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ABSTRACT Feature selection plays a significant role in machine learning and data mining, where the
goal is to screen out the most representative and relevant subset of features from a large collection of
features to improve the performance and generalization ability of the model. In this paper, a hybrid feature
selection algorithm that combines a filter algorithm and an improved particle swarm optimization algorithm
is proposed, that is, the Information Gain and Maximum Pearson Minimum Mutual Information improved
Adaptive Particle Swarm Optimization algorithm (IGMPMMIAPSO). First, combined with the characteris-
tics of the Pearson correlation coefficient andmutual information, a filter algorithm calledMaximumPearson
MinimumMutual Information (MPMMI) is proposed. The algorithm balances the relevance and redundancy
between the features by adjusting two weight parameters (wp1 and wp2). Second, Adaptive Adjustment of
Control (AAC) is introduced to update the particle swarm optimization algorithm, so that the particle velocity
has a higher searching ability, and the diversity of population position changes is increased. The improved
algorithm was used as the wrapper algorithm. Simultaneously, the concepts of the No Continuous Change
(NCC) times and collision distance values are proposed. According to these, the IGMPMMIAPSO algorithm
is proposed by combining the filter algorithm and wrapper algorithm. To verify the performance of the
proposed algorithm, we experimented with other state-of-the-art hybrid algorithms using eight datasets. The
experimental results show that the classification accuracy of the proposed algorithm is at least 0.1% higher
than that of the other five algorithms, and the feature subset length is shorter.

INDEX TERMS Feature selection, filter, collision distance value, MPMMI, APSO.

I. INTRODUCTION
Feature selection(FS) [1], [2] is a critical step in machine
learning and data analysis [3], [4], because it helps to iden-
tify the most informative and relevant features from a given
dataset, while removing irrelevant or redundant features. The
selected features not only improve the accuracy and effi-
ciency of the model, but also provide insight into potential
patterns and relationships in the data.

In recent years, additional feature selection algorithms
have been proposed and applied to solve dimension dis-
asters [5], [6], [7] problems in machine learning. Among
them, the filter algorithms and wrapper algorithms are
common feature selection methods. Filter methods (e.g.,
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Maximum Relevance and Minimum Redundancy (mRMR)
[8], Information Gain (IG) [9]) evaluate and rank the fea-
tures to select the most relevant features independently of
the specific machine learning algorithm. Wrapper methods
combine meta-heuristic algorithms (e.g., Genetic Algorithm
(GA) [10], Whale Optimization Algorithm (WOA) [11],
Particle Swarm Optimization algorithm (PSO) [12]) with
classifiers [13] (e.g., Support Vector Machine (SVM) [14],
k-Nearest Neighbor (KNN) [15]), where the performance of
the model is trained and evaluated using different subsets of
features, and selecting the subset of features with the best per-
formance. These feature selection methods can help to reduce
the number of features in dataset and improve the model’s
efficiency. However, both the filter and wrapper algorithms
have limitations. Filter algorithmsmay ignore the interactions
and dependencies between features because they evaluate
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the features independently. However, wrapper algorithms are
computationally extremely expensive and time consuming,
especially for datasets with a large number of features.

Inspired by MFO, Chen et al. [16] proposed a new FS
method based on PSO to solve the high-dimensional classi-
fication problem by sharing information between two related
tasks generated from a dataset. This method combines feature
selection and classification tasks by optimizing multiple clas-
sification tasks using an evolutionary algorithm to select the
best subset of features. However, this method only considers
sharing the global best solution in PSO, and does not consider
other useful information such as local position and velocity.
This may result in high computational complexity and require
a lot of computing resources. Yang et al. [17] proposed a
bidirectional feature-fixation (BDFF) framework based on
PSO for large-scale feature-selection problems. Aiming at
large-scale datasets, a bidirectional feature-fixation mecha-
nism was introduced to make the algorithm more effective
in feature selection. This method can effectively deal with
high-dimensional feature spaces and reduce the computa-
tional complexity of the feature selection process. However,
the evaluation time was long and might have been influenced
by the local optimal solutions in some cases. Thaher et al.
[18] proposed a feature selection method that combines the
Boolean Particle Swarm Optimization (BPSO) with multiple
evolutionary population dynamics methods. By utilizing the
global search capability of the BPSO and the advantages of
the evolutionary population dynamics method, the efficiency
and accuracy of feature selection were improved. However,
feature selection combining multiple optimization methods
may require more computational resources, especially when
dealing with large-scale datasets, which may lead to the
problem of higher computational complexity.

Kaur et al. [19] proposed a feature selection method based
on mutual information and adaptive Particle Swarm Opti-
mization (PSO) for image steganalysis. Mutual information
is used as a metric for feature selection to capture the rele-
vance between features and target variables, which helps in
selecting the most relevant features for image steganalysis
tasks. The utilization of the adaptive PSO algorithm [12]
for feature selection enhances the global search capability,
thereby facilitating the identification of an optimal subset of
features. Ye et al. [20] proposed a feature selection method
using a Leader-Learning Adaptive Particle Swarm Optimiza-
tion algorithm (LLAPSO). The LLAPSO method adopts the
leader learning mechanism, making the particles based on
the experience of leaders adjust their learning strategies, thus
enhancing the global search ability of the algorithm. In addi-
tion, an adaptive weight factor and adaptive inertia weight
were introduced to improve the adaptability and convergence
speed of the algorithm, but they may fall into a local optimal
solution in a high-dimensional feature space. Hu et al. [21]
proposed a federal feature selection algorithm based on par-
ticle swarm optimization. The algorithm is performed under
privacy protection, which is particularly important for sce-
narios involving sensitive data. Adopting the framework of

federated learning for feature selection would enable model
training and feature selection among multiple participants
without sharing the original data, which is beneficial for pro-
tecting data privacy. However, it should be noted that privacy
protection might have an impact on the performance and
efficiency of the algorithm, and it is necessary to weigh the
performance of privacy protection and feature selection. The
parameter selection and convergence of the PSO algorithm
may affect the performance of the algorithm, which must be
appropriately tuned.

In summary, hybrid feature selection algorithms were
analyzed and demonstrated based on an improved wrapper
algorithm. In this paper, a hybrid feature selection algorithm
was developed by combining a filter algorithm with a wrap-
per algorithm. To ensure that the filter algorithm provides a
better subset of candidate features, the wrapper algorithm can
better jump out of the local optimum and provide a better
classification accuracy. In this paper, a new hybrid feature
selection algorithm [22] was developed by combining the
filter algorithmwith thewrapper algorithm. The experimental
results show that the proposed algorithm outperforms the
traditional filter algorithms and wrapper algorithms in terms
of feature selection accuracy and computational efficiency.
Moreover, this set of experiments achieved better classifica-
tion results than those of the compared algorithms on the eight
datasets.

The contributions of this paper are as follows:
1) A filter algorithm based on the Pearson correlation

coefficient and mutual information is proposed, which is
called the Maximum Pearson Minimum Mutual Information
(MPMMI). The weights of the relevance and redundancy
were adjusted in the algorithm using two weighting param-
eters (wp1 and wp2).

2) Modifying the particle swarm optimization algorithm.
Adaptive Adjustment of Control (AAC) is introduced to
update the velocity of the particle, and the position of the
particle is updated by comparing the average probability (p)
of the random number of all dimensions with the proba-
bility of any dimension. In addition, for the corresponding
positions of the remaining features after adjustment by the
PSO algorithm, the value that appears the most times in each
iteration (the mode) is adopted for normalization.

3) No continuous change times or the concept of col-
lision distance. The filter algorithm is invoked multiple
times according to the relationship between the ball collision
distance and No Consecutive Changes (NCC). The filter
algorithm (i.e., univariate and multivariate filter algorithms)
is determined by the number of collision-distance values
(count_distance) generated during the iteration. Thus, the
subset of candidate features provided by the filter algorithms
was adjusted to facilitate the algorithms to jump out of the
local optimum.

The structure of this paper is as follows. The second part
introduces the related work of the algorithm. The third part
describes the proposed hybrid feature selection algorithm in
detail. The fourth part introduces the experimental setup and
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the analysis of the experimental results. The fifth section
discusses the advantages and disadvantages of the algorithm,
as well as the direction of future research, and provides a
further outlook.

