares (OLS) solution,

ẑLS =
(
ATA

)−1 ATy. (19)

The major drawback of the OLS solution is the sensitivity
to noise perturbations. Further, OLS is not feasible when
the transformation matrix A is singular, hence it is not
applicable when n < p. In this paper, we use Reg-LS
solution (18), where the regularization parameter is selected
by using the aforementioned techniques which are briefly
discussed below.

A. GENERALIZED CROSS VALIDATION (GCV)
GCV is a popular approach used for selecting the regulariza-
tion parameter. It involves selecting the parameter value γ

that minimizes the GCV function [17]

G(γ ) =
∥Aẑγ − y∥22

trace(Ip − AA#
γ )

(20)

where trace(.) is the matrix trace operator andA#
γ denotes the

regularized pseudo-inverse of A defined as, A#
:= A(ATA+

γ Ip)−1AT. The GCV function is evaluated several times for
different γ values which are sequentially selected from a
predefined interval. The desired solution is obtained for the
value of γ that minimizes the GCV function. Practically, this
grid search approach seems quite attractive if the matrix A
is small enough and its singular value decomposition (SVD)
can be computed rapidly. In this case, the GCV function can
be easily calculated several times. However, in case of ill-
conditioning, the matrix A is supposed to be large enough
and the GCV is a computationally expensive approach.

B. L-CURVE
L-curve is a robust technique used in finding the optimal
regularization parameter. Like other techniques, the L-curve
is also a trade-off method. L-curve criterion (LCC) is
proposed by Hansen and O’Leary [18] and is used in many
practical applications. L-curve is the logarithmic plot of the
solution norm ∥ẑγ ∥2 versus residual norm ∥Aẑγ − y∥2 along
with the regularization parameter γ . The use of log scale
makes the plot insensitive to scaling of A and z and hence
makes it a robust approach. L-curve mainly consists of two
parts - the flat part and the steep part. The regularization
and the perturbation error dominate in both of these parts
respectively, whereas the optimal value of γ lies near the
corner of the curve.

As L-curve is a trade-off method, if too much damping is
imposed or an equivalently large value of γ is used, it can
lead to higher residual error. The same is the case with smaller
γ values, which may result in higher data errors. Hence, the
method requires one to define an approximate range for the
optimal value of γ in advance. In contrast to other methods
like GCV, L-curve provides a robust estimation where the
GCV sometimes is not possible.

C. QUASI-OPTIMAL
Quasi-optimal criteria is a robust technique for deciding
the regularization parameter γ . It performs much better
in many practical scenarios than the L-curve and the
GCV methods. In quasi-optimal method, we consider the
regularized solution based on Thikonov regularization is
given in (18). In Quasi-optimal criteria, we choose γ >

0 such that [19] ∥∥∥∥d ẑγ

dγ

∥∥∥∥ → min
γ

. (21)

The equation above declares the robustness of the method as
it does not rely on the solution knowledge and the noise level.

D. BOUNDED PERTURBATION REGULARIZATION (BPR)
The BPR is a recently developed technique by Tarig
Ballal et al. that has been shown to outperform GCV,
L-curve, and quasi-optimal methods in certain applica-
tions [20]. The basic idea behind BPR is to introduce an
artificial perturbation in the linear model to improve the
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singular-value structure of the model matrixA. To adapt BPR
for the proposed R-QDA classifier, we consider replacing the
matrix A in (17) by its perturbed version to get,

y ≈ (A + 1) z + v, (22)

where 1 is an unknown perturbation matrix which is norm
bounded by a positive number λ, i.e., ∥1∥2 ≤ λ, where
∥1∥2 represents the spectral norm of 1. The perturbation
1 can be thought of as an error in the model due to the
noisy nature of A, which is the case for (17). The vector z
is estimated by minimizing the worst-case residual error,

min
ẑ

max
1

||y − (A + 1) ẑ||2, s.t. ||1||2 ≤ λ. (23)

