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ABSTRACT The Shuttle-Based Storage and Retrieval System (SBS/RS) faces challenges of low efficiency
due to the constraints of single outbound or inbound operations. To overcome this limitation, a scheme
enabling simultaneous outbound and inbound operations has been proposed. This involved developing a
physical model that incorporates costs related to outbound cargo urgency, shelf stability, time, and warehouse
busyness. The model was solved using a Genetic Algorithm with priority selection, adaptive operators, and
a decay factor (GA-DF). Experimental results, validated across various environments, demonstrate that the
proposed GA-DF algorithm achieves 50% higher efficiency compared to the IOSA algorithm when the shelf
occupancy rate is 50% and multiple cost environments are considered. Additionally, GA-DF outperforms the
Simulated Annealing algorithm, traditional Genetic Algorithm, and IOSA algorithm in optimizing storage
and retrieval locations, significantly enhancing system optimization. This provides a crucial reference for
optimizing such systems, particularly in dynamic and complex warehousing environments. The GA-DF
algorithm’s applicability and advantages have been widely recognized through further validation, highlight-
ing its potential to drive improvements in warehousing system efficiency and optimization strategies.

INDEX TERMS Shuttle-based storage and retrieval system, physical model, genetic algorithm.

I. INTRODUCTION
With the rapid development of internet and artificial intel-
ligence technologies, the smart warehousing industry is
experiencing significant growth. The dramatic increase in
the number of orders and the scale of data has made effi-
cient automated storage systems the optimal choice for
enhancing logistics operation efficiency. Applying cross-aisle
multi-tier shuttle systems in e-commerce environments is
of great significance for achieving rapid order picking of
massive orders. The order picking system mainly includes
Shuttle-Based Storage and Retrieval System (SBS/RS) and
automated storage and retrieval systems (AS/RS) [1], [2].
Currently, optimization algorithms for warehouse systems
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include genetic algorithms (GA), simulated algorithms (SA),
particle swarm algorithms (PSO), and others [3], [4], [5].

Regarding SBS/RS systems, current research focuses on
two main aspects. The first aspect is the development of
analytical and simulation models to evaluate the performance
of SBS/RS. The second aspect is the design of storage and
scheduling strategies to optimize the performance and energy
consumption of SBS/RS. In the following, this paper will
review the literature on these two aspects.

Regarding analytical and simulationmodels, Rizqi et al. [2]
introduced a simulation optimization (SO) framework for
integrated AS/RS planning. However, the flexibility of the
AS/RS framework is inferior to that of SBS/RS. Andrea
and Giulio [6] studied the development trends of ware-
house models, confirming that the SBS/RS model has
been increasingly utilized by scholars in the past decade,
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particularly for efficient scheduling purposes. Teck et al. [7]
and Ekren [8] identified factors affecting the performance
metrics of SBS/RS, such as time and energy consumption,
using the Tukey test to determine the optimal levels of these
metrics, with the cost of outbound travel distance as the crite-
rion. Yang et al. [9], based on the SBS/RS model, improved
the PSO algorithm using the total order outbound time as the
cost function, determining the appropriate number of lifts and
the number of shelf levels for the warehouse. SBS/RS is an
automated shuttle that runs along aisles andworkswith lifts to
complete cross-level storage and retrieval tasks. Based on the
above analysis, SBS/RS was developed as a replacement for
AS/RS based on small loading cranes, designed to complete
small orders within short response times. Therefore, this
paper will use SBS/RS as the model for study.

Regarding storage and scheduling strategies,
Cergibozan and Tasan [10] proposed two methods for the
order batching problem: a local search genetic algorithm
and a hybrid algorithm based on interactions between dif-
ferent populations. However, they only considered time as
the cost and did not comprehensively address the ware-
house. Lin et al. [11] built on this by proposing a double-deep
SBS/RS model with single and dual lifts, with a cost function
including shuttle waiting time, elevator idle time, and total
outbound time. They improved the Non-dominated Sorting
Genetic Algorithm-II (NSGAII) based on this model to
achieve the shortest outbound time, but did not consider
multiple application scenarios. Mrad et al. [12] proposed two
collaborative scenarios and a Clarke and Wright heuris-
tic genetic algorithm to solve different scenarios, using
a genetic algorithm to address the integrated warehouse
location problem. Liyun et al. [13], based on the Tier-to-
tier Four-way Shuttle Warehousing system, used the total
outbound time as the cost function and provided a new
crossover improved genetic algorithm, ultimately achieving
the optimal scheduling scheme, but did not consider the
number of shuttles. Mao et al. [14] established an SBS/RS
model based on the optimization of inbound and outbound
operations and path scheduling of four-way shuttles. They
used an improved genetic algorithm for task planning and
an improved A∗ algorithm for solving the internal path of
shelves, enhancing the efficiency of shuttle inbound and
outbound operations. Wu et al. [15] established an SBS/RS
model considering the acceleration and deceleration char-
acteristics of equipment, and proposed an improved genetic
algorithm based on double-layer coding to solve the schedul-
ing problem, validating its effectiveness through large-scale
practical experiments. However, the operation modes in the
literatures [10], [11], [12], [13], [14], and [15] are single com-
mand modes for inbound or outbound operations, without
discussing the dual commandmode for simultaneous inbound
and outbound operations.