II. RELATED WORKS
This part mainly introduces the relevant contents involved in
the algorithm, including the principle of ball collision and
collision types (Section A), the basic concept and calcula-
tion method of information gain (Section B), the concept of
the Pearson correlation coefficient and relevant calculation
method (Section C), and the calculation of mutual informa-
tion (Section D). And particle swarm optimization algorithm
is related to theoretical knowledge, formulas, and other con-
tent introduction (Section E).

A. BALL COLLISION(BC)
The principle of ball collision is based on Newton’s third
law [23], which states that the forces between any two bodies
are reciprocal, equal in magnitude, and opposite in direction.
Ball collision refers to the interaction between two or more
small balls through the action of each other’s forces colliding
to change their speed and direction. According to the type of
collision, ball collisions can be classified as elastic [24] and
inelastic [25].

1) ELASTIC COLLISION
In elastic collisions, the interaction force between the balls
causes their velocities to change; however, the total kinetic
energy and momentum [26] remain constant before and
after the collision, that is, the total energy and momen-
tum are conserved. If the shape of the objects does not
change during the collision, then it is a perfectly elastic
collision.

Assuming that the masses of balls A and B are mA and mB,
respectively; vA and vB are the initial velocities of balls A and
B before the collision, respectively; and vAf and vBf are the
velocities of balls A and B after the collision, respectively; the
energy conservation law can be expressed as follows:

1
2
mA · v2A +

1
2
mBv2B =

1
2
mAv2Af +

1
2
mBv2Bf (1)

According to the momentum conservation law before and
after the collision, we obtain.

mAvA +mBvB = mAvAf +mBvBf (2)

From the above two conservation formulas, which are
perfectly elastic collisions, kinetic energy is conserved, and
kinetic energy remains unchanged before and after the
collision.

vAf =
mA −mB

mA +mB
· vA +

2mB

mA +mB
· vB (3)

vBf =
2mA

mA +mB
· vA −

mA −mB

mA +mB
· vB (4)

2) INELASTIC COLLISION
Inelastic collision refers to the process of collision between
some or all kinetic energy into other forms of energy, such as
heat energy, sound energy, and deformation energy. In inelas-
tic collisions, momentum is conserved, but the kinetic energy
is no longer completely conserved.

B. INFORMATION GAIN(IG)
Information Gain [27] is a metric used in the field of machine
learning and data mining to quantify the amount of infor-
mation provided by specific features in the context of a
given dataset. The calculation of the information gain [28]
is based on the concept of information entropy. Information
entropy is used to measure the uncertainty or purity of data.
Information gain was obtained by comparing the parent node
of information entropy and information entropy to measure
the characteristics of the child node’s contribution to the
classification task.

In information theory, information entropy is calculated as
follows:

H (T) = −

∑ (
p (x) · log2p (x)

)
(5)

where H(T) represents the entropy (information uncertainty)
of the target variable T , and p(x) represents the probability of
each class in the target variable T .
For the conditional entropy H (T|A) under the condition

of the characteristics of a target variable T condition entropy,
the computation formula is as follows:

H (T |A) =

∑
(p (a) ·H (T |A = a)) (6)

where p(a) represents the probability of each value in feature
A, and H(T|A=a) represents the entropy of the target variable
T under the condition that feature A is a.

H (T |A = a) = −

∑
p (x |A = a) · log2p (x |A = a) (7)

where p (x |A=a) represents the probability of each category
in target variable T under the condition that feature A is a.

Algorithm 1 Pseudo-Code of the IG
Input: Dataset D, sample number n (each sample has m features and a

label), number of features: K
Output: Sequence of features
Calculate IG
Calculate the entropy H(D) of the dataset according to formula (5).

For each feature i:
Calculate the entropy of feature H (D |i) according to formula (7).
Calculate the IG of feature i according to formula (8).

Selected_Features is the top K features
Return Selected_Features
End

By calculating the information entropy and conditional
entropy, it is possible to measure the information gain (IG)
obtained by categorizing the target variable T under the con-
dition of feature A. IG can be expressed as follows:

IG (T,A) = H (T) −H (T |A) (8)
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C. PEARSON CORRELATION COFFFICIENT(PEARSON)
Pearson’s correlation coefficient [29] (Irene Rodriguze-Lujan
et al.,2010), Pearson product-moment correlation coeffi-
cient (PPMCC or PCCs), also known as PPMCC or PCCS,
is a method to measure the correlation between two vari-
ables [30]. It reflects the correlation of two variables;
therefore, it is only sensitive to a linear relationship. The
values range between [−1, 1], with one indicating a perfectly
positive correlation, zero indicating no linear relationship,
and −1 indicating a perfectly negative correlation. If there
are variables X (x1, x2,. . . , xn) and Y (y1, y2,. . . , yn), then the
Pearson correlation coefficient of variables X and Y can be
expressed as

ρ (X, Y) =
cov (X, Y)

σX · σY
(9)

where cov (X, Y) is the covariance of variables X and Y . σX
and σY denote the standard deviations of variables X and Y,
respectively.

Covariance represents the overall error between the two
variables. The standard Deviation represents the degree of
dispersion of the variables. Covariance and standard deviation
were calculated using the following formulas:

cov (X, Y) =

∑N
i=1 (X − µX) · (Y − µY)

N
(10)

σX =

√∑N
i=1 (X − µX)

N
(11)

σY =

√∑N
i=1 (Y − µY)

N
(12)

where X and Y are the values of the variables X and Y ,
respectively. µX and µY are the mean values of variables
X and Y , respectively, and N is the number of samples.

D. INFORMATION(MI)
Mutual Information (MI) [37], [38] is an indicator used to
measure the correlation between two random variables. It can
be used to measure the degree of interdependence between
two variables, and the amount of information passed between
them. It may be regarded as a random variable that contains
information about another random variable, or a random vari-
able with another known random variable that is not positive.

The calculation of mutual information is based on the con-
cept of information entropy, which can be calculated by using
the joint probability distribution of two random variables and
their respective edge probability distributions. The higher
the value of mutual information, the stronger the correlation
between the two variables and the weaker the correlation
between the two variables. The joint distribution of two ran-
dom variables (X, Y) is denoted as p (x, y), and the marginal
distribution is denoted as p(x) and p(y) respectively. Mutual
information I (X: Y) is the relative entropy of the joint dis-
tribution p (x, y) and the marginal distribution p(x)p(y), that
is, the mutual information of two discrete random variables

X and Y can be defined as follows:

I (X,Y) =

∑
x∈X

∑
y∈Y

p (x, y) · log
p (x, y)
p (x) p (y)

(13)

According to the chain rule of entropy, we have:

H (X) −H (X |Y) = H (Y) −H (Y |X) (14)

The difference is called X and Y of mutual information, as I
(X; Y).

Mutual information can be both positive and negative,
depending on the relationship between random variables.
Mutual information represents the degree of information
dependence between two random variables, and its positive
and negative values and magnitudes reflect the diverse types
of dependence.

E. PARTICLE SWARM OPTIMIZATION (PSO)
PSO is an evolutionary computation technique developed
in 1995 by Eberhart and Kennedy [31], from the study of
bird predation behavior. The algorithm is a simplified model
based on swarm intelligence inspired by the regularity of bird
swarm activity. PSO is based on the observation of animal
cluster activities and makes use of the information shared by
individuals in the group to make the movement of the whole
group evolve from disorder to order in the problem-solving
space to obtain the optimal solution.

The basic idea of the PSO algorithm is to regard the prob-
lem to be optimized as a search problem in multidimensional
space and regard each solution as a particle, which searches
for the optimal solution by constantly adjusting its position
and speed. A flowchart of the PSO algorithm is shown in
Fig. 1.

FIGURE 1. Flowchart of the PSO algorithm.

Each particle has its own position and velocity, which
needs to be updated based on own optimum and the popu-
lation optimum.

vt+1 = w·vt + c1 ·rand()·
(
pBest t − xt

)
+ c2 ·rand()· (gBest−xt) (15)

xt+1 = xt + vt+1 (16)

where vt+1 is the velocity of the particle at t+1 iterations, w
is the inertia weight, c1 and c2 are the learning factors, rand()
is a random number between 0 and 1, pBest and gBest are the
local and global best positions of the particle, respectively,
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FIGURE 2. Relationship between label X and variable Y .

and xt , xt+1 are the positions of the particle at t and t+1
iterations, respectively.

The advantages of the PSO algorithm include simple
implementation, strong global search ability, and good adapt-
ability to the constraints of the problem [32].

