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ABSTRACT An application-specific integrated circuit (ASIC) bridge for translating and transmitting data
between Ethernet and USB was developed in this study. The Ethernet packets of this device are in the IEEE
802.3 standard frame format and transmitted over a 1-Gbit media-independent interface. The device supports
the user datagram and address resolution protocols with high transfer speeds. The proposed hardware solution
achieves a higher data throughput (682.13 Mbps) than conventional software-based solutions. Its design
was validated on a field-programmable gate array (FPGA), and the ASIC was then fabricated using the
Taiwan Semiconductor Manufacturing Company 0.18-µm CMOS process. The fabricated ASIC’s power
consumption, gate count, and chip area were 74.68 mW, 50 100, and 1.199 × 1.196 mm2, respectively.
Moreover, its operating frequency was 125 MHz under a power supply voltage of 1.8 V. The proposed
bridge had high throughput and low latency on the FPGA, and the ASIC package was robust, convenient to
use, and energy efficient.

INDEX TERMS Ethernet packet, USB data, UDP, ARP, FPGA board, ASIC.

I. INTRODUCTION
Communication networks are the backbone of all industrial
automation systems. They interconnect individual compo-
nents to improve system efficiency and performance [1].
Ethernet is a reliable communications protocol that has
powered the rapid development of Industry 4.0, Internet
of Things applications, artificial intelligence communica-
tion, and automation systems. Ethernet and USB have
rapidly replaced previously common communication stan-
dards, such as RS-232 and RS-422, in the consumer
market. Ethernet technology has evolved to meet new
bandwidth and market requirements and is now used in
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the harshest industrial environments and to interconnect
countless devices [2]. Ethernet has replaced many legacy and
proprietary data transmission systems [3], [4]. An Ethernet
interface can be implemented with a DSP and controller
chip, such as the KSZ8851 chip, in most embedded sys-
tems [5]. In particular, application-specific integrated circuit
(ASIC) Ethernet implementations can achieve high energy
efficiency as data transceivers, thus facilitating network
management.

The USB standard defines cables, connectors, communi-
cation protocols, and power transmissions between devices.
USB has largely replaced earlier interfaces, especially for
low-power and portable devices. USB data transfer has
numerous modes with differing data transfer rates and
hardware and cabling requirements [1]. In particular, the USB
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2.0 standard (high-speed) was released in April 2000 with
a maximum data transfer speed of 480 Mbit/s; however,
bus access constraints limited its effective throughput to
280 or 35 Mbit/s [6]. In late 2008, the USB 3.0 specification
was released, supporting a data transfer speed of up to
5.0 Gbit/s in the full-duplex transfer mode but typically
achieving a data transfer speed of approximately 3.2 Gbit/s in
practice. Versions 3.1 and 3.2 achieved data rates of 1 GB/s
and 10 Gbit/s, respectively, and version 3.2 had enhanced
data encoding efficiency [7]. Because most handheld devices
use microprocessors or microcontrollers to control the battery
charging process, the use of USB has a minimal effect on the
cost of existing products [6].

Most high-speed, high-throughput protocols for modern
data transmission are based on the user datagram protocol
(UDP) instead of the transmission control protocol (TCP) [8],
[9], [10]. During UDP communications, congestion resulting
in interference can be resolved through simultaneous multi-
path communication (SMPC), which allows the transmission
to be distributed over multiple paths. This feature improves
communication performance and reduces the load on network
resources [11], [12]. SMPC methods range from approaches
based on simple moving average to stabilizers implemented
in neural network models, such as multilayer perceptron,
recurrent neural network, and long short-term memory
models; these methods can reduce fluctuations and improve
average throughput [13], [14]. UDP congestion control is
limited by the receiver’s buffer size, which specifies the total
amount of data to be transmitted [15]. Permutation-based
encapsulation has been used to improve the goodput gain,
latency ratio, physical-layer throughput, and secrecy rate of
UDP by reducing the payload [16].
In LAN communications, the address resolution protocol

(ARP) is used to convert dynamic Internet protocol (IP)
addresses to fixed physical media access control (MAC)
addresses. In a previous study, ARP broadcast messages
were used to communicate covertly over a LAN through
a technique that was robust against traffic normalization
and resilient to frequency-analysis-based decoding tech-
niques [17]. In another study, a binding server was developed
to register client applications to nodes, thereby improving
network performance [18].

One standard or protocol often must be converted to
another to achieve interoperability. Protocol conversion
requires the conversion of data packet contents, including
messages, events, commands, and time synchronization.
Key challenges in protocol translation include communi-
cation delays, processing latency, and overall processing
time [1]. Conventional software-based translation stacks are
CPU-intensive when operating at full transmission rates, thus
resulting in high latency and low throughput; this problem
can be overcome using appropriate hardware implementa-
tions [19], such as a field-programmable gate array (FPGA).
FPGAs can be used in customized Ethernet-based embedded
systems [20]. In the present study, a cost-effective FPGA-
based Ethernet controller interface was developed as an

alternative to TCP/UDP software stacks as a bridge for
Ethernet and USB messages.

FIGURE 1. Proposed communication architecture of the designed bridge
ASIC between Ethernet and USB modules with on-chip SRAM cells.

Fig. 1 illustrates the proposed communication architecture
of the designed bridge ASIC. This architecture comprises
Ethernet and USB modules with on-chip static RAM
(SRAM) cells. A USB data packet received at the USB
port is sent to the USB module and written to the first
SRAM (SRAM_1), which calculates the length of this data
packet. This length is then sent to the Ethernet module,
which upon receiving another signal, sends the Ethernet
preamble in sequence, followed by the source and destination
MAC addresses. It then calculates and validates the IP
checksum before adding the IP header. Subsequently, the
stored complete Ethernet packet is sequentially read from
the on-chip SRAM (SRAM_1) and transmitted from the
first on-chip SRAM to the Ethernet port, which is a 1-Gbit
media-independent interface (GMII) module. Two on-chip
SRAMs are used because of the frequency incompatibility
between Ethernet (125Mbps) [12] and USB (480Mbps). The
remainder of this paper is organized as follows. Section II
presents the system architecture of the Ethernet and RS485
modules. Sections III and IV discuss the simulation and
measurement results, respectively, obtained for the proposed
bridge ASIC with TCP and SRAM. Finally, Section V
presents the conclusions.

II. COMMUNICATION ARCHITECTURE OF THE PROPOSED
BRIDGE ASIC
Fig. 2 displays the system architecture of the Ethernet
module, which comprises a GMII module, a MAC module,
an ARP module, a UDP module, and a receiver (RX)
module. The GMII module transmits Ethernet packets in the
GMII interface standard format to an Ethernet port physical-
layer (PHY) chip, and the RX module receives and parses
the Ethernet packets. Ethernet UDP packets are stored in
SRAM-2. The ARP module responds to correctly formed
ARP requests by returning an ARP reply packet to the MAC
module. The MAC module produces the preamble, MAC
address, EtherType, and frame check sequence (FCS) for
transmitted Ethernet packets. The UDP module handles IP
and UDP headers and reads data from SRAM-1. The ARP
module controls the ARP header for the packets. The on-chip
SRAMs were implemented in an ARM 0.18-µm process and
were 128 bytes each.
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FIGURE 2. System architecture of the Ethernet module.