Regarding the selection and improvement of genetic algo-
rithms, [11] and [15], genetic algorithms are compared
with hybrid algorithms, first come first serve, enumera-
tion method, and ant-colony optimization. It is found that

genetic algorithms converge earlier and are more efficient.
Hu and Chuang [16] optimized the layout of e-commerce
warehouses, established a nonlinear programmingmodel, and
used a GA to solve the model, demonstrating that GA has
better convergence compared to PSO and SA. This provides
an important reference for the selection of algorithms in
this paper. Lu et al. [17] applied GA to the field of ship
optimization, embedding GA into the solution model and
utilizing the algorithm more flexibly, which inspired the bet-
ter application of GA in the SBS/RS system in this paper.
Koohestani [18] conducted in-depth research on GA and pro-
posed using a new coding method that significantly improves
the efficiency of GA. This finding inspired the design of the
genetic algorithm coding in this paper.

Based on the above study of the existence of a single task
in and out of the warehouse, this paper introduces a dual-task
model of goods in and out of the warehouse. For the SBS/RS,
the introduction of the cost of the urgency of the goods out of
the warehouse, the urgent need for the goods in order to get
out of the warehouse as soon as possible. The introduction
of the cost of the stability of the shelves, so that the stability
of the warehouse better. The introduction of the cost of the
time, the overall goods can be quickly out of the warehouse.
The introduction of the busyness of the warehouse, the shuttle
can be run in an orderly fashion. To address the issues of low
warehouse access efficiency described above, this paper pro-
poses the genetic algorithm with decay factor (GA-DF). This
algorithm employs a genetic algorithm framework incorpo-
rating preferential selection, adaptive operators, and a decay
factor to optimize the warehouse operations. The approach
involves utilizing actual enterprise data to validate the effec-
tiveness and feasibility of both the model and the algorithm.
Finally, the paper concludes by summarizing the research
outcomes and results obtained through this approach.

II. PHYSICAL MODELING OF SBS/RS
This chapter systematically describes the physical mod-
eling of the SBS/RS. It begins by detailing the system
layout, including shelf setup, shuttle car plan, and a
three-dimensional schematic of the enterprise. The operation
flow is then outlined, describing the steps in dual-task mode
and providing a system operation flow diagram. Finally,
assumptions and definitions of the model are listed to ensure
the rationality and efficiency of system scheduling. In sum-
mary, the SBS/RS model is designed to provide a basis for
optimizing the warehousing system, considering system lay-
out, operation flow and scheduling framework.

A. LAYOUT INTRODUCTION
The SBS/RS is engineered to enhance warehousing effi-
ciency. In this system, each aisle features shelves on both
sides, with multiple cargo spaces arranged on each level.
Goods of the same type are stored together in designated
areas. Shuttles within the system are propelled and positioned
using electric drives on rails or guided by infrared signals,
among other methods. Additionally, the SBS/RS system
facilitates convenient access between shelves and elevators,
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FIGURE 1. SBS/RS position chart.

allowing shuttles to be transported to any level within the
warehouse. This design optimizes storage and retrieval pro-
cesses, enhancing overall operational efficiency within the
warehouse environment.

Fig. 1(a) illustrates the top view of the SBS/RS. The sys-
tem’s I/O port is positioned at the front of the warehouse,
where an elevator transports the four-way shuttle to the des-
ignated level. On one side of the I/O port, there is an aisle
port for goods incoming and outgoing, while the other side
connects to the goods caching area for temporary storage
of goods. Fig. 1(b) presents a three-dimensional depiction
of the enterprise warehouse. This layout includes an ele-
vator, aisle shuttle, multi-level shelves, box conveyor, and
goods temporary storage area. The visualization uses blue
and orange colors to distinguish between two different types
of goods, each stored separately according to type. These
illustrations provide a clear representation of the SBS/RS
system’s layout and operational components, emphasizing
efficient organization and segregation of goods within the
warehouse environment.

B. OPERATIONAL PROCESSES
The SBS/RS operates in two modes: traditional single-task
mode and the newly proposed dual-task mode. The
single-task mode handles either incoming or outgoing
operations separately, which can lead to inefficiencies in
large warehouses requiring simultaneous goods movement.
To address this limitation, this paper focuses on study-
ing scheduling problems under the dual-task mode. This
mode allows for concurrent goods entering and leaving
the warehouse, aiming to optimize operational efficiency.
By examining dual-task scheduling, this research aims to
enhance the effectiveness of the SBS/RS system, particularly
in large warehouse settings.

A complete goods I/O operation encompasses multiple
inbound and outbound operations, each involving a series of
coordinated steps. Typically, a single inbound and outbound
operation within a warehouse requires the execution of three
fundamental steps. Firstly, the inbound instruction is initiated
to bring goods into the warehouse, where the goods are
identified and prepared for storage. Subsequently, a search
instruction is executed to locate the specific goods within
the warehouse efficiently. Finally, the outbound instruction
is carried out to retrieve and dispatch the goods from the
warehouse as required. These instructions work together
seamlessly to facilitate the smooth movement of goods,
ensuring efficient handling and delivery. By implementing
this systematic approach, warehouses can optimize opera-
tional efficiency and effectively manage the flow of goods
in and out of the facility.

In the SBS/RS, when issuing inbound, search, or out-
bound instructions, the system determines whether a hoist
is required based on the location of goods or I/O ports rel-
ative to the shuttle. If goods or I/O ports are on the same
level as the shuttle, the hoist is engaged to transport the
goods to the specified location or conveyor, completing the
operation efficiently. Conversely, if goods or I/O ports are
not on the same level, the hoist is not used, and goods are

FIGURE 2. SBS/RS operation flowchart.
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transported directly to the designated location or conveyor
to finalize the operation. The operation flow of SBS/RS is
illustrated in Fig. 2, outlining the sequence of actions involved
in issuing instructions, utilizing hoists as needed, and com-
pleting inbound, search, and outbound operations within the
warehouse environment. This operational framework ensures
streamlined goods handling and efficient logistical operations
within the SBS/RS system.

C. MODEL ASSUMPTIONS AND DEFINITIONS
To establish a reasonable scheduling framework for the
SBS/RS and optimize cargo handling processes while
improving system throughput and resource utilization, the
following assumptions are proposed:

• Each four-way shuttle can transport only one cargo at
a time, ensuring focused handling and efficient move-
ment of goods within the system.

• The hoist is capable of serving only one four-way
shuttle at a time, preventing resource conflicts and
optimizing hoist utilization.

• Multiple four-way shuttles are allowed to occupy the
same location between lanes, facilitating concurrent
operations and efficient goods handling.

• The speed and acceleration of both the four-way
shuttle and the hoist remain consistent, whether
loaded or unloaded, ensuring predictable and reliable
performance.

• Goods of the same type are stored together in des-
ignated areas, streamlining retrieval processes and
optimizing storage efficiency.

• The hoists at both ends of the I/O port operate on a
first-come-first-served basis, ensuring fair and orderly
service for shuttle operations.

• In cases where both outgoing and incoming tasks are
present, the shuttle prioritizes bringing goods into the
warehouse before handling goods to be transported out,
optimizing workflow and minimizing delays.

III. MATHEMATICAL MODELING OF SBS/RS
Chapter 3 details the mathematical model of the cross aisle
multilevel shuttle system, focusing on four essential cost
functions: outbound cargo urgency cost, shelf stability cost,
inbound and outbound time cost, and warehouse busyness
cost. These functions provide a comprehensive mathemat-
ical framework for optimizing warehouse operations. The
outbound cargo urgency cost prioritizes urgent deliveries,
minimizing delays. The shelf stability cost ensures safe and
organized storage. The time cost optimizes efficiency for both
inbound and outbound operations. The warehouse busyness
cost manages operational flow to minimize congestion. This
mathematical model facilitates systematic evaluation and task
prioritization, enhancing operational performance within the
warehouse environment.

A. COST OF URGENCY OF OUTGOING SHIPMENTS
In the competitive landscape with evolving customer
demands, warehouses must remain agile to swiftly respond to

emergencies, meet customer needs, and uphold efficient sup-
ply chain operations. Implementing an urgency classification
system based on product characteristics, customer demand,
and supply chain dynamics is essential for optimizing out-
bound processes.
This system allows users to define urgency coefficients for

warehouse inventory, assigning higher values to goods with
greater outbound urgency. The cost of urgencyO(i) for goods
leaving the warehouse is calculated using equation (1):

O(i) =
i ∗ U (i)

n
(1)

where i represents the cargo number, U(i) denotes the urgency
coefficient assigned to the i-th cargo, and n represents the total
number of outgoing cargoes.

B. COST OF SHELF STABILITY
Inbound goods placement directly impacts shelf stabil-
ity, warehouse space utilization, and outbound efficiency.
To enhance shipping efficiency and facilitate warehouseman-
agement, goods of the same type are stored on different
layers of shelves. This storage strategy not only improves
shipping efficiency but also simplifies warehouse manage-
ment during operational challenges. In the context of storage
operations using a four-way shuttle, the selection of shelf
levels is critical. Placing heavier goods on lower shelf levels
can enhance shelf stability and prolong shelf service life. The
cost associated with inbound goods placementM(i) is defined
by equation (2):

M (i) =

∣∣∣∣W (i)
L

− q

∣∣∣∣ (2)

where W(i) represents the mass of the i-th shipment,
L denotes the total number of layers in the warehouse,
and q indicates the number of layers on which the incoming
shipment will be placed.

C. COST OF ACCESS TIME
In the operations of the SBS/RS, the criticality of time
management cannot be overlooked. The strategic arrange-
ment of inbound and outbound timing directly impacts the
efficiency and cost-effectiveness of warehouse operations.
Timely delivery of goods is essential for customer satisfaction
during outbound processes, while efficient storage of goods is
crucial for warehouse functionality. Improper timing arrange-
ments can lead to resource wastage, increased costs, and
operational inefficiencies. Therefore, effective warehouse
management requires optimizing timing schedules, stream-
lining processes, and leveraging advanced technologies to
enhance efficiency. By focusing on efficient storage and
retrieval timing, warehouses can boost operational effective-
ness and competitiveness in today’s dynamic marketplace.
This strategy also raises service levels to meet evolving cus-
tomer demands.

Assuming n is the number of outbound goods, m is the
number of inbound goods, and b is the number of hoists at
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the I/O port, the coordinate information matrices for out-
bound goods MTout, inbound goods MTin, and hoists MTio
are defined by equation (3):

MTout =


A1Q1L1
A2Q2L2
. . . . . .

AnQnLn

 MTin =


C1D1F1
C2D2F2
. . . . . .

CmDmFm

MTio

=


E1J1G1
E2J2G2
. . . . . .

EbJbGb

 (3)

where [An, Qn, Ln] represents the coordinate of the n-th
outbound cargo, [Cm, Dm, Fm] represents the coordinate
of the m-th inbound cargo, and [Eb, Jb, Gb] represents the
coordinate of the b-th hoist at the I/O port.
Assume that the maximum speed of the four-way shuttle

is Vt and the acceleration is at; the speed of the elevator is Ve
and the acceleration is ae, and the coordinates of the i-th goods
out are (Ai, Qi, Li), the coordinates of the i-th incoming goods
are (Ci, Di, Fi), and the coordinates of the i-th I/O port are
(Ei, Ji, Gi). the running times for the three steps described are
determined based on the given coordinates:

1) The time Ti/o−in for a four-directional shuttle to trans-
port goods from the I/O port to the shelf depends on the
type of task. If the shuttle is performing a non-interlayer
task, Ti/o−in is calculated as shown in equation (4); if
the shuttle is performing an interlayer task, Ti/o−in is
calculated as shown in equation (5).

(1) When MTin (Fi) = MTio(Gi), the shuttle carries out a
non-cross-layer task operations.

T i/o−insa (i)

=



4Vt
at

+

(
|Ei − Ci| + |Ji − Di| −

2V 2
t

at

)
Vt

|Ei − Ci|

>
V 2
t

2at
, |Ji − Di| >

V 2
t

2at

2Vt
at

+

(
|Ei − Ci| −

V 2
t
at

)
Vt

+ 2

√
2 |Ji − Di|

at

|Ei − Ci| >
V 2
t

2at
, |Ji − Di| <

V 2
t

2at

2Vt
at

+

(
|Ji − Di| −

V 2
t
at

)
Vt

+ 2

√
2 |Ei − Ci|

at

|Ei − Ci| <
V 2
t

2at
, |Ji − Di| >

V 2
t

2at

2

√
2 |Ji − Di|

at
+ 2

√
2 |Ei − Ci|

at
|Ei − Ci|

<
V 2
t

2at
, |Ji − Di| <

V 2
t

2at
(4)

(2) When MTin (Fi) ̸=MTio (Gi), the shuttle carries out
cross-level task operations.

T i/o−indi (i)

=



T i/o−insa +
2Ve
ae

+

(
|Gi − Fi| −

V 2
e
ae

)
Ve

|Gi − Fi|

>
V 2
e

2ae

T i/o−insa + 2

√
2 |Gi − Fi|

ae
|Gi − Fi| <

V 2
e

2ae
(5)

2) The time Tin−out for a four-directional shuttle to travel
from the unloading location to the loading location
depends on the type of task. If the shuttle is performing
a non-interlayer task, Tin−out is calculated as shown in
equation (6); if the shuttle is performing an interlayer
task, Tin−out is calculated as shown in equation (7).

(1) When MTin (Fi) = MTout (Li), the shuttle carries out
no cross-layer task operations.

T in−outsa (i)

=



4Vt
at

+

(
|Ai − Ci| + |Qi − Di| −

2V 2
t

at

)
Vt

|Ai − Ci|

>
V 2
t

2at
, |Qi − Di| >

V 2
t

2at

2Vt
at

+

(
|Ai − Ci| −

V 2
t
at

)
Vt

+ 2

√
2 |Qi − Di|

at

|Ai − Ci| >
V 2
t

2at
, |Qi − Di| <

V 2
t

2at

2Vt
at

+

(
|Qi − Di| −

V 2
t
at

)
Vt

+ 2

√
2 |Ai − Ci|

at

|Ai − Ci| <
V 2
t

2at
, |Qi − Di| >

V 2
t

2at

2

√
2 |Qi − Di|

at
+ 2

√
2 |Ai − Ci|

at
|Ai − Ci|

<
V 2
t

2at
, |Qi − Di| <

V 2
t

2at
(6)

(2) When MTin(Fi) ̸= MTout(Li), the shuttle carries out
cross-layer task operations.

T in−outdi (i)

=



T in−outsa +
2Ve
ae

+

(
|Li − Fi| −

V 2
e
ae

)
Ve

|Li − Fi|

>
V 2
e

2ae

T in−outsa + 2

√
2 |Li − Fi|

ae
|Li − Fi| <

V 2
e

2ae
(7)
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3) The time Ti/o−out for a four-directional shuttle to trans-
port goods from the loading location to the I/O port
depends on the type of task. If the shuttle is performing
a non-interlayer task, Ti/o−out is calculated as shown in
equation (8); if the shuttle is performing an interlayer
task, Ti/o−out is calculated as shown in equation (9).

(1) When MTin (Li) = MTio (Gi), the shuttle carries out a
non-cross-tier mission task operation.

T i/O−out
sa (i)

=



4Vt
at

+

(
|Ei − Ai| + |Ji − Qi| −

2V 2
t

at

)
Vt

|Ei − Ai|

>
V 2
t

2at
, |Ji − Qi| >

V 2
t

2at

2Vt
at

+

(
|Ei − Ai| −

V 2
t
at

)
Vt

+ 2

√
2 |Ji − Qi|

at

|Ei − Ai| >
V 2
t

2at
, |Ji − Qi| <

V 2
t

2at

2Vt
at

+

(
|Ji − Qi| −

V 2
t
at

)
Vt

+ 2

√
2 |Ei − Ai|

at

|Ei − Ai| <
V 2
t

2at
, |Ji − Qi| >

V 2
t

2at

2

√
2 |Ei − Ai|

at
+ 2

√
2 |Ji − Qi|

at
|Ei − Ai|

<
V 2
t

2at
, |Ji − Qi| <

V 2
t

2at
(8)

(2) When MTin (Li) ̸= MTio (Gi), the shuttle carries out
cross-level task operations.

T i/O−out
di (i)

=



T i/O−out
sa +

2Ve
ae

+

(
|Gi − Li| −

V 2
e
ae

)
Ve

|Gi − Li|

>
V 2
e

2ae

T i/O−out
sa + 2

√
2 |Gi − Li|

ae
|Gi − Li| <

V 2
e

2ae
(9)

In summary, the total time T (i) for the four-way shuttle
to complete the i-th operational task involves the cumulative
running times of the three steps described earlier:

T (i) = T i/o−in(i) + T in−out (i) + T i/o−out (i) (10)

D. COST OF WAREHOUSE BUSYNESS
In SBS/RS operations, goods movement within the ware-
house relies primarily on four-way shuttles and hoists. The
utilization rates of these systems indicate the current ware-
house activity level and directly affect the efficiency of
inbound and outbound operations. Unlike the hoists, which

only operates upon receiving a request from a four-way shut-
tle and thus does not accurately reflect overall warehouse
activity, the busyness of the warehouse is predominantlymea-
sured by the efficiency of the four-way shuttle transportation.
Based on the above analysis, the total transportation time
Tsum p of the p-th four-way shuttle is (11), the maximum
value of the time spent by the shuttle Tmax is (12), and the
warehouse busyness R is (13).

T sump =

H∑
i=1

T (i) (11)

Tmax = max(T sump )p ∈ [1, S] (12)

R =

S∑
p=1

TsumP
Tmax

S
× 100% (13)

where H represents the number of operational tasks that the
p-th four-way shuttle is required to transport goods in and
out of the warehouse. S denotes the total number of four-way
shuttles operating within the warehouse system.

IV. GENETIC ALGORITHM DESIGN FOR SBS/RS
Chapter 4 presents the genetic algorithm design tailored for
SBS/RS. GA excel in handling goods allocation and schedul-
ing due to their ability to explore a wide solution space effec-
tively, adapt to complex constraints, and optimize multiple
objectives simultaneously. They offer robustness, scalability,
and the capability to find near-optimal solutions in challeng-
ing logistics scenarios. Therefore, GA was chosen to deal
with the SBS/RS problem. Initially, the genetic algorithm
with decay factor (GA-DF) algorithm is introduced with a
novel encoding method aimed at simplifying problem by
representing various aspects of access and egress operations.
Subsequently, individual fitness functions undergo normal-
ization to facilitate effective evaluation. Detailed operations
within the GA-DF algorithm are elaborated, encompassing
key aspects such as the selection operator, preferred selec-
tion strategy, adaptive operator, crossover approach, mutation
approach and the design of a decay factor. The comprehensive
flow of the GA-DF algorithm is then delineated to optimize
the scheduling of inbound and outbound operations using
genetic algorithms, ultimately aiming to enhance the effi-
ciency and cost-effectiveness of warehouse operations.

A. DESIGN OF CODING METHODS
The optimal solution for SBS/RS operations is achieved
through the application of GA-DF, leveraging an effective
coding method to streamline problem-solving. A com-
prehensive four-way shuttle cargo in/out operation entails
several critical components, including arranging and com-
bining inbound and outbound cargo, selecting appropriate
hoists, determining inbound cargo levels, and choosing cargo
batches for delivery by the shuttle. These elements are strate-
gically integrated and optimized within the genetic algorithm
framework to enhance operational efficiency and maximize
warehouse throughput.
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The GA-DF coding method, as illustrated in Fig. 3,
employs a structured chromosome representation to optimize
the sequence and selection of operations within the SBS/RS.
Each chromosome corresponds to a specific aspect of the
operational workflow:

• Chromosome 1: Sequence of inbound operations.
• Chromosome 2: Sequence of outbound operations.
• Chromosome 3: Selection of the cargo elevator.
• Chromosome 4: Selection of the level for inbound cargo
placement.

• Chromosome 5: Selection of the shuttle for completing
an inbound and outbound operation.

Together, these chromosomes form a complete chromo-
some that represents the solution for executing the entire
operation. The depicted workflow outlines a series of actions,
such as selecting specific shuttles, goods, and I/O ports for
inbound and outbound operations, optimizing the process to
enhance efficiency and effectiveness in the warehouse opera-
tions. Each step is orchestrated based on the encoded genetic
algorithm solution derived from the GA-DF method.

FIGURE 3. GA-DF coding method.

B. ADAPTATION FUNCTION DESIGN
In the SBS/RS operation, the objective function integrates
incoming goods urgency O, shelf stability M , in and out of
warehouse time T , and warehouse busyness R to determine
its value. Due to potential large variations in the objective
function values, normalization is applied as a preprocessing
step. The processed objective function F is defined by the
equation:

Onew =
(O− Omin)

(Omax − Omin)
(14)

Mnew =
(M −Mmin)

(Mmax −Mmin)
(15)

Tnew =
(T − Tmin)

(Tmax − Tmin)
(16)

Rnew =
(R− Rmin)

(Rmax − Rmin)
(17)

where Onew, Mnew, Tnew and Rnew is the new cost function
after normalization, Omax, Mmax, Tmax and Rmax is the max-
imum value in the iterative process, and Omin, Mmin, Tmin
and Rmin is the minimum value in the iterative process.

In this study, the fitness function F is designed such that
lower values indicate higher probability of selection for the
next generation. However, since busyness R is inversely
related, the cost value here is set as the reciprocal. The
modified fitness function F is expressed as:

F =

(
Onew +Mnew + Tnew +

1
Rnew

)
(18)

C. GA-DF GENETIC MANIPULATION
In this subsection, a GA-DF genetic operation is designed
to solve the optimization problem of a cross-aisle multilevel
shuttle system. The approach integrates several key genetic
algorithm components to enhance efficiency and conver-
gence. First, a tournament selection operator is employed to
maintain population diversity by randomly selecting multiple
groups of individuals and choosing the one with the highest
fitness function F as a candidate for the next generation.
Second, a preferential selection design is introduced to pri-
oritize urgent incoming goods, speeding up the search for
optimal solutions. An adaptive operator dynamically adjusts
crossover and mutation probabilities based on the fitness
values of the current population, optimizing exploration and
exploitation. Two-point crossover and mutation operations
are tailored to the specific chromosome coding method used
in this study, maintaining genetic diversity and exploring
potential solutions effectively. Finally, a decay factor design
facilitates multi-point mutation on chromosomes, allowing
the algorithm to escape local optima when fitness functions
remain unchanged. By integrating these genetic operations,
the efficiency and convergence of the genetic algorithm are
improved to better solve the optimization problem of the
cross-aisle multilevel shuttle system.

1) CHOOSING AN OPERATOR DESIGN
In genetic manipulation, tournament selection is employed
as a selection method in this paper. This approach involves
randomly selecting multiple groups of individuals, and from
each group, the individual with the highest fitness function F
is chosen as a candidate for parent selection or the next gener-
ation. Tournament selection helps maintain genetic diversity
by considering multiple individuals in each selection round
and prioritizing those with the best fitness for further evolu-
tionary processes.

Tournament selection involves randomly selecting indi-
viduals in each round of tournaments, allowing even
lower-fitness individuals a chance to win in some rounds
despite the presence of higher-fitness competitors. This
approach helps maintain diversity in the population by giving
all individuals a chance to contribute to the next generation.
However, there is a risk of local convergence because indi-
viduals with higher fitness are more likely to prevail in the
tournaments, potentially leading to a narrowing of genetic
diversity over successive generations. This balance between
exploration (through inclusion of lower-fitness individuals)
and exploitation (favoring higher-fitness individuals) is a
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critical aspect of genetic algorithm design to ensure effective
optimization and prevent premature convergence to subopti-
mal solutions.

To prevent local convergence, this paper employs a strategy
where individuals with the top and bottom 5% of fitness
values are directly selected into the new population, while the
remaining individuals are selected using tournaments. This
method helps maintain population diversity and mitigates
the risk of falling into local optimal solutions by ensuring
a mix of high- and low-fitness individuals in each genera-
tion. By incorporating this selective approach, the genetic
algorithm can explore a broader range of potential solutions
and avoid premature convergence to suboptimal outcomes.

2) PREFERRED DESIGN
When working with genetic algorithms, each chromosome
contains numerous genes, with each segment representing
a potential solution to the problem. However, if the chro-
mosome is excessively long, certain segments may reach
optimal solutions while the overall chromosome does not.
This scenario can hinder progress because operations like
crossover and mutation on problematic segments can disrupt
their order, delaying the emergence of an optimal solution.

To expedite the optimal solution of SBS/RS operations
using genetic algorithms, this paper implements a strategy.
Initially, the urgency degree O of incoming goods is cal-
culated to prioritize finding the optimal solution efficiently.
Once the optimal solution based on urgency O is stabilized,
subsequent segments of chromosomes are then optimized to
finalize the overall solution. This sequential approach focuses
on addressing critical aspects first to accelerate the conver-
gence towards an optimal solution for the SBS/RS operation.

The speed of finding the optimal solution can be acceler-
ated through the preferential selection method, which priori-
tizes solving the urgency of incoming goods. By addressing
this critical aspect first, the genetic algorithm gains a solid
foundation for optimizing the overall problem. This approach
enhances algorithm efficiency and reduces computation time
by focusing on key factors that significantly impact the solu-
tion quality.

3) ADAPTIVE OPERATORS
Well-configured adaptive operators for crossover and muta-
tion probabilities can enhance the convergence speed of
genetic algorithms.GA-DF incorporates the adaptive operator
described in [13], as shown in the following equation.

Pc =


k1

(
fm − f ′

)
fm − fa

, f ≥ fa

k2, f < fa

(19)

Pm =


k3

(
fm − f ′

)
fm − fa

, f ≥ fa

k4, f < fa

(20)

where k1, k2, k3, k4 are constants, fm denotes the maxi-
mum fitness value of an individual in the current population,

f ′ denotes the larger fitness value of the two individuals to
be crossed over, f a denotes the average fitness value of the
current population, f denotes the fitness value of an individual
to be mutated, Pc denotes the crossover probability, and Pm
denotes the mutation probability.

4) CROSS-MODAL DESIGN
Due to a different encoding approach compared to traditional
genetic algorithms, this study employs a two-point crossover
method with randomly selected crossover positions. Two
positions p1 and p2 are randomly chosen from parent2 with
values v1 and v2, which are then copied to the child. The
values v1 and v2 are located in parent1 and removed, with
the remaining values copied sequentially to the child. The
chromosome encompasses five distinct genetic character-
istics, each undergoing crossover operations separately for
individual genetic traits as shown in Fig. 4.

FIGURE 4. GA-DF crossover mode.

5) MUTATION APPROACH DESIGN
In chromosomal mutation routines, bitwise variation is com-
monly used for binary coding problems. However, in this
paper with a special encoding method, a two-point mutation
with permutation is employed. During this mutation opera-
tion, two random positions p1 and p2 are selected from the
parent chromosome, and their values v1 and v2 are exchanged
to produce the offspring chromosome, denoted as Child. The
chromosome comprises five gene characteristics, and the
mutation process is applied independently to each character-
istic. The method for mutating a single gene characteristic is
illustrated in Fig. 5.

FIGURE 5. GA-DF variation approach.

6) DECAY FACTOR DESIGN
Adaptive decay is a crucial method for parameter tuning
in genetic algorithms, enabling dynamic adjustment of the
decay factor’s value during runtime. This adaptive approach
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allows the algorithm to balance diversity and convergence
based on its performance, ultimately enhancing algorithm
performance.

The traditional genetic algorithm is prone to getting stuck
in local optimal solutions, and the introduction of a decay
factor can help to escape these local optima more effectively.
For a decay factor Decay ∈ [4], [6], a multi-point mutation
operation is conducted on the chromosome. The multi-point
mutation is depicted in Model 1 in Fig. 6. The number of
mutation points X is determined by the following equation:

X = 8 − Decay 4 ≤ Decay ≤ 6 (21)

where Decay denotes the decay factor, and the decay factor
begins to take effect when the fitness F remains constant for
2 consecutive generations.

When Decay ∈ [1], [3], the chromosome undergoes
Model1 and Model2 operations to facilitate a rapid escape
from local optimal solutions.

FIGURE 6. Multi-point mutation manipulation.

D. ALGORITHM FLOW DESIGN
Step 1: Generate D individuals randomly, set the total number
of iterations to C. Initialize the iteration count d for the
preferred selection section to I, the iteration count E for
the remaining section to I, and initialize the decay factor
Decay to 6.

Step 2: Calculate O using the preferred selection strategy.
Step 3: Apply adaptive operator crossover and genetic

probability. The GA-DF crossover and mutation methods are
employed to perform crossover and mutation operations on
the genetic segments of outbound goods.

Step 4: Check if three consecutive generations of O are
equal. If true, proceed to Step 5; otherwise, return to Step 2.

Step 5: Transfer the optimal solution O from the preferred
segment to the new population.

Step 6: Check if E is less than C−d . If true, proceed to
Step 7; otherwise, Otherwise, the goal is to find the optimal
solution and fitness F .

Step 7: Apply adaptive operator crossover and genetic
probability. Use GA-DF crossover and mutation to perform
crossover and mutation operations on the genes related to
inbound cargo, inbound cargo layer, hoist number, and shuttle
number segments, and calculate the fitness F .
Step 8: Check if the maximum fitness F is unchanged for

two consecutive generations. If true, proceed with Step 9.;
otherwise, return to Step 6.

Step 9: Check if Decay is in the interval [4], [6]. If true,
perform model1 mode mutation; otherwise, perform model1
and model2 mode mutation.

Step 10: Check if Decay is 1. If true, set Decay = 6;
otherwise, decrement Decay by 1. Return to Step 6.

Algorithm flow chart 7 shows.

V. SIMULATION VERIFICATION
To verify the performance of the GA-DF, the software sim-
ulation platform used in this paper is Matlab R2020a, and
the hardware specifications include an Intel(R) Core(TM)
i5-8300H CPU running at 2.30GHz with 16GB of RAM.
According to the SBS/RS (Shuttle-Based Storage and
Retrieval Systems) models referenced in literatures [9], [11],
[13], and [19], the integration of parameters like shelf config-
urations, shuttle cars, and lift machines forms a cornerstone in
designing efficient and effective storage and retrieval systems
across various industrial applications. These models are piv-
otal in modern logistics and warehouse management, aiming
to optimize space utilization, enhance operational efficiency,
and improve overall supply chain dynamics. The parameters
used in the simulation are summarized in the Table 1:
In the subsequent experiments, this paper compares the

performance of the GA-DF algorithm proposed in this study
with the Simulated Annealing Algorithm (SA), Classical
Genetic Algorithm (GA), and Improved Genetic Algorithm
(IOSA) from [20].

To enhance the comprehensiveness and robustness of the
algorithm, this paper chooses four environmental scenarios
to validate the superiority of the GA-DF algorithm. The four
scenarios include: considering only the stability of shelves,
considering only the urgency of outgoing goods, comprehen-
sive consideration of warehouse in/out times, shelf stability,
and warehouse busyness, and considering all cost functions.
In these scenarios, three order quantities (50, 250, 350) are
set for inbound and outbound goods, with goods randomly
distributed on shelves accounting for 10%, 50%, and 70%
of total warehouse locations. Due to the larger quantity
of orders (350∗350), 800 iterations are selected, while for
250∗250 orders, 500 iterations are used, and for 50∗50 orders,
200 iterations are used. Each scenario is simulated 20 times
to record average results. The efficiency improvements pre-
sented in this paper are compared with the IOSA algorithm
as described in [20]. Simulation graphs that best represent the
performance of each algorithm are selected for comparison.

Fig. 8 illustrates the scenario where goods urgently
need to be dispatched from the warehouse, focusing solely
on the urgency of outbound goods. It’s evident from
the figure that GA-DF outperforms the other three algo-
rithms across all three scales. From Table 2, it can be
observed that for 50∗50 orders, the average urgency of
outbound goods managed by GA-DF is 0.678, compared
to 0.682 for the IOSA algorithm proposed in [20], result-
ing in a 0.59% improvement in efficiency with GA-DF. For
250∗250 orders, the average urgency of outbound goods
managed by GA-DF is 0.571, while IOSA’s is 0.692,
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FIGURE 7. Flowchart of GA-DF design.