A hybrid feature selection algorithm IGMPMMIAPSO,
is proposed in this paper to avoid the filter algorithm provid-
ing a single subset of candidate features in feature selection,
which causes the algorithm to fall into a local optimal solu-
tion. The algorithm is an improvement of related work and
consists of IG, MPMMI, and the Adaptive Particle Swarm
Optimization algorithm (APSO). In the third part of the arti-
cle, the design of the algorithm is described in detail.

III. IGMPMMIAPSO ALGORITHM
This section introduces the framework, pseudo-code, and
algorithm flowchart of MPMMI, APSO, and the proposed
algorithm IGMPMMIAPSO.

A. MPMMI FILTER ALGORITHM
Anewfilter algorithm,MPMMI, is proposedwith two param-
eters to adjust the relevance between labels and features
using the Pearson correlation coefficient and the redundancy
between features using mutual information.

1) MAXIMUM PEARSON (MP)
Through the introduction of the Pearson correlation coeffi-
cient in Part II C, the Pearson correlation coefficients of the
two variables can be obtained by calculating the covariance
and standard deviation.

Suppose we give the data of two variables x and y, x =

[1, 2, 3, 4, 5], y = [0.3, 1.6, 3.8, 6, 8], and calculate ρ(x,
y) = 0.9966 using formula (9). 0.9966 is very close to one,
indicating that there is a strong positive correlation between
variables x and y. As shown in Fig. 2.
If two variables are given as m = [1, 2, 3, 4, 5] and n =

[3.6, 1.2, 0.8, 8, 0.5], ρ (m, n) =0.0302 is calculated using
formula (9), which is close to 0, indicating that there is no
linear relationship between variables m and n.

Figs. 2 and 3 show that the relationship between variables
x and y is stronger, and the correlation between variables m
and n is weak.

FIGURE 3. Relationship between label M and variable N .

FIGURE 4. Relationship between multiple variables and labels.

There are multiple features in the dataset, and the feature
with the strongest correlation to the label can using calculated
by the following formula:

MP
(
Fobject, L

)
= max (ρ (Fi, L)) (17)

where MP(Fobject,L) represents the maximum Pearson value
from the feature set to the label, Fobject represents the set
of all features in the dataset, L represents the label vector
in the dataset, max represents the maximum value function,
ρ(Fi,L) is calculated according to formula (9), represents the
Pearson correlation coefficient between variables Fi and L,
Fi represents the ith feature in the set, i = 1, 2, . . . , n.

If there are multiple features, such as five variables, then,
A = [1, 2.4, 3.8, 5.5, 7], B = [0.2, 1.2, 5, 6.2, 9], C = [0.3,
1.9, 4.1, 6.3, 8.5], D = [1.5, 3.2, 6, 7.6, 8], E = [1, 0.3,
1.8, 5.4, 8.3]. The Pearson values between the four variables
A, B, D, E , and the labeled variable C were calculated, and
the maximum value was selected as the maximum Pearson
value [33], which was calculated using formula (9) to obtain
max(ρ) = 0.9993, as shown in Fig. 4.

2) MINIMUM MUTUAL INFORMATION (MMI)
Based on the concepts of maximum relevance and minimum
redundancy, we need to consider not only the relevance
between features and labels, but also the redundancy between
features. Mutual information was used in this paper to
evaluate the redundancy between features. This provides a
comprehensive measure of the relationship between features,
which leads to better trade-offs and judgments in the feature
selection process.
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FIGURE 5. Relationship between variables X, Y, and label variable Z.

Similar to the correlation coefficient, if the two existing
features are denoted as Fi and Fj respectively, the correlation
coefficient is denoted as ρ(Fi,Fj), and the mutual information
is denoted as I(Fi,Fj).
However, both Pearson and mutual information denote

relevance, so we take the value of minimum mutual informa-
tion [34] as a measure of redundancy between features. For
example, variables X = [1, 2, 3, 4, 5], Y = [0.5, 5, 1.8, 3,
6], Z = [2, 4, 6, 8, 10], calculated by formula (13), I(X,Z) =

0.25, I(Y,Z) = 0.07, min (I ) = 0.07, as shown in Fig. 5.
In the feature selection process, it is necessary to select

feature from a group, and the known feature is the redun-
dancy of the smallest feature. The mutual information value
between a feature and each feature in the feature group is
calculated using the mutual information, and the feature with
the minimum mutual information is selected.

A known feature is labeled Fknow, and a set of features is
labeled Fobject = {F1,F2,. . . ,Fk ,. . . ,Fn}, k = 1, 2, . . . , n,
then the minimum mutual information can be expressed as
follows:

MMI
(
Fknow,Fobject

)
= min (MI (Fknow,Fk)) (18)

where MMI (Fknow,Fobject ) represents the value of the mini-
mum mutual information from a feature to a set of features
corresponding to a feature Fk , min represents the function of
finding the minimum value, and MI(Fknow,Fk) is calculated
using formula (13).

The mutual information value between two sets of features
must also be calculated using the mutual information value
between two variables. The set of known features is G =

{g1, g2,. . . , gi,. . . , gm}, i = 1, 2, . . . , m. Another goal set for
Fobject = {F1,F2,. . . ,Fk ,. . .Fn}, k = 1, 2, . . . , n. Feature is
selected from the target set such that the mutual information
between this feature and the known feature set is minimum.

MMI
(
G,Fobject

)
= min (I (G,Fk)) k = 1,2, . . . ,n. (19)

where MMI(G,Fobject) represents the minimummutual infor-
mation between the target set and the known set correspond-
ing to a feature Fk , min represents the minimization function,
G represents the known feature set, Fobject represents the
target feature set, M is calculated according to formula (20),
and Fk is the element in the set.

MI (G,Fk) =

∑m
i=1 I

(
gi,Fk

)
m

(20)

FIGURE 6. Flowchart of the MPMMI algorithm.

where m represents the number of elements in the feature
set G, and gi is the element in G. I(gi,Fk) is calculated by
formula (13), which represents the mutual information of
variables gi and Fk , gi and Fk represent the i and kth features
in the set, respectively, i = 1, 2, . . . , m, k = 1, 2, . . . , n.

3) MAXIMUM PEARSON MINIMUM MUTUAL INFORMATION
(MPMMI)
To achieve the ‘‘maximum relevance and minimum redun-
dancy’’ criterion, we combined the maximum Pearson’s
correlation coefficient and the minimum mutual information
mentioned earlier. We adjust the weight of both by introduc-
ing weighting factors in formula (21) to avoid the situation
where both are equally important in the filter algorithm. From
this, we can calculate the score of each feature and output the
sequence of features in descending order.

MPMMI
(
gi

)
=


wp1 ·MP

(
Fobject, L

)
i = 0

wp1 ·MP
(
Fobject, L

)
+ wp2 ·MMI

(
g1,Fobject

)
i = 1

wp1 ·MP
(
Fobject, L

)
+ wp2 ·MMI

(
G,Fobject

)
i > 1

(21)

where wp1 and wp2 are weight coefficients, calculated by
formulas (22) and (23), which are used to adjust the impor-
tance of relevance and redundancy. Theymust be dynamically
adjusted to the size of the feature set and the number of
selected features. Fobject denotes the set of candidate fea-
tures, L denotes the label vector of the dataset, G denotes
the set of already selected features, where g1 denotes the
first already selected feature. i = 0 indicates that there is no
feature in the G set, and i = 1 indicates that there is only one
feature in the G set, i >1 indicates that there are at least two
features in the G set.

wp1 = 1 −
1

1 + e−
t−T/2
10

(22)

wp2 =
1

1 + e−
t−T/2
10

(23)
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where t represents the number of iterations and T represents
the total number of iterations.

In Fig. 6, the input parameter Fobject denotes the set of all
features in the dataset, and the number of features in the set
is gradually reduced to empty. L represents the label vector,
i represents the number of features selected from Fobject , and
K represents the number of features in the dataset.

Algorithm 2 Pseudo-Code of the MPMMI
Input: wp1, wp1, number of features: K ,

feature set: Fobject , i = 0
Output: Sequence of features
Select feature g1 from Fobject according to formula (21) (i = 0)
G= {g1}, Fobject=Fobject -G, i = i+1

Select feature g2 from Fobject according to formula (21) (i = 1)
G= {g1, g2}, Fobject=Fobject - {g2}, i=i+ 1

While i< K
Select feature gi+1 from Fobject according to formula (21) (i >1)
G = G+{gi+1}
Fobject = Fobject -{gi+1}
i = i+1

End

B. APSO WRAPPER ALGORITHM
In this paper, the velocity and position update of the original
PSO algorithm were improved. We named the new method
‘‘Adaptive Particle SwarmOptimization algorithm (APSO)’’.