Fig. 3 displays the architecture of the USB module,
which was designed in accordance with the CY7C68013A
specification [21]. CLK_48 is a 48-MHz input clock signal,
and IFCLK is an output clock signal for CLK_48. PKTEND
is an end signal for a transmitted packet (PKT), which is
high for the ‘‘preset’’ function and low for the ‘‘action’’
function. PKTEND must be activated simultaneously with
SLWR, which is the write signal of the USB module. FlagA
and FlagD are input status signals, which are low for the
‘‘preset’’ function and high when the system is ready to
receive data packets. SLOE is an output enable signal of the
USB module; this signal is high and low when the system is
receiving and transmitting data packets, respectively. SLRD
is the read signal of the USB module, which is high for the
‘‘preset’’ function and low when the system is receiving data
packets. SLWR is the write signal of the USB module, which
is high for the ‘‘preset’’ function and low when the system is
transmitting a data packet. FIFO_Addr [1:0] is the selected
address for receiving or transmitting a data packet; 2’b00 and
2’b10 are the addresses of the received and transmitted data
packets, respectively. DATA[15:0] is a 16-bit bidirectional
data transmission port.

FIGURE 3. System architecture of the USB module.

Fig. 4 depicts a flowchart of the designed bridge. The
Ethernet module is idle until it receives an Ethernet packet.
First, the packet’s preamble and MAC address are validated;
any invalid packets are discarded, and the Ethernet module
returns to the idle state. The received packets are then
classified as ARP and UDP packets. For UDP packets,
the received status is changed to ‘‘IP_header,’’ and the IP
and UDP headers are validated. Subsequently, the received
current status is changed to ‘‘UDP_header.’’ After the UDP
port is validated, the received current status is changed
to ‘‘UDP_data,’’ and the payload of the packet is stored

in SRAM_2. Information on the amount of UDP data is
immediately stored in the register. Finally, the FCS stored in
the register is validated; if invalid, the packet data are cleared
from the SRAM_2 module and register. Otherwise, upon
reception of a transmission request signal (high, flag_d =

1) from the USB module, the stored UDP data are read and
transmitted to the USB port (interface).

FIGURE 4. Operational flowchart of the Ethernet module, which is used
to transform the Ethernet packet at the USB port (interface).

The flowchart for ARP packet reception is illustrated in
Fig. 5. The formats of the ARP request packet (16’h0001)
and ARP reply packet (16’h0002) are validated, including the
source IP, destination IP, and FCS. For ARP reply packets, the
destination MAC address is stored in a register.

FIGURE 5. Flowchart of ARP packet reception by the Ethernet module.

For ARP request packets, an ARP reply signal is triggered
with an opcode of ‘‘16’h0002.’’ The current transmission
state of the Ethernet module is set to Ethernet header, and
the preamble, destination MAC, source MAC, and Ethernet
type, are generated and readied to send to the requesting
device. Next, ARP header signals, including the hardware
type, protocol type, hardware size, protocol size, and opcode,
are sent to the requesting device in accordance with the
destination MAC and IP. Subsequently, the ARP payload is
sent. Finally, the current transmission state of the Ethernet
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module is set to cyclic redundancy check (CRC), and the FCS
is sent.

When the ARP request packet is ready to be transmitted
(Idle) and the trigger signal (S2_in = 1) of ARP transmission
is received, the ARP opcode is changed to 16’h0001, and the
EtherType is changed to ARP (16’h0806). The preamble is
then transmitted, and the FCS calculation begins. The source
MAC is read from the register, and the destination MAC
address is changed to 48’hFFFFFFFF in accordance with
the ARP protocol. An Ethernet header (data), including the
MAC address and EtherType, is then parsed and transmitted.
Subsequently, an ARP header is transmitted with an opcode
of ‘‘16’h0001.’’ The transmitted ARP header comprises
information on the hardware type, protocol type, hardware
size, protocol size, and opcode. Next, the sender hardware
address (source MAC), sender protocol address (source
IP), destination hardware address (destination MAC), and
destination protocol address (destination IP) are sent; the
remaining data are the payload. After the CRC has been
completed, the calculated FCS is sent to complete the
transmission of the Ethernet ARP request packet. Fig. 6
illustrates the flowchart for the transmission of ARP request
packets by the Ethernet module.

FIGURE 6. Flowchart of ARP request packet transmission by the Ethernet
module.

To transmit a USB data packet from the USB port to the
Ethernet port, the USB module receives the data packet and
transforms it into an Ethernet packet as illustrated in the
flowchart in Fig. 7. If the USB module receives a request
trigger signal (flag_a = 1), the USB module reads the
received USB data and stores them in SRAM_1. The received
USB data are counted and stored in a register. When an
Ethernet request signal (S3_in = 0) is received, Ethernet
UDP packet transmission begins. After the synchronization
signal (preamble) has been received, the FCS is calculated.
The Ethernet header (MAC address and Ethernet type)
and amount of USB data are read from the registers.
Subsequently, the UDP packet length and IP packet length are
calculated. UDP packets with payloads of less than 18 bytes
are padded with zeros. The IP checksum is then calculated,

and the IP header, including the version, length, protocol,
checksum, and IP, are transmitted. The UDP checksum is
calculated, and the UDP header, including the port, length,
and checksum, are transmitted. The USB data are then read
from the SRAM_1 module and transmitted to the GMII
interface until all USB data have been transmitted correctly.
Finally, the calculated FCS is transmitted, thus completing
Ethernet UDP packet transmission. Note that the proposed
bridge system incorporates UDP and ARP protocols, which
operate within the Transport and Network layers of the OSI
model. These protocols ensure data privacy and handling in
accordance with ethical standards for data communication.
For instance, the protocol type serves as a critical standard
in Network layer operations for effective data management.
Additionally, CRC (Cyclic Redundancy Check), IP (ARP)
checksum, and UDP checksum mechanisms are employed
to maintain data privacy and ensure data integrity in data
communication.

FIGURE 7. Flowchart of translation from a USB data packet to an Ethernet
UDP packet.

III. FUNCTIONAL SIMULATION AND VERIFICATION
Two transmission functions of the proposed Ethernet–USB
bridge ASIC had to be validated: the paths from the Ethernet
port to the USB port and the reverse path. Fig. 8 depicts the
simulated results for ARP request packet reception and ARP
reply packet transmission. The trigger signal gmii_rx_dv
is set to high (1), indicating that the preamble has been
received and confirmed. The ARP request data, namely the
source MAC, destination MAC, EtherType, ARP header,
opcode, sender hardware address, source IP, target hardware
address, destination IP, ARP payload, and FCS, are then sent
from the GMII module to the ARP module. Next, if the
acknowledge signal arp_ack_tx is high (1), the preamble
has been transmitted and validated. The ARP reply data,
including the destination MAC, source MAC, EtherType,
ARP header, operation code, sender hardware address, source
IP, target hardware address, destination IP, and ARP payload,
are subsequently transmitted to the GMII module.

Fig. 9 shows the simulated data transformation between
the UDP packet and USB data. As illustrated in Fig. 9(a),
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FIGURE 8. Simulated ARP packets. (a) Received ARP request packet and
(b) transmitted ARP reply packet.

FIGURE 9. Simulated data transformation between a UDP packet and USB
data. (a) From a UDP packet to USB data and (b) from USB data to a UDP
packet.

if the trigger signal gmii_rx_dv is high (1) and the error
signal gmii_rx_er is low (0), the received Ethernet UDP
packet is correct. The UDP packet data (Payload) are then
stored in the second on-chip SRAM (SRAM_2) sequentially
and are ready for reading by the USB module. After the
transfer trigger signal of transmission (flag_d) has been set
to high (1), the enable signal and the address of the selected
data are transmitted by setting SLOE = 1, SLWR = 0,
and FIFO_Addr [1:0] = 2’b10 (2). The selected Ethernet
UDP packet data (usb_data) stored in SRAM_2 are read and
transmitted to the following USB module. However, if the
trigger signal for receiving (flag_a) is high (1), the enable
signal (SLOE) is low (0), and the read signal (slrd) is low (0),
the selected USB data are received and stored in SRAM_1
sequentially. Next, if the trigger signal for transmission
(gmii_tx_en) is received and is set to low (1), the control
signals and data, including the preamble, CRC, source MAC,
destination MAC, IP header, source IP, destination IP, UDP
header, UDP data, CRC, and FCS, are transmitted to theGMII
module. As displayed in Fig. 9(b), the USB data, which are
stored in SRAM_1, are a 16-bit signal; however, the data of
the GMII interface are an 8-bit signal. The received USB