TABLE 1. SBS/RS physical model parameters.

resulting in a 17.49% efficiency improvement with GA-DF.
For 350∗350 orders, the average urgency of outbound
goods managed by GA-DF is 0.687 compared to 0.719 for
IOSA, leading to a 4.45% improvement in efficiency with
GA-DF. In summary, the improvement effect is more
significant when goods occupy 50% of the total shelf
space.

Fig.9 considers only the stability of the shelves, focus-
ing on the stability and longevity of warehouse shelving.
The figure shows that GA-DF outperforms the other three
algorithms across all three scales. According to Table 2, for
50∗50 orders, the average shelf stability managed by GA-DF
is 0.168, compared to 0.181 for the IOSA algorithm proposed
in [20], resulting in a 7.18% improvement in efficiency with
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GA-DF. For 250∗250 orders, the average shelf stability man-
aged by GA-DF is 0.261, while IOSA’s is 0.304, leading to an
14.14% efficiency improvement with GA-DF. For 350∗350
orders, the average shelf stability managed by GA-DF is
0.207 compared to 0.297 for IOSA, resulting in a 30.30%
improvement in efficiency with GA-DF. In summary, the
improvement effect is more significant when goods occupy
70% of the total shelf space.

Fig.10 considering task time, shelf stability, and warehouse
busyness, there are no urgently needed outbound goods in
this scenario. The figure illustrates that GA-DF outperforms
the other three algorithms across all three scales. According
to Table 2, for 50∗50 orders, the average multi-cost man-
aged by GA-DF is 1.212, compared to 1.553 for the IOSA
algorithm proposed in [20], resulting in a 21.96% improve-
ment in efficiency with GA-DF. For 250∗250 orders, the aver-
age multi-cost managed by GA-DF is 0.501, while IOSA’s
is 1.883, leading to a 73.39% efficiency improvement with
GA-DF. For 350∗350 orders, the average multi-cost managed
by GA-DF is 0.876 compared to 1.003 for IOSA, resulting in
a 12.66% improvement in efficiency with GA-DF. In sum-
mary, the improvement effect is more significant when goods
occupy 50% of the total shelf space.

Fig. 11 presents a comparison of overall cost algorithms.
The figure indicates that GA-DF outperforms the other
three algorithms across all three scales. In this environment,
GA-DF adopts a priority selection approach. It first conducts
genetic operations on urgency, finding the optimal solution,
and then continues genetic operations on the remaining seg-
ments of chromosomes. According to Table 2, for 50∗50
orders, the average overall cost managed by GA-DF is 1.523,
compared to 2.256 for the IOSA algorithm proposed in [20],
resulting in a 31.16% improvement in efficiency with GA-
DF. For 250∗250 orders, the average overall cost managed by
GA-DF is 1.208, while IOSA’s is 2.614, leading to a 53.79%
efficiency improvement with GA-DF. For 350∗350 orders,
the average overall cost managed by GA-DF is 1.662 com-
pared to 1.786 for IOSA, resulting in a 6.94% improvement in
efficiency with GA-DF. In summary, the improvement effect
is more significant when goods occupy 50% of the total shelf
space.

Based on the simulations and data, when comparing
order quantities, the following conclusions can be drawn:
GA-DF exhibits the best improvement at an order quantity of
250∗250, with an improvement efficiency over 10% higher
than the IOSA proposed in [20], and over 50% higher under

FIGURE 8. Comparison of algorithms at different scales with urgency as the dominant factor.

FIGURE 9. Comparison of algorithms at different scales dominated by stability.
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TABLE 2. Performance metrics for each algorithm.

various cost functions. In the case of 350∗350 orders with
multiple cost functions, GA-DF also demonstrates significant
improvement, with an efficiency increase of more than 4%
compared to IOSA. For an order quantity of 50∗50, where
urgency is the dominant cost factor, GA-DF’s improvement

is less pronounced, but it still shows an efficiency increase of
more than 20% compared to IOSA under multiple cost func-
tions. In summary, GA-DF shows significant improvements
over traditional GA, SA, and IOSA, especially when the order
quantity is large.

FIGURE 10. Comparison of algorithms at various scales emphasizing time, stability, and urgency.

FIGURE 11. Comparison of algorithms at different scales dominated by the overall cost.
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VI. CONCLUSION
This paper addresses the limitations of traditional warehouse
operations by focusing on SBS/RS. It establishes an opti-
mization model based on goods urgency, shelf stability, time
cost, and warehouse busyness for inbound and outbound
storage space. GA-DF optimizes the selection operator to
avoid local optimal solutions, adopts a preferred selection
method to expedite finding the optimal solution, and utilizes
a decay factor to facilitate escaping local optima. To assess
the effectiveness of GA-DF, this study compares it with tra-
ditional genetic algorithms, simulated annealing algorithms,
and IOSA algorithms. The results indicate that when goods
occupy 50% of the shelf space and various cost environments
are considered, the GA-DF algorithm improves efficiency by
more than 50% compared to the IOSA algorithm. In other
scenarios, the GA-DF algorithm outperforms the simulated
annealing algorithm, genetic algorithm, and IOSA algorithm
in optimizing storage and retrieval locations.

The paper indicates that the improvement efficiency of
shelf stability is lower when there are fewer incoming goods
involved in the study. Therefore, future research on GA-DF
should focus on further enhancements to enable it to find
optimal solutions effectively across diverse environments,
regardless of the quantity of incoming goods.
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