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ABSTRACT Physiological signal analysis has gained a lot of interest in recent years and has been used
in a variety of fields including emotion recognition, activity recognition, and health monitoring. However,
emotion recognition based on physiological signals is not yet explored entirely using deep learning, and
there are still some exciting challenges to be handled. For example, deep representation learning for
spatio-temporal feature extraction, the discrimination between adjacent emotions with entangled features,
and the imbalanced distribution of data are the most prominent issues in emotion recognition. This work
focuses on deep multimodal representation learning of physiological signals to alleviate the aforementioned
challenges.We introduce a novel deep learning architecture for emotion classification that effectively extracts
spatio-temporal information from physiological signals. We proposed a mutual attention mechanism to
extract emotion-specific features for improved classification. To handle the issue of adjacent emotions and
imbalanced data, we introduce a dense max-margin loss function based on Gaussian similarity measure. Our
experiments on different datasets reveal that the proposed emotion classification methodology effectively
learns a balanced deep representation of physiological signals, significantly maximizes the inter-class
margin, and reduces intra-class variance to discriminate between different classes of emotions.

INDEX TERMS Emotion recognition, deep learning, attention mechanism, imbalanced data, EEG, ECG.

I. INTRODUCTION
Intelligent systems with the adequacy of emotion estimation
have a great potential to revolutionize applications in health-
care, education, marketing, entertainment, surveillance, and
security. Similarly, emotions have a substantial impact
on human life. The recent advancements in computing
technologies and the miniaturization of physiological sensors
have made it possible to acquire various physiological
signals constantly during day-to-day activities. These signals
including electrocardiogram (ECG), electroencephalogram
(EEG), and galvanic skin response (GSR) can efficiently
capture the emotion-related information that originates from
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autonomic nervous system activity triggered by external or
internal stimuli [1]. In contrast, physical signals like facial
expressions [2], speech [3], [4] and gestures [5], [6] are
comparatively simple to acquire and have been extensively
explored for emotion recognition [7]. However, physiological
signals are more trustworthy in identifying true emotions than
facial or vocal expressions since they are involuntary and
cannot be controlled intentionally by an individual.

Although researchers made many efforts to recognize
emotions using different channels of expression, however,
physiological signals have been overlooked in emotion
recognition [8]. Literature reveals significant limitations of
the emotion recognition system that should be addressed.
For example, the performance of the emotion classification
model presented in most studies depends on a specific
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set of hand-crafted features and thus lacks generalizability.
Physiological signals demonstrate diverse morphological
features that vary over time. These temporal variations of
physiological signals are unique to each individual and
highly correlated to the mental state and nature of the
individuals [9], [10]. Similarly, the physiological signals
exhibit individual-specific temporal variations triggered by
the autonomic nervous system activation that results in
entangled features of adjacent emotions [1]. Therefore,
the excessive dependence of the classification model on
conventional feature extraction methods deteriorates its
generalizability. Moreover, for effective discrimination of
arousal and valence levels, the extraction of emotion-specific
features from physiological signals is still challenging.

Another crucial problem is the classification of adjacent
emotions. Emotions elicited in the laboratory using various
types of stimuli are still far away from those experienced
by humans in everyday life. The emotion elicited under
controlled conditions in a lab is subject to the nature and
personality of each individual [11], [12]. The acquired
physiological data of adjacent emotions results in an overlap
feature distribution with substantial iter-class and intra-
class variation and therefore deteriorates the performance
of the emotion classifier. In addition, imbalanced data
poses a significant challenge in deep learning, where class
instances exhibit a skewed distribution [13]. In such cases,
some classes, known as minority classes, are represented
sparsely, while others have abundant representation and are
designated as majority classes. Training a deep model with an
imbalanced dataset leads themodel to exhibit bias towards the
majority class and thus significantly deteriorates the model
performance to classify less frequent events from theminority
class. However, rare events are of great importance in some
real-world scenarios like surveillance, anomaly detection,
and disease diagnosis. Therefore, it is imperative to design
intelligent emotion recognition systems that can differentiate
between adjacent emotions and address the undesirable bias
introduced by imbalanced data distribution.

To alleviate the above problems, we introduce a deep mul-
timodal emotion classification system based on physiological
signals.We present a deepmultimodal system for characteriz-
ing physiological signals using convolutional neural networks
(CNN) and Long short-term memory networks (LSTM).
The proposed model also encompasses a novel mutual
attention module to learn an emotion-specific representation
of multiple physiological signals. Moreover, the proposed
method overcomes the challenge posed by the imbalanced
distribution of class samples and improves the classification
of neighboring (adjacent) emotions by enforcing a sufficient
margin between class boundaries. The three key contributions
are as follows.