1) UPDATES ON PARTICLE VELOCITIES
In the traditional PSO algorithm [31], the movement of par-
ticles is only guided by the local and global optima, while
the interactions between particles are ignored. In addition, the
acceleration factor for velocity update is usually fixed, which
is generally taken as two. This setting may cause the particle
to fall into the local optimal solution in the search space and
thus fail to search globally for a better solution.

Adaptive Adjustment of Control (AAC) realizes flexible
adjustment of particle velocity and position by dynamically
adjusting the acceleration coefficient [35]. The introduction
of AAC not only improves the convergence speed and global
search ability of particle swarm optimization algorithm but
also makes the algorithm more flexible and adaptive. This
improvement enables the algorithm to cope better with the
complex search space during the optimization process and
effectively avoid falling into the dilemma of local optimal
solutions.

The dynamic adjustment of the AAC is specified as
follows:

AAC t =


AAC t−1 + δ f ti < f t−1

i
AAC t−1 − δ f ti > f t−1

i
AAC t−1 f ti = f t−1

i

(24)

where f ti represents the fitness value of the ith particle in
the tth iteration, AACt represents the value of the adaptively
adjusted control parameter in tth iteration, and δ represents
the adaptive increment, which is typically taken as 0.01.

FIGURE 7. AAC trend with the number of iterations.

FIGURE 8. c1 and c2 trends with the change in the number of iterations.

Update the values of the learning factors c1, c2 by the
values of AAC:

c1 =
α

2
· (AAC t + 1) (25)

c2 = c1 (26)

where α is a constant, usually taken as two.
Because t is in the range of [1,200], formula (24) is used

from the second iteration, and the initial value of AAC is
set to one. Therefore, the value range of AAC is [−1, 3],
which indirectly affects the value ranges of c1 and c2 to be
[0, 4]. The AAC value changes with the number of iterations,
as shown in Fig. 7. Fig. 8 shows the changes in the learning
factor with the number of iterations under the effect of AAC.

2) UPDATES ON PARTICLE POSITIONS
In the continuous PSO algorithm, the probability p-value of
selecting the content [33] is an important parameter used
to control whether the particle adds the change in current
velocity to the position update. The discrete PSO algorithm
can be used to better define this probability parameter.

Specifically, for each feature dimension of each particle,
a random number feap(i) was generated. These random num-
bers should take values in the range [0, 1], indicating the
magnitude of the likelihood that the feature will be selected.
The random numbers for all feature dimensions are then
averaged to obtain an overall probability p-value, that is,

p =

∑n
i=1 feap (i)

n
(27)

where n is the number of features in the dataset.
The p-value defined in this manner allows for a more

comprehensive decision on what to select by considering
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FIGURE 9. Mode adjustment method.

the randomness of the particle in each dimension. When
performing particle position updates, we can decide whether
to add the amount of change in the current velocity to
the position update based on a random number and proba-
bility p-value for each feature dimension. Specifically, for
each feature dimension i, if feap(i) ≤ p, it means that the
feature dimension is ‘‘selected,’’ and the change in cur-
rent velocity needs to be added to the position update.
On the contrary, if feap(i) > p, the feature dimension
is not ‘‘selected,’’ and the position does not need to be
updated.

xt+1 =

{
xt + vt+1 feap (i) ≤ p
xt feap (i) > p

(28)

where xt+1 and vt+1 represent the position and velocity at the
(t+1) th iteration, respectively, which can be obtained using
formula (15).

Algorithm 3 Pseudocode for APSO Algorithm
Input: t = 1, T = 100, w, selected_features= []
Output: selected_features
Initialize parameters
Initialize the particle swarm
While t<T
Calculate the fitness function of the population and update the

local optimal solution
Update the value of AAC according to formula (24)
Update the learning factors c1 and c2 according to formula

(25,26)
Update the velocity according to formula (15)
Update the position according to formula (28)
According to the number of the PSO adjusted not normalized

location down to 0 or 1
Update the global optimal solution
t=t + 1

Output selected_features
End

This method based on discrete PSO can better define
the probability p-value for selecting content in the con-
tinuous PSO algorithm, thus increasing the flexibility and
diversity of the algorithm. By introducing randomness
and integrating the probabilities of each feature dimen-
sion, the particles can explore more comprehensively in
the search space and can avoid falling into local optimal
solutions.

Finally, our improved APSO algorithmwas combined with
SVM [39] to form a wrapper algorithm. In addition, this
algorithm is used to perform feature selection to find the
optimal solution, that is, to find the optimal particle location
in the search space.

3) LEGACY POSITION ADJUSTMENT METHOD
In traditional methods, we perform the algorithm after the
corresponding position of those features is not 0 or 1 value,
according to a random number judgment, which is attributed
to 0 or 1. However, this cannot ensure the accuracy of the
value and may even appear for all 0 or 1 results. Our ultimate
goal is to make the data more convincing, the results more
accurate, and the swarm intelligence optimization algorithm
can better jump out of the local optimal and find the global
optimal. Therefore, the value adjusted by the algorithm is
the value that appears the most times in each iteration (the
mode) as the judgment basis. If the value of the corresponding
position of the feature is greater than that of the mode, it is
set to one, and vice versa, it is set to 0, as shown in Fig. 9.

By choosing the value that occurs most times in each itera-
tion as the basis for judgment, we can better reflect the results
of the algorithm after execution. Compared with random
number judgment, the use mode can provide more accurate
feature values. Random numbers may lead to unstable results,
whereas the mode can reduce this uncertainty to some extent,
so that the value of the corresponding position of the feature
can be determined more accurately. In addition, using this
mode as a basis for judgment can reduce data volatility.
Choosing the value that occurs most times in each iteration
can avoid drastic changes in feature values between iterations,
making the data more stable, which in turn facilitates PSO to
better jump out of the local optimal.

C. FRAMEWORK OF THE IGMPMMIAPSO ALGORITHM
This section introduces the framework of the algorithm,
including the change in the distance value, population initial-
ization method, pseudo-code, and algorithm flowchart. The
algorithm is combined with filter algorithms and wrapper
algorithms by introducing the collision distance value (dis-
tance) and No Consecutive Changes (NCC) to prevent the
algorithm from falling into local optimal solutions.

1) ALGORITHM FRAMEWORK
In optimization algorithms, we often face the problem of ‘‘not
being able to jump out of the local optimum,’’ which causes
the algorithm to fall into the limitation of the optimal solution
and fail to find the global optimal solution. To avoid this situ-
ation, this section introduces a framework based on collision
distance and No Consecutive Changes (NCC), as shown in
Fig. 10. The algorithm uses a nested loop structure, with each
module showing the specifics of the loop.

The key to the entire algorithm is the judgment of the filter
algorithm. The filter algorithm is executed only if the colli-
sion distance is greater than the number of NCC. However,
the filter algorithms in this paper were executed in two ways:
univariate filter (IG algorithm in Section B of Part II) and
bivariate filter (MPMMI algorithm in Section A of Part III),
depending on the number of changes in the collision distance
value. After the execution of the filter algorithm, a subset of
candidate features is generated and provided to the wrapper

VOLUME 12, 2024 106243



X. Bai et al.: Hybrid Feature Selection Algorithm Based on Collision Principle and Adaptability

FIGURE 10. Framework of the IGMPMMIAPSO algorithm.

FIGURE 11. Location diagram of collision point.

algorithm. Based on the candidate feature subset, the wrapper
algorithm determines the local optimum iteratively. By exe-
cuting the filter algorithm multiple times, a local optimum
is found in the newly generated feature subset each time.
In this manner, the algorithm can overcome the limitations of
the local optimum and determine the global optimal solution.
At the end of the loop, the global optimum was the output.

The collision distance values were calculated based on the
small ball collisions in Section A of Part II. When two objects
collide, according to the law of conservation of momentum
and the law of conservation of energy, we can deduce the
position of the collision point and change in the velocity of
the objects after the collision. In this paper, we assume a
perfectly elastic collision between spheres A and B, that is,
kinetic energy is conserved before and after the collision and
momentum is conserved before and after the collision.

In this paper, we simulate a ball collision in a
two-dimensional space where rebound occurs and stops,
as shown in Fig. 11, which is a two-dimensional coordinate
system with X-Y axes. Assuming that the positions of points
A and B are the initial positions, they are denoted as PA
and PB, where the coordinates of point A can be denoted as
PA(Ax,Ay)( the subsequent positions of B, C , D and E are
denoted similarly). During the iteration process, the mass of

the ball was constant; however, the velocity of the two balls
changed with the number of iterations.

In Fig. 11, the two balls depart from points A and B with
different velocities, collide at point C(denoted as PC ), and
rebound after the collision with some energy loss, possibly
stopping at the positions of points D and E (denoted as PD
and PE ) after running for a period of time.

First, the position of collision pointC was calculated. It can
be obtained from the initial positions of ballsA andB and their
velocities before collision, that is,

PC = PA + (PB − PA) ·
VA

VA + VB
(29)

where PA and PB are the initial positions of balls A and B,
respectively, and VA and VB are the velocities, that is, the
initial velocities.

Second, the rebound stopping points D and E , which are
the positions of balls A and B when they stop. We denote the
velocities of balls A and B as vAf and vBf after the collision.
According to formulas (1)-(4), vAfx , vAfy, vBfx and vBfy can be
obtained, so we can calculate the position of the two points
PD and PE using the position of the collision point C and the
velocity and energy loss after the collision, as follows:

PD = PC −

(
vAfx

vAfx
loss

, vAfy
vAfy
loss

)
(30)

PE = PC +

(
vBfx

vBfx
loss

, vBfy
vBfy
loss

)
(31)

where, loss is the energy loss value with value in the range of
[0, 1].

The positions of the collision points C , D and E were
calculated using formulas (29∼31). The distance from point
C to points D and E can be calculated by the following
formulas.

CD =

√
(PC − PD)2 (32)

CE =

√
(PC − PE)2 (33)

where PC , PD and PE are the coordinates of the points
in two-dimensional space, and the distance between two
points is based on the coordinates of the corresponding
points. For example, in Fig. 9, points A and B are (1,1)
and (6,6), respectively; therefore, the distance of AB is√
(6 − 1)2 + (6 − 1)2= 5

√
2. Therefore, both CD andCE are

available.
In each iteration, because the coordinates of the points at

the initial positions of the two balls and the initial velocities
are taken randomly, the value of the distance resulting from
the collision also changes with the number of iterations.
However, there may be cases where the values are all zero,
and the resulting CD, and CE may also be zero. To prevent
such a result, a natural constant e was chosen to compute the
distance further.

In Fig. 12, the NCC with an initial value of 1 is
greater than that with an initial value of 0. Therefore,
it is determined in the first iteration. The collision distance
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FIGURE 12. The change trend of distance with the number of iterations.

FIGURE 13. Randomized method initialized.

was calculated as follows:

distance = ⌊max (CD,CE, e)⌋ (34)

where ⌊max(CD,CE, e)⌋ represents the larger value between
CD, CE and e rounded down.

When the collision distance is large, the optimal value can
be determined through several iterations. When the collision
distance value is small, a filter algorithm is typically used, and
the number of changes in the collision distance value is used
to determine whether it is a univariate filter algorithm (IG)
or a bivariate filter algorithm (MPMMI). New popu-lations
are formed by readjusting different combinations of features
such that the algorithm achieves the goal of jumping out of
the local optimum and finding the global optimum.

2) SELECTION OF THE NUMBER OF FEATURES
In the feature selection process, we usually need to con-
sider the dataset, vector labels, and number of features to
be selected, denoted as K . In general, because the dataset is
not considered, the value of K is fixed. In this case, the best
subset of features may not be selected on different datasets
or different problems. Therefore, determining the value of K
to be selected based on the information in the dataset may be
more flexible and effective.

In this paper, we wish to select as few features as possible
to avoid overfitting and to improve the interpretability of the
algorithm. However, we must retain sufficient information
to maintain the predictive power of the IGMPMMIAPSO
algorithm. To significantly reduce the dimensionality of the
data, we must select an appropriate number of features in
high-dimensional datasets. Therefore, we used logarithm [36]
to construct a function to determine the value of K to achieve
dimensionality reduction of the data.

y = logεx (35)

TABLE 1. Range of y variation under the action of different values of ε.

where x represents the number of features in the dataset and
y represents the number of selected features. For the value of
ε, we use 0.01 as an interval, which ranges from 1.01 to 1.19.
The value of y changes when different values are provided,
as listed in Table 1. Here, we chose any number from 1.06 to
1.12.

In a given dataset, the number of features x is deter-
mined, thus determining the range of values for the response
variable y. However, to select the optimal subset of fea-
tures to improve the algorithm’s performance, two random
numbers are introduced to adjust the value of K . The selec-
tion of the value of K provides flexibility in selecting a
subset of features, which further optimizes its predictive
power.

K =
∣∣int (y+ i · rand() · 0.1 · q

)
− randint

∣∣ (36)

where i represents the number of particles in the dataset;
q is randomly determined, representing positive or negative
numbers; rand() is a random number; randint is a random
integer, usually from 1 to 10, y is calculated by formula (35);
|| indicates that the absolute value of the result is taken to
avoid K being negative.

During multiple dimensionality reductions, different K
values may be obtained; thus, the repeatability of the dimen-
sionality reduction is low. Simultaneously, we can obtain
a feature subset with high classification accuracy and low
length.

3) INITIALIZATION METHOD
In swarm intelligent optimizationmethods, population initial-
ization is especially important because it directly affects the
search space and the final optimization performance of the
algorithm.

In this paper, a randomized initialization method was
adopted after considering the change in the filter algorithm
on the ranking of features [36]. For the random initialization
of each individual in the population, when the value of the
corresponding position of the feature is greater than or equal
to 0.5, it is set to 1, which indicates that the feature is
selected; otherwise, it is set to 0, which indicates that the
feature is not selected. As shown in Fig. 13, this method can
introduce a certain amount of randomness, simulate a real
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FIGURE 14. Flowchart of the IGMPMMIAPSO algorithm.

situation, increase the exploration ability of the search space,
and allow flexibility in adjusting the probability of features
being selected.

4) PSEUDOCODE AND FLOWCHART OF THE ALGORITHM
Fig. 14 shows the flowchart of the proposed algorithm IGMP-
MMIAPSO, and Algorithm 4 is its pseudocode.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
This section introduces the datasets used for the experi-
ments, the experimental parameter settings of the proposed
algorithm and comparison algorithms, and the experimental
results and analysis.

A. DATASETS AND PARAMETER SETTINGS
1) DATASETS
To validate the superiority of the IGMPMMIAPSO
algorithm, we performed a series of tests on eight datasets
selected from the Gene Expression Model Selector, which
were evaluated based on the following datasets: Breast,
CNS, Detect, DLBCL, GLI-85, Leukemia, secom, and
SMK-CAN-187.

These datasets cover the number of classes, samples, and
features for each dataset. In our experiments, these datasets
were analyzed using the IGMPMMIAPSO algorithm and
its performance are evaluated based on the details listed in
Table 2.

Algorithm 4 Pseudo-Code IGMPMMIAPSO
Input: dataset, t = 1, T = 200, NNC=1, distance=0, population,

popsize =30, count_distance=0
Output: bestnest, gBest
While t<T
Calculate the distance according to formula (34)
If NCC=1 or NNC>distance

Update wp1 and wp2 according to formulas (22) and (23)
If the number of collision distance value changes is odd

Calculate the new ordered features by the filter algorithm IG
Else
Calculate the new ordered features by the filter algorithm MPMMI

Endif
count_distance=count_distance+1

Endif
Calculate the population fitness function and update pBest
Update AAC according to formula (24)
Update c1 and c2 according to the formula (25), (26)
Update velocity according to formula (15)
Update position according to formula (28)
If pBest > gBest

Update gBest, bestnest
NCC=1

else
NCC=NCC+1

Endif
t=t + 1

End

2) PARAMETER SETTINGS
To compare the hybrid feature selection algorithm (hybrid
algorithm) with the proposed IGMPMMIAPSO algorithm,
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TABLE 2. Introduction to the datasets.

we used similar classifiers and parameter settings. Among the
five hybrid algorithms with which they were compared, the
performance depended on the selected classifiers and param-
eter settings. In our proposed IGMPMMIAPSO algorithm,
we followed settings similar to those listed in Table 3 to
ensure the accuracy and reliability of the experimental results.

In this paper, by using similar parameter settings, we can
more accurately reveal the advantages of the proposed IGMP-
MMIAPSO algorithm over the hybrid algorithms being
compared. In the proposed algorithm, we discarded the tra-
ditional maximum number of iterations of 100 and changed
it to 200. However, it will still be executed ten times for each
dataset. An increase in the number of iterations effectively
prevents the algorithm from falling into a local optimum,
which in turn enables the algorithm in this paper to better
find the global optimum and obtain the best classification
accuracy (ACC).

The fitness function is computed using an SVM classifier.
The solution to this problem is to select the feature subset
with the highest classification accuracy based on the SVM
classifier. The penalty parameter and RBF parameters were
selected using the grid search method.

The classification accuracies of the datasets in Table 4 used
the ten-fold cross-validation technique, which is a common
model evaluation method. By dividing the dataset into ten
loops, each loop was divided into ten groups, one for testing
and nine for training. Each loop produces classification accu-
racy by taking the average of these accuracies as the result of
the fitness function.

B. EXPERIMENTAL RESULTS AND COMPARISON
Eight datasets and six algorithms were used in this experi-
ment. Each algorithm runs ten times on each dataset. Table 4
shows the average classification accuracy and average feature
subset length (LEN) achieved by the five hybrid algorithms
and the proposed algorithm on the eight datasets. The results
of the proposed algorithm are shown to outperform other
algorithms on the eight datasets.

Table 4 shows that the IGMPMMIAPSO algorithm
achieves the highest average classification accuracy in eight
datasets. In Detect, DLBCL, GLI-85 and Leukemia datasets,

the classification accuracy of IGMPMMIAPSO algorithm is
greater than 95%. Compared to other compared algorithms,
the IGMPMMIAPSO algorithm obtained the shortest feature
subset length in most cases.

In the Detect, DLBCL, secom and SMK-CAN-187
datasets, the IGMPMMIAPSO algorithm has higher ACC
than all other algorithms and the shortest feature subset length
(LEN). On the Breast dataset, the value of ACC is higher
than that of the other algorithms, but the feature subset length
is longer than that of the mRMR+PSO and mRMR+GWO
algorithms. In CNS and Leukemia datasets, the values of
ACC are equal to those of other algorithms, but in terms of
feature subset length, the CNS and Leukemia datasets are
longer than those of the mRMR+CS algorithm. In addition,
for the GLI-85 dataset, although the value of ACC was lower
than that of the other algorithms, feature subset length was
the shortest. It also proves that the proposed algorithm can
obtain a smaller feature subset length than other algorithms.

As can be seen, our proposed algorithm shows advantages
in both classification accuracy and optimal feature subset
length on most datasets. Compared to the other five hybrid
algorithms, the proposed algorithm has a higher classifica-
tion accuracy, and the selected feature subset length is
smaller. This also proves that the proposed algorithm can
effectively improve the classification accuracy when dealing
with various datasets, and can select representative features
more effectively. Thus, reducing the length of the feature
subset while improving the classification accuracy.

The algorithm introduces the concepts of collision distance
values and NCC, thus effectively integrating filter algorithms
and wrapper algorithms. When the local optimum value does
not change after many iterations, the algorithm performs
a filter algorithm to generate another subset of candidate
features. The wrapper algorithm then obtains a new local
optimum based on a new subset of candidate features. Thus,
the algorithm can obtain the global optimum while actively
breaking through the multiple local optima.

C. EXPERIMENTAL ANALYSIS
1) EXECUTION OF FILTER ALGORITHM FOR COLLISION
DISTANCE VALUE
In the experiment, the IGMPMMIAPSO algorithm was exe-
cuted ten times on each dataset and the number of filter
algorithm execution was counted. Then the generation times
of the collision distance value can be used to judge whether
the filter algorithm is univariate or bivariate. Finally, the
statistical results are shown in Fig. 15.
In Fig. 15, the X-axis represents the number of runs of the

dataset, ranging from 1 to 10. The Y-axis represents eight
different datasets. The Z-axis represents the number of times
the filter algorithm is executed during the run of the dataset.
When the dataset is executed ten times, each time the filter
algorithm is executed a different number of times. Maximum
number of executions is twenty-two and minimum is eleven.
As can be seen from Fig. 15, the number of iterations (T) is a
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TABLE 3. Experimental parameter settings.

TABLE 4. Average classification accuracy and feature subset length of six algorithms on eight datasets.

fixed value, and its value is 200. The more times the filter
algorithm is executed, the greater the number of different
feature subsets it provides. Therefore, the more local optimal
values the wrapper algorithm can obtain. Conversely, the
fewer times the filter algorithm is called, the more often the
wrapper algorithm is updated in the local optimum.

In summary, the wrapper algorithm is not affected by the
number of calls to the filter algorithm and can obtain more
optimal values, thereby obtaining the global optimal value.

2) RELATIONSHIP BETWEEN COLLISION DISTANCE VALUE
AND NUMBER OF NO CONSECUTIVE CHANGES
The variation in the collision distance is closely related
to the value of NCC. From Fig. 15, we can see the effect of
the filter algorithm being executed 10 times on eight datasets.
In Fig. 16 to 23, we take one of them for a detailed analysis.
Through the scatterplot, it is easy to find that the changes in
the collision distance value and NCC show a certain pattern
as the number of iterations increases.

When the value of the collision distance changes, the value
of NCC also changes accordingly, indicating that they are
closely related. At the same time, we can also see that at
some specific iteration points, the collision distance values

and NCC values change abruptly, which may correspond to
the moments when the filter algorithm is reinvoked.

In Fig. 16 to 23, the X-axis represents the number of
iterations, from 1 to 200; and the Y-axis represents the values
of distance and NCC. Each execution of the filter algorithm
was performed with NCC reset to one. There are two possible
scenarios for the execution of the filter algorithm: 1) the max-
imum value changes, and the NCC needs to be recalculated;
and 2) the value of NCC exceeds the collision distance value,
and the filter algorithm needs to be invoked to reform a subset
of the candidate features and start a new round of exploration.

As can be seen from Fig. 16 to 23, the distribution
of scatters is denser in the Breast, CNS, Detect, DLBCL,
and SMK-CAN-187 datasets, which proves that the filter
algorithm has been invoked many times on these five datasets
in the current loop. In contrast, for the three datasets, GLI-85,
Leukemia, and secom, the distribution of scatters is sparser,
indicating that the filter algorithm has been invoked fewer
times in the current loop.

This also proves that the execution times of the filter
algorithm are random, and the experimental results are not
accidental and the algorithm falls into the local optimal situ-
ation. In addition, the filter algorithm is invoked to determine
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FIGURE 15. Filter algorithm in each dataset is called the number of times.

FIGURE 16. Trend of NCC and distance on Bre.

FIGURE 17. Trend of NCC and distance on CNS.

whether it is a univariate or multivariate, based on the number
of times the collision distance value is generated.

3) CHANGES IN FEATURE SUBSETS
The proposed algorithm was executed ten times on each
dataset, but the value of K was taken differently for these ten
times. This means that for each dataset, we performed several
experiments with different parameters.

Fig. 24 shows the results of this multiple-loop experiment
on eight datasets for dimensionality reduction. From this
figure, we can clearly observe the number of features in each
dataset as well as the changes in the value of K and the value
of LEN (the first K features selected by the filter algorithm

FIGURE 18. Trend of NCC and distance on Det.

FIGURE 19. Trend of NCC and distance on DLB.

FIGURE 20. Trend of NCC and distance on GLI.

and then selected by executing the wrapper algorithm, which
indicates the length of the optimal subset of features). Thus,
it is possible to better understand the performance and effect
of the algorithm on different datasets.

For the Detect dataset, Fig. 25 shows the relationship
between K and LEN after executing the IGMPMMIAPSO
algorithm ten times. There were four times when the value of
K exceeded 40 and six times when it was less than 40. There
were five times when LEN was a one-digit value. Multiple
values of K enhance randomness and prevent chance. At the
same time, it results in better convergence for dimensionality
reduction of the wrapper algorithm.
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FIGURE 21. Trend of NCC and distance on Leu.

FIGURE 22. Trend of NCC and distance on sec.

FIGURE 23. Trend of NCC and distance on SMK.

4) CHANGES IN WEIGHT COEFFICIENTS
In the bivariate filter algorithm (MPMMI), to provide a subset
of candidate features, we introduce two weight factors as a
measure of relevance and redundancy, that is, wp1 and wp2.
As the values of the two weight factors vary with the number
of iterations, the bivariate filter algorithm provides a feature
subset rich in diversity.