The min-max problem (23) can be converted to a mini-
mization problem whose solution is given by (18) with the
constraint [21], [31], [32],

γ ||ẑ||2 = λ||y − Aẑ||2. (24)

We observe that the solution of (23) depends on the bound λ

and not on the structure of the perturbation matrix 1. Also,
both λ and z are unknown. However, we can substitute (18)
and the EVD: A=UD2UT in (24) and manipulate to obtain,

λ2 =

trace
((
D2

+ γ Ip
)−2

UT E
(
yyT

)
U

)
trace

(
D2 (

D2
+ γ Ip

)−2
UT E

(
yyT

)
U

) . (25)

Here, we have replaced yyT with its expected value to get the
optimal value of bound λ averaged over many realizations
of y. From (17), we get E

(
yyT

)
= UDUT6zUDUT

+

σ 2
v Ip. An interesting property of BPR is that it results in a

regularization parameter that minimizes the MSE criterion,
which, in our case, is given by,

MSE ≜ trace
(
E

(
(z − ẑ)(z − ẑ)T

))
= σ 2

v trace
(
D2

×(
D2

+γ Ip
)−2

)
+γ 2trace

((
D2

+γ Ip
)−2

UT6zU
)

,

(26)

The second equality in (26) follows by substituting (18)
and using the eigenvalue decomposition (EVD) of A.
By differentiating the MSE, the value of γ that minimizes
the MSE can be obtained as follows:

∂ (MSE)

∂γ
= 0 H⇒ γ ≈

nσ 2
v

trace (6z)
. (27)

Tomake the derivation short, the equations (24), (25) and (27)
can be combined and manipulated to absorb the unknown
parameters, leading to the BPR equation,

f (γ ) = trace
((

D2
+ γ Ip

)−1
)
trace

((
D2

+ γ Ip
)−1

ddT
)

− p trace
((

D2
+ γ Ip

)−2
ddT

)
= 0. (28)

where d := UTy. The nonlinear BPR equation (28) depends
only on γ , which can be solved by Newton’s method [22] to
get an optimal value of the regularization parameter.

E. CONSTRAINED PERTURBATION REGULARIZATION
(COPRA)
The COPRA approach is an extension of BPR and hinges
on the same basic principle as the BPR [21]. Therefore, the
derivation of the COPRA algorithm takes similar steps to
those in BPR except for the EVD of the model matrix A.
By exploiting the fact that model matrix A is ill-conditioned,
COPRA may yield a more robust solution than BPR in
some applications, e.g. see [21], [27]. In fact, due to the
ill-conditioning of A, some of its eigenvalues are likely very
close, or even equal, to zero. Therefore, the EVD of A can be
written in the block matrices form as,

A = [U1 U2]
[

D2
1 0p1×p2

0p2×p1 D2
2

] [
UT
1

UT
2

]
≃ U1D2

1U
T
1 , (29)

where D1 and D2 are diagonal matrices containing the
p1 most significant and p2 = p − p1 least significant
eigenvalues, respectively. A threshold value can be set to
find the point of this partitioning as recommended in [21].
However, a simple and intuitive rule is used here to determine
the value of p1 as the smaller value of p (the number of
features) and n (the number of training samples), i.e., p1 =

min(n, p). The main purpose of (29) is to improve numerical
stability by removing extremely small eigenvalues. In the
case, where all eigenvalues are significant, there is no need for
partitioning of EVD. In this case, the COPRA solution would
converge to the BPR. Hence, COPRA can be thought of as
a more generalized form of BPR. By following similar steps
as in BPR, it can be shown that the optimal regularization
parameter γ that minimizes the MSE satisfies the COPRA
equation (30), as shown at the bottom of the next page.
Equation (30), which is nonlinear in γ , can be solved by using
Newton’s method [22] to obtain the optimal value of γ . The
iterations should be initialized from a positive initial guess
close to zero to avoid missing the positive root, as explained
in [21].