data must therefore be divided into two 8-bit signals that are
transmitted sequentially.

Fig. 10 presents the validation setup for UDP–USB
translation. This setup comprises two computers (PC1 and
PC2), a USB controller, an FPGA development board
(Intel DE-10 Standard, Terasic Inc., Taiwan), Ethernet PHY,
an optical–electrical converter, and optical fiber. USB data
were generated at PC1 by using the USBmonitoring software
program Device Monitoring Studio and then transmitted to
PC2 through the FPGA development board, which included
a USB controller daughter board (CY7C68013A). The
resulting Ethernet packet was then sent from the FPGA board
to the Ethernet PHY daughter board (RTL8211EG). The
optical–electrical converter (STC-G3S20-11) was used to
transmit the received packet over optical fiber, thus extending
the transmission distance to 20 km. This cable was connected
to a second converter, which was connected to PC2 with an
RJ45 network cable that transmitted the transformed Ethernet
packet.

FIGURE 10. Validation setup comprising the computers, USB controller,
FPGA development board, Ethernet PHY, optical-electrical converters, and
optical fiber for data transformation between a UDP packet and USB data.

Fig. 11 displays the validation environment for data
transformation in USB–UDP packet translation. Device
Monitoring Studio was used to analyze the transmitted USB
data at the USB terminal of PC1, and network packet
generation software (Colasoft Packet Builder) was installed
on PC2 to produce the Ethernet ARP and UDP packets. PC2
also had network packet analysis software (Wireshark) to
parse and monitor all transmitted network packets.

FIGURE 11. Validation environment for translation from USB data (PC1)
to UDP packets (PC2).

Fig. 12 presents the content of an ARP request packet
in Wireshark. Colasoft Packet Builder generated an ARP
packet and sent it to the FPGA development board.Wireshark
was used to validate the ARP packet type (0 × 0806), and
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its opcode was requested (1). The contents of the ARP
reply packet received from the FPGA board are displayed in
Fig. 13. The packet type was ARP (0× 0806), and its opcode
was reply (2).

FIGURE 12. Content of ARP request packets sent from PC2 to the FPGA
board in Wireshark software.

FIGURE 13. Content of ARP reply packets sent from the FPGA board to
PC2 in Wireshark software.

A UDP packet was also generated with Colasoft Packet
Builder, and this packet was sent to the FPGA board from
PC2. Fig. 14 depicts the contents of the UDP packet (roughly
256 bytes) inWireshark. Finally, the FPGA board transmitted
the received Ethernet packet to PC1 through the USB
controller. Device Monitoring Studio was used on PC1 to
inspect the USB data (Fig. 15); the data were consistent
with the original UDP packet.

The maximum packet length was 1526 bytes, including
the 8-byte preamble, 14-byte Ethernet header, 20-byte IP
header, 8-byte UDP header, 1472-byte UDP data, and 4-byte
FCS. The maximum payload of a single UDP packet was
1472 bytes, and the processing time for a maximum-length
packet was 12 245 149 ps [or approximately 1530 clock
cycles (12 245.149 ns/8 ns)] under a clock frequency
of 125 MHz. The throughput for the UDP packet was there-
fore 961.69 Mbps. This value was obtained by dividing the
maximum UDP data length (1472 bytes) by the processing
time (12 245 149 ps). Roughly 27 563.758 ns were required
for transformation between Ethernet UDP packets and USB

FIGURE 14. Content of the UDP packet sent from PC2 (Ethernet terminal)
to the FPGA board in Wireshark software.

FIGURE 15. Content of the USB data sent from the FPGA board to PC1
(USB terminal) in Device Monitoring Studio.

data and subsequent transmission. The data throughput of
the FPGA board was therefore approximately 427.69 Mbps
(11 776 bits/27 563.758 ns). This throughput was increased
to approximately 682.13 Mbps with the proposed bridge
ASIC [22].

IV. BRIDGE ASIC IMPLEMENTATION AND MEASURED
RESULTS
After the functions of the proposed bridge were validated
on the FPGA board, circuit synthesis, automatic placement
and routing, design rule check, and layout-versus-schematic
checking were completed for the Taiwan Semiconductor
Manufacturing Company (TSMC) 0.18-µm process. The
performance of the implemented bridge ASIC was then
evaluated. Debugging and validation of the ASIC were
conducted using the NC-Verilog simulator and Verdi/nWave
waveform viewer. Fig. 16 shows the logic gate model of the
designed bridge ASIC, which is synthesized from the RTL
source code. It is composed of an Ethernet module, a USB
module, an SRAM_1 cell, and an SRAM_2 cell. Fig. 17
displays the layout and a photograph of the Ethernet-to-
USB data transfer ASIC. After the ASIC was packaged in
the CLCC84 package, measurements were performed with
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a mixed-mode signal test machine (ADVANTEST V93000
PS1600). The measurement results are listed in Table 1.

FIGURE 16. Logic gate model of the designed bridge ASIC, which is
synthesized from the RTL source code.

FIGURE 17. Proposed Ethernet-USB data transfer bridge ASIC. (a) Chip
layout and (b) chip photograph.

TABLE 1. Measurements for the developed ethernet-to-USB ASIC.

Fig. 18 displays data from the sent and received ARP
request and reply packets obtained with the ADVANTEST
device. ARP request data transmitted when the enable signal
(tx_en) was high (1) and the error signal (tx_er) was low (0)
are plotted in Fig. 18(a). These ARP request data were sent
from the GMII module to the ARP module, which generated
ARP reply data and returned them to the GMII module; these
reply packets were measured and are displayed in Fig. 18(b).
The measured results displayed in Fig. 18 are similar to the
simulated results shown in Fig. 8.
Fig. 19 depicts the results obtained for the transformation

of Ethernet UDP packets into USB data. Fig. 19(a) presents
measurements of Ethernet UDP packets, which were received

FIGURE 18. Measurement results for (a) sent ARP request packets and
(b) received ARP reply packets.

if the trigger signal gmii_rx_dv was high (1) and the
error signal gmii_rx_er was low (0). The UDP packet
data (payload) were then stored sequentially in SRAM_2.
The UDP packet data (usb_data) were measured after the
transmission trigger (flag_d) and write signal SLWRwere set
to high (1) and low (0), respectively; the corresponding results
are displayed in Fig. 19(b). The measured results displayed in
Fig. 19 are similar to the simulation results shown in Fig. 9(a).

The ADVANTEST device was used to validate the data
transformation from the USB terminal to the Ethernet UDP
terminal. Fig. 20(a) displays the measured USB data received
when flag_a was high and SLRD was low. These data were
stored sequentially in SRAM_1. When the trigger signal
(tx_en) was high and the error signal (tx_er) was low, the
Ethernet UDP packets were transmitted to the GMII module;
the measured packets are shown in Fig. 20(b). The measured
results shown in Fig. 20 are similar to the simulation results
displayed in Fig. 9(b).