Fig. 26 illustrates the variation in the two weight parame-
ters, wp1 and wp2, with the number of iterations on the secom
dataset.

From the figure, it can be observed that wp1 gradually
increases and wp2 gradually decreases, and the values of wp1

FIGURE 24. Dimensionality reduction effect on 8 datasets.

FIGURE 25. Dimension reduction effect performed 10 times on Detect.

FIGURE 26. Trend of and on secom.

and wp2 are equal at t=100. wp1 and wp2 values affect the
ratio of relevance to redundancy, and Pearson’s relevance is
more influential at t<100, which indicates that when the num-
ber of features is small, the relevance between the features
and labels is predominant in the selection of the features.
At t>100, Mutual Information redundancy is more influen-
tial, indicating that redundancy between features dominates
feature selection when the number of features gradually
increases.

5) CHANGES IN ADAPTIVE INCREMENTS
On each dataset, the proposed algorithm was executed
10 times, each timewith 200 iterations. However, the adaptive
increment δ was randomly generated with the number of
iterations. Its value range is controlled in the range of [0,0.1]
to prevent the algorithm from converging too fast and falling
into a local optimum. The change in the value of δ in a
particular loop over 200 iterations on the eight datasets is
plotted in Fig. 27.
In Fig. 27, the X-axis represents the number of iterations,

and the Y-axis represents the value of the adaptive increment
Delta(δ). In 200 iterations, the value of δ is randomly taken to
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FIGURE 27. Changes in δ during the iteration of eight datasets.

TABLE 5. Computational complexity of the comparison algorithm and the
proposed algorithm.

ensure that the δ is not fixed during each iteration. However,
δ affects the adjustment of AAC, which in turn affects the
change in learning factors. In this paper, the dynamic adjust-
ment method was used to adjust the learning factors to update
the particle velocity. This is more flexible than the update of
the traditional PSO, and the particles can better find the global
optimal solution.

D. COMPUTATIONAL COMPLEXITY
The computational complexity is the amount of resources
required to execution of an algorithm. These resources
include time (the number of steps required for execution)
and space (the amount of memory required). In this paper,
the computational complexity of the five algorithms used for
comparison with the proposed IGMPMMAPSO algorithm is
presented in tabular form in Table 5.

where T denotes the maximum number of iterations, m
denotes the number of features we selected, n denotes the
number of features in the dataset, and S denotes the time
required to execute the SVM classifier.

From Table 2, the number of features we selected is far
less than the original number and m is much less than n. That
means that n × m is less than n2. So, when compared with
other algorithms, the proposed algorithm has a lower compu-
tational complexity than the other five hybrid algorithms and
takes less time. This also means that the IGMPMMIAPSO
algorithm can process more data or perform more iterations
in the same time, which not only improves the performance
but also increases the efficiency of the algorithm. In addi-
tion, the low computational complexity also means that the

IGMPMMIAPSO algorithmmay be better suited to resource-
limited situations, as it can complete computational tasks in
a shorter period of time.

V. CONCLUSION
In the feature selection process, a hybrid feature selection
algorithm IGMPMMIAPSO, was proposed to prevent the
algorithm from falling into local optima. The algorithm
mainly consists of IG, MPMMI, and APSO, which adjust
the order and frequency of execution by changing the NCC
and collision distance values. Compared to other hybrid
algorithms, the proposed algorithm provides a larger sub-
set of candidates while preventing filter algorithms from
being called frequently. Through experiments, we verified
the effectiveness of the IGMPMMIAPSO algorithm for fea-
ture selection. The algorithm fully demonstrates the multiple
relationships between features and labels, features and fea-
tures. Such multifaceted considerations improve the accuracy
and robustness of feature selection. The experimental results
show that the classification accuracy is at least 0.1% higher
than that of the other algorithms on some datasets. However,
on other datasets, IGMPMMIAPSO provides a shorter subset
of features.

Comprehensive experimental results show that our
algorithm achieves satisfactory results in feature selection
and provides strong support for feature selection and data
modelling in practical applications. With the widespread
use of multimodal datasets in practical applications, we can
consider how to extend the algorithm to deal with the feature
selection problem of multimodal datasets and how to realize
dynamic feature selection in the future. This method can cope
with the situation that the data feature distribution changes
with time, so as to achieve a more flexible and adaptive
feature selection method.

REFERENCES
[1] X.-A. Ma, H. Xu, and C. Ju, ‘‘Class-specific feature selection via maxi-

mal dynamic correlation change and minimal redundancy,’’ Expert Syst.
Appl., vol. 229, Nov. 2023, Art. no. 120455, doi: 10.1016/j.eswa.2023.
120455.

[2] T. Wu, Y. Hao, B. Yang, and L. Peng, ‘‘ECM-EFS: An ensemble feature
selection based on enhanced co-association matrix,’’ Pattern Recognit.,
vol. 139, Jul. 2023, Art. no. 109449, doi: 10.1016/j.patcog.2023.109449.

[3] Z. Fei, Y. Ryeznik, O. Sverdlov, C.W. Tan, andW. K.Wong, ‘‘An overview
of healthcare data analytics with applications to the COVID-19 pandemic,’’
IEEE Trans. Big Data, vol. 8, no. 6, pp. 1463–1480, Dec. 2022, doi:
10.1109/TBDATA.2021.3103458.

[4] H. Khalajzadeh,M.Abdelrazek, J. Grundy, J. Hosking, andQ. He, ‘‘Survey
and analysis of current end-user data analytics tool support,’’ IEEE Trans.
Big Data, vol. 8, no. 1, pp. 152–165, Feb. 2022.

[5] Z. Tang, W. Jia, X. Zhou, W. Yang, and Y. You, ‘‘Representation and
reinforcement learning for task scheduling in edge computing,’’ IEEE
Trans. Big Data, vol. 8, no. 3, pp. 795–808, Jun. 2022.

[6] X. Wen and Z. Xu, ‘‘Wind turbine fault diagnosis based on ReliefF-PCA
and DNN,’’ Expert Syst. Appl., vol. 178, Sep. 2021, Art. no. 115016, doi:
10.1016/j.eswa.2021.115016.

[7] X. Qiao, T. Peng, N. Sun, C. Zhang, Q. Liu, Y. Zhang, Y. Wang, and
M. Shahzad Nazir, ‘‘Metaheuristic evolutionary deep learning model
based on temporal convolutional network, improved Aquila optimizer
and random forest for rainfall-runoff simulation and multi-step runoff
prediction,’’ Expert Syst. Appl., vol. 229, Nov. 2023, Art. no. 120616, doi:
10.1016/j.eswa.2023.120616.

VOLUME 12, 2024 106251

http://dx.doi.org/10.1016/j.eswa.2023.120455
http://dx.doi.org/10.1016/j.eswa.2023.120455
http://dx.doi.org/10.1016/j.patcog.2023.109449
http://dx.doi.org/10.1109/TBDATA.2021.3103458
http://dx.doi.org/10.1016/j.eswa.2021.115016
http://dx.doi.org/10.1016/j.eswa.2023.120616


X. Bai et al.: Hybrid Feature Selection Algorithm Based on Collision Principle and Adaptability

[8] C. Ding and H. Peng, ‘‘Minimum redundancy feature selection from
microarray gene expression data,’’ J. Bioinf. Comput. Biol., vol. 3, no. 2,
pp. 185–206, May 2005.

[9] K. Qu, J. Xu, Q. Hou, K. Qu, and Y. Sun, ‘‘Feature selection using
information gain and decision information in neighborhood decision sys-
tem,’’ Appl. Soft Comput., vol. 136, Mar. 2023, Art. no. 110100, doi:
10.1016/j.asoc.2023.110100.

[10] P. Tao, Z. Sun, and Z. Sun, ‘‘An improved intrusion detection algorithm
based on GA and SVM,’’ IEEE Access, vol. 6, pp. 13624–13631, 2018.

[11] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng.
Softw., vol. 95, pp. 51–67, May 2016.

[12] L. Song, Q. Liang, H. Chen, H. Hu, Y. Luo, and Y. Luo, ‘‘A new
approach to optimize SVM for insulator state identification based on
improved PSO algorithm,’’ Sensors, vol. 23, no. 1, p. 272, Dec. 2022, doi:
10.3390/s23010272.