F. SUMMARY OF THE PROPOSED R-QDA ALGORITHM
The main steps involved in the proposed R-QDA algorithm
based on the robust regularization are summarized as
follows:

1) Estimate the class mean vectors µ̂i and covariance
matrices 6̂i based on the training data by using (5).

2) Compute the EVD of 6̂i to determine the matrices Di
and Ui, for i = 0, 1.

3) For the given test sample x, set y = xi and A = 6̂
1/2
i ,

for i = 0, 1 in (17), and determine the regularization
parameters γi, i = 0, 1 using regularization techniques
discussed in Section IV.

4) Compute the matrices Hi for i = 0, 1, by using (16),
and the R-QDA score function ŴRQDA given in (15).

5) Classify the given test sample x according to the rule:
x ∈ C0 if ŴRQDA > 0, and x ∈ C1, otherwise.

Remark: Sec.IV develops the selection of one general
parameter for the model (17). However, for selecting the two
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FIGURE 1. Average misclassification error rate versus γ used in benchmark paper [26]. The optimal value of γ can be read as 0.6 that
minimizes the testing error. The results are based on 1000 test samples independently generated from the two classes with statistics given
in (31) and (32). The error rate is averaged over 100 Monte Carlo trials.

parameters γi, i = 0, 1 for each class in step 3, the model (17)
is adapted to (11) by replacing y with xi, and matrix A with
6̂

1/2
i , for i = 0, 1.
It is also emphasized here that the proposed R-QDA

algorithm uses only the statistics from the training data
set (step 1). The computations in steps 3 and 5 are
solely based on the given test sample and not on the test
data or the noise statistics. In fact, the test data or the
noise statistics are assumed completely unknown to the
classifier.

V. RESULTS AND DISCUSSIONS
In this section, we demonstrate the classification performance
of the proposed R-QDA classifier against the benchmark
technique of [26]. For our classifier, we consider robust
regularization techniques discussed in Section IV i.e., GCV,
L-curve, quasi-optimal, BPR, and COPRA, for selecting the
two regularization parameters.

A. SYNTHETIC DATA
For simulations with synthetic data, the Gaussian data model
is considered with class statistics given as,

µ0 = [1, 01×(p−1)]T, µ1 = µ0 +
0.8
√
p
1p×1 (31)

[60]i,j = 0.9|i−j|, i, j=1, 2, .., p, 61 = 60 + 3Sp, (32)

where,

Sp =

[
Ik 0k×p−k

0p−k×k 0p−k×p−k

]
, k = ⌈

√
p⌉.

Wewould like to mention that a similar set of class means and
covariance matrices fulfilling the desired assumptions was
considered in the benchmark paper [26], and therefore, these
statistics represent the best-case scenario for the benchmark
paper [26]. For training the classifiers, a training set of size
ni for the class Ci is generated in each simulation trial.
Without loss of generality, we set n0 = n1. For computing
the classification error rate, a testing data set comprising
500 samples is generated independently from each class
during each trial, and simulation results are averaged over
100 Monte Carlo trials.

Fig. 1, shows the average misclassification error rate
against parameter γ used in benchmark paper [26]. We set
p = 100 and consider two different training scenarios
n0 = n1 = p and n0 = n1 = p. The results show
that the choice of γ strongly influences the error rate and
the best choice minimizing the testing error for [26] is
γ = 0.6. Nevertheless, the proposed RQDA algorithm with
BPR and COPRA regularization techniques outperforms the
benchmark method over the considered range of γ values.
The GCV also performs reasonably well when p > n, while
other regularization techniques, L-curve and Quasi-optimal,

h(γ ) = trace
(
D2

(
D2

+ γ Ip
)−2

ddT
)
trace

((
D2
1 + γ Ip1

)−2
(
p
p1

D2
1 + γ Ip1

))
+

(p− p1)
γ

trace
(
D2

(
D2

+ γ Ip
)−2

ddT
)