Table 2 summarizes the performance of the proposed
bridge ASIC and other similar Ethernet and USB com-
munication systems. The proposed bridge ASIC operates
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FIGURE 19. Measured transformation from UDP packets to USB data:
(a) measured Ethernet UDP packet and (b) measured USB data.

at 125 MHz and can achieve gigabit Ethernet performance.
Two 128-byte on-chip SRAMs were used to reconcile
speed disparities between the Ethernet and USB modules.
The maximum throughput for 256-byte UDP packets was
961.69 Mbps with the FPGA board; this value is higher
than those achieved in [26], [27], and [29]. The proposed
Ethernet-USB bridge ASIC is a USB to Gigabit Ethernet
controller with an integrated 10/100/1000 Mbps Gigabit
Ethernet PHY. It is suitable for various applications such
as notebook/laptop LAN, USB Ethernet dongles, docking
stations, PDA cradles, game consoles, smart cameras,
and IP set-top boxes (STBs). These commercial products
are designed to meet current network standards, ensuring
data interoperability and system robustness. However, the
throughput of the designed bridge ASIC was approximately
682.13 Mbps, which represents optimal performance [23],
[24], [25]. The lower throughput of the ASIC can be

FIGURE 20. Transformation from USB data to UDP packets: (a) measured
USB data and (b) measured UDP packets.

FIGURE 21. The proposed ASIC achieved a potential size reduction in a
USB-to-Ethernet controller.

attributed to chip area constraints that limited the on-chip
SRAM to 128 bytes. A significant limitation of the designed
bridge ASIC is the memory capacities of RAM and FIFO.
Increasing their capacity reduces computational overload and
enhances accuracy but at the expense of lower computational
efficiency. In practical implementations, integrating the
bridge ASIC with an Ethernet PHY (Physical Layer) is
expected to enhance its performance.

However, the chip area (1.2 × 1.2 mm2) and power
consumption (74.68 mW) of the proposed bridge ASIC
were superior to those of the designs proposed in [23],
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TABLE 2. Performance comparisons of the proposed bridge ASIC and other similar ethernet and USB communication systems.

[24], and [25]. The proposed architecture was successfully
implemented in an ASIC and validated, and the proposed
ASIC achieved not only low power consumption and a small
chip area but also high throughput. Fig. 21 shows a diagram
demonstrating how the proposed bridge ASIC can reduce
the module size of a USB-to-Ethernet controller from 4.0 ×

4.0 mm2 to 1.2 × 1.2 mm2.

V. CONCLUSION
In this study, a bridge ASIC with USB and ARP functionality
was designed for transformation between Ethernet packets
and USB data. An FPGA development board was used to
validate the functions of this ASIC, and the proposed bridge
ASIC was fabricated using the TSMC 0.18-µm CMOS cell-
based process. The Ethernet terminal of the ASIC generated
packets and parsed ARP and UDP data. The PHY chip was
integrated with a GMII interface, connected to a 1-Gbps
high-speed Ethernet network and an optical fiber network.
At the USB terminal, the CY7C68013A chip operated
at 48 MHz. Measurements of the designed ASIC with the
ADVANTEST device validated its operation characteristics
and functions. The FPGA board’s maximum throughput of
256-byte UDP packets was 961.69 Mbps. The developed
ASIC has a smaller chip area (1.2 × 1.2 mm2), lower power
consumption (74.68 mW) than previous designs, and high
throughput. This ASIC can reduce the size and improve
the performance of the USB-to-Ethernet controller. Because
of these advantages, the proposed bridge ASIC has high
utility in industrial applications. Future research could extend
to standard protocols in the Network layer, such as IPv6,
ICMP, TCP, etc. To achieve a complete co-design between
hardware and software, an ARM Cortex-M0 CPU could be
integrated with the proposed bridge ASIC. This integration
aims not only to enhance computing capabilities but also

to support higher-layer network protocols such as SQL,
SSL, HTTP, FTP, MQTT, etc. Furthermore, future work
could enhance applications including web pages, file transfer,
Internet of Things (IoT), quantum computing, AI, and other
areas.
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