[13] Z. Song, S. Liu, M. Jiang, and S. Yao, ‘‘Research on the settlement pre-
diction model of foundation pit based on the improved PSO-SVMmodel,’’
Sci. Program., vol. 2022, pp. 1–9, Mar. 2022, doi: 10.1155/2022/1921378.

[14] T. Gao and H. Chen, ‘‘Multicycle disassembly-based decomposition
algorithm to train multiclass support vector machines,’’ Pattern Recognit.,
vol. 140, Aug. 2023, Art. no. 109479, doi: 10.1016/j.patcog.2023.109479.

[15] J. Shi, X. Chen, Y. Xie, H. Zhang, and Y. Sun, ‘‘Delicately reinforced
k-nearest neighbor classifier combined with expert knowledge applied to
abnormity forecast in electrolytic cell,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 35, no. 3, pp. 3027–3037, Mar. 2024.

[16] K. Chen, B. Xue, M. Zhang, and F. Zhou, ‘‘An evolutionary multitasking-
based feature selection method for high-dimensional classification,’’ IEEE
Trans. Cybern., vol. 52, no. 7, pp. 7172–7186, Jul. 2022.

[17] J.-Q. Yang, Q.-T. Yang, K.-J. Du, C.-H. Chen, H. Wang, S.-W. Jeon,
J. Zhang, and Z.-H. Zhan, ‘‘Bi-directional feature fixation-based particle
swarm optimization for large-scale feature selection,’’ IEEE Trans. Big
Data, vol. 9, no. 3, pp. 1004–1017, Jun. 2023.

[18] T. Thaher, H. Chantar, J. Too,M.Mafarja, H. Turabieh, and E. H. Houssein,
‘‘Boolean particle swarm optimization with various evolutionary popula-
tion dynamics approaches for feature selection problems,’’ Expert Syst.
Appl., vol. 195, Jun. 2022, Art. no. 116550.

[19] J. Kaur and S. Singh, ‘‘Feature selection using mutual information and
adaptive particle swarm optimization for image steganalysis,’’ in Proc.
7th Int. Conf. Rel., INFOCOM Technol. Optim. (Trends Future Directions)
(ICRITO), Aug. 2018, pp. 538–544, doi: 10.1109/ICRITO.2018.8748522.

[20] Z. Ye, Y. Xu, Q. He, M. Wang, W. Bai, and H. Xiao, ‘‘Feature selection
based on adaptive particle swarm optimization with leadership learn-
ing,’’ Comput. Intell. Neurosci., vol. 2022, pp. 1–18, Aug. 2022, doi:
10.1155/2022/1825341.

[21] Y. Hu, Y. Zhang, X. Gao, D. Gong, X. Song, Y. Guo, and J. Wang,
‘‘A federated feature selection algorithm based on particle swarm optimiza-
tion under privacy protection,’’ Knowl.-Based Syst., vol. 260, Jan. 2023,
Art. no. 110122.

[22] X. Li and J. Ren, ‘‘MICQ-IPSO: An effective two-stage hybrid feature
selection algorithm for high-dimensional data,’’Neurocomputing, vol. 501,
pp. 328–342, Aug. 2022.

[23] X. Han, ‘‘On the understanding and application of Newton’s third law,’’
Sci. Consulting J., vol. 11, no. 1, pp. 102–103, Jan. 2017.

[24] L. Zheng and X. Li, ‘‘Teaching research of mathematica assisted explo-
ration of physics and mechanics problems in high school,’’ Phys. Bull.,
vol. 7, no. 5, pp. 105–109, Apr. 2023.

[25] L. Li, P. Ma, and L. Liang, ‘‘Application of phase diagram method of
elastic collision double conservation equation in physics competition,’’
Phys. Teach., vol. 44, no. 9, pp. 67–72, Sep. 2022.

[26] S. Ma, ‘‘Collision-like collision in the law of conservation of momentum,’’
Teach. Examination, no. 13, pp. 37–43, Mar. 2023.

[27] C. Deng, ‘‘Research on feature selection of mutual information in Chinese
text classification,’’ Southwest Univ., no. 9, Apr. 2011.

[28] X. Li, J. Chong, Y. Lu, and Z. Li, ‘‘Application of information gain in the
selection of factors for regional slope stability evaluation,’’Bull. Eng. Geol.
Environ., vol. 81, no. 11, Oct. 2022, Art. no. 470.

[29] I. Rodríguez-Luján, R. Huerta, C. P. Elkan, and C. S. Cruz, ‘‘Quadratic pro-
gramming feature selection,’’ J.Mach. Learn. Res., vol. 11, pp. 1491–1516,
Mar. 2010.

[30] E. J. G. Pitman, ‘‘Significance tests which may be applied to samples from
any populations. II. The correlation coefficient test,’’ J. Roy. Stat. Soc. B,
Stat. Methodol., vol. 4, no. 2, pp. 225–232, Jul. 1937.

[31] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int.
Conf. Neural Netw. (ICNN), vol. 4, Dec. 1995, pp. 1942–1948.

[32] X. Liu, G.-G. Wang, and L. Wang, ‘‘LSFQPSO: Quantum particle swarm
optimization with optimal guided Lévy flight and straight flight for
solving optimization problems,’’ Eng. with Comput., vol. 38, no. S5,
pp. 4651–4682, Dec. 2022.

[33] Y. Zheng, Y. Li, G. Wang, Y. Chen, Q. Xu, J. Fan, and X. Cui,
‘‘A novel hybrid algorithm for feature selection based on whale optimiza-
tion algorithm,’’ IEEE Access, vol. 7, pp. 14908–14923, 2019.

[34] Y. Zheng, Y. Li, G. Wang, Y. Chen, Q. Xu, J. Fan, and X. Cui, ‘‘A novel
hybrid algorithm for feature selection,’’ Pers. Ubiquitous Comput., vol. 22,
pp. 971–985, May 2018.

[35] Z. Qu and J. Yin, ‘‘Optimized LSTM networks with improved PSO
for the teaching quality evaluation model of physical education,’’
Int. Trans. Electr. Energy Syst., vol. 2022, pp. 1–12, Sep. 2022, doi:
10.1155/2022/8743694.

[36] Y. Zheng, Y. Li, G. Wang, Y. Chen, Q. Xu, J. Fan, and X. Cui, ‘‘A hybrid
feature selection algorithm for microarray data,’’ J. Supercomput., vol. 76,
no. 5, pp. 3494–3526, May 2020.

[37] D. J. MacKay, Information Theory, Inference and Learning Algorithms.
Cambridge, U.K.: Cambridge Univ. Press, 2003.

[38] P. Latham andY. Roudi, ‘‘Mutual information,’’ Scholarpedia, vol. 4, no. 1,
p. 1658, 2009, doi: 10.4249/scholarpedia.1658.

[39] L. Yin, D. Li, and J. Xu, ‘‘Support vector machine was optimized
based on particle swarm algorithm of video flame detection,’’ China
New Technol. New Products, no. 13, pp. 146–148, Jul. 2023, doi:
10.13612/j.cnki.cntp.2023.13.004.

XIAOTONG BAI was born in Hebei, China,
in 1999. She received the B.S. degree in software
engineering from the Boda College, Jilin Normal
University, in 2022, where she is currently pursu-
ing the M.S. degree.

Her research interest includes feature selection.

YUEFENG ZHENG received the B.S. degree in
computer science and technology and the M.S.
degree in computer application from Jilin Normal
University and the Ph.D. degree from Jilin Univer-
sity.

He is currently an Associate Professor with the
School of Mathematics and Computer Science,
Jilin Normal University. His research interests
include feature selection and machine learning.

YANG LU received the B.S. degree in computer
science and technology from Jilin Normal Univer-
sity, the M.S. degree in computer application from
Jilin University, and the Ph.D. degree from Jiangsu
University.

She is currently a Professor with the School of
Mathematics and Computer Science, Jilin Normal
University. Her research interests include image
manipulation and machine learning.

106252 VOLUME 12, 2024

http://dx.doi.org/10.1016/j.asoc.2023.110100
http://dx.doi.org/10.3390/s23010272
http://dx.doi.org/10.1155/2022/1921378
http://dx.doi.org/10.1016/j.patcog.2023.109479
http://dx.doi.org/10.1109/ICRITO.2018.8748522
http://dx.doi.org/10.1155/2022/1825341
http://dx.doi.org/10.1155/2022/8743694
http://dx.doi.org/10.4249/scholarpedia.1658
http://dx.doi.org/10.13612/j.cnki.cntp.2023.13.004