− trace
((

D2
+ γ Ip

)−2
ddT

)
trace

(
D2
1

(
D2
1 + γ Ip1

)−2
(
p
p1

D2
1 + γ Ip1

))
= 0 (30)

VOLUME 12, 2024 114957



A. Zaib et al.: Improved Binary QDA Classifier by Using Robust Regularization

FIGURE 2. Average misclassification error rate vs p for two different training scenarios, n0 = n1 = p and n0 = n1 = p/2. The parameter γ is
optimally tuned for the benchmark method [26]. The results are based on 1000 test samples and averaged over 100 Monte Carlo trials.

are not well suited to the proposed RQDA classifier. For this
reason, they are excluded from the remaining results.

Next, in Fig. 2 we present the classification performance
against different values of features p when the training size
is n0 = n1 = p and n0 = n1 = p/2. The parameter γ for
the benchmark method [26] is optimally tuned to γ = 0.6.
It is clear from the results that the proposed RQDA method
with COPRA and BPR outperforms the benchmark RQDA
technique over all the values of p. Also observe that the
performance of proposed techniques is more pronounced
when n < p, compared to the case when n = p. For n < p,
the estimated class statistics are more noisy in addition to
unobserved noise in the test data, which is catered for by the
two regularization parameters used in the proposed RQDA
classifier.

We also study the classification performances against vary-
ing numbers of training samples n, for a fixed value of p =

100. Again, the parameter γ for the benchmark technique [26]
was chosen to minimize the expected testing error for the
considered training set of 1000 sample. The results presented
in Fig. 3 demonstrate the better classification performance
for the proposed RQDA algorithm with COPRA, BPR, and
GCV regularization methods as compared to the benchmark
technique [26].

B. REAL DATA
To validate the performance of proposed R-QDA classifier
with real data, we consider theMNIST dataset which consists
of 20 × 20 gray-scale images of handwritten digits between
0 and 9, and is publicly available. A sample of this dataset
is shown in Fig. 4. For binary classification, we only use
selected images of most confusing digits (1,7) and (7,9).
To test classification performance, we randomly selected
equal number of training samples i.e., n0 = n1 and 500 test
samples from each class. Both training and testing images
are vectorized to form the data samples of dimensionality

FIGURE 3. Average misclassification error rate vs number of training
samples n = n0 + n1, where we have used n0 = n1. The value of p is fixed
to 100. The results are generated with 1000 test samples and averaged
over 100 Monte Carlo trials.

FIGURE 4. A sample of handwritten digits from MNIST dataset.

p = 400. The optimal value of single regularization
parameter for the benchmark method [26] was set to γ =

0.65, and determined empirically as explained in Sec.
V-A. The results, averaged over 500 monte carlo trials are
presented in Fig. 5, show the classification error rate against
the number of training samples n = n0 + n1. It is evident that
in each case, the proposed regularized algorithm with BPR
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FIGURE 5. Average misclassification error rate vs number of training samples n = n0 + n1 with n0 = n1 for the selected pair of digits from
MNIST dataset. The results are generated with 1000 test samples and averaged over 500 Monte Carlo trials.

and COPRA regularization techniques is more convincing
than other methods. The results also validate that the dual
regularization approach proposed in this paper is better
than the benchmark method relying on single regularization
parameter.

VI. CONCLUSION
We have presented a novel R-QDA classifier for binary clas-
sification of data that employs two regularization parameters
pertaining to each class based on both training and testing
data. In the proposed R-QDA approach, the discriminant
function of the conventional R-QDA classifier is modified in
such a way that it is resilient against the noise in training and
/or testing data. The effectiveness of our approach is validated
by experiments with Gaussian distributed data as well as
real images of handwritten digits from MNIST dataset. The
results demonstrate the robustness of the proposed approach.
The proposed binary R-QDA classifier with COPRA and
BPR gave the best overall performance compared to other
regularization techniques. The latter shows more robustness
when the dimensionality of data is large compared to
observations.
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