• We introduce a deep multimodal representation learning
architecture to recognize emotions using physiological
signals. The proposed architecture captures crucial
variations of the signals to extract spatio-temporal
features.

• We design a mutual attention mechanism that effectively
selects the most relevant and emotion-specific content
for the target task. The proposed attention module
adaptively estimates the mutually important channels
and features to improve the classification performance.

• We propose a novel loss function using a feature-based
Gaussian similarity measure coupled with hard sample
mining strategy. This loss function is intended to
improve the classification of hard samples and overcome
the model’s bias towards the highly represented class
due to the uneven distribution of class instances.

The reminder of the paper is organized as follows.
We present a brief review of the related literature on
emotion recognition methods in section II. The proposed
multi-modal emotion recognition methodology including
dense max-margin loss function and attention mechanism is
presented in section III. Section IV includes a description
of datasets and signals preprocessing. In section V, the
experimental findings of this study are reported. The
concluding remarks of this study are given in section VI.

II. RELATED WORK
A. EMOTION MODELING
Emotion modeling is required for the description, repre-
sentation, and quantitative analysis of emotion. From the
perspective of emotion quantization, psychologists mostly
describe emotion using two basic models of emotions;
discrete emotion model and affective dimension model.
The discrete emotion model includes a set of basic and
instinctive emotions. The preliminary work on six basic
discrete emotions was undertaken by a famous psychologist
Ekman et al. [14], [15]. In addition, numerous studies
have been published on differentiating different numbers
of discrete emotions using physiological signals [16], [17].
In affective dimensional models, emotions are represented
using multi-dimensional emotion space. The Circumplex
model of affect is the most frequently used dimensional
model in affective computing [18]. This model illustrates
human emotions in terms of two parameters called arousal
and valence. These two parameters form a 2D space for
the categorization of multiple emotions as depicted in
Fig.1. Several investigative studies are also conducted on
valence-arousal plans for emotion categorization [19].

B. PREPROCESSING AND FEATURES EXTRACTION
Physiological signal processing for emotion recognition
includes preprocessing and emotion-related information
extraction. The quality of physiological signals significantly
deteriorates during acquisition due to various noises such as
motion artifacts, poor contact of wearable sensors with skin,
and electrical interference [20]. To eradicate the erroneous
information induced by these noises, bandpass filters [21],
Butterworth filters [22], and moving average filters [23], [24]
have been used in literature. R-peak is a key component in
ECG and is used in the estimation of heart rate variability
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FIGURE 1. Dimensional emotion model [10].

series. Pan and Tompkin’s algorithm is widely adopted to
detect R-peak [21]. Similarly, for EEG, various methods
have also been presented in the literature for the elimina-
tion of motion artifacts. These methods include signal-to-
noise ratio, adaptive filtering, and least-mean-square(LMS)
Algorithm [25]. The removal of eye artifacts is widely
performed via undefined source separation technique [12].
In addition, averaging EEG channels to a common reference,
downsampling, and filtering are frequently used in EEG
preprocessing [24].
For ECG-based classification of emotions, various features

in the time domain (RR, SDNN, RMSSD) and frequency
domain (HF, LF, VLF) are extracted to discriminate between
different emotions [24]. Additionally, non-linear features
(SD1, SD2) have also demonstrated their efficacy in
ECG-based emotion recognition models [26]. Similarly,
in EEG-based emotion classification, five basic frequency
bands known as delta, theta, alpha, beta, and gamma are
widely used to extract features [27]. In addition, features like
Differential entropy (DE), power spectral density (PSD), and
differential causality (DCAU) have been broadly investigated
for EEG-based emotions classification [27].

C. EMOTION RECOGNITION
Deep learning has overcome the limitations associated
with traditional machine learning methods and received
much attention due to its remarkable Physiological signals
based emotion classification methods can be categorized
broadly into two main groups; conventional methods and
deep learning methods. Emotion recognition studies based
on conventional methods exploit traditional methods of
feature extraction and classification. For instance, traditional
machine learning methods such as linear discriminant
analysis [26], [28], [29], random forest [30], and support
vector machines [16], [31], [32], [33], [34] are used to
classify different types of emotions. However, these methods
are very challenging and require great expertise to unveil
the embedded emotion-related information in physiological
signals due to subject specificity [27]. In addition, for

traditional machine learning methods to be effective, the
selection of appropriate features should be performed wisely
as performance deterioration is mainly caused by irrelevant
and redundant features [27].

The second group of emotion recognition studies uses
deep learning methods to alleviate the problems of conven-
tional machine learning algorithms. In computer vision and
natural language processing, deep learning has overcome
the limitations associated with traditional machine learning
methods and received much attention due to its remarkable
performance. For instance, hand-crafted feature extraction
and selection is considered to be the most challenging step
in pattern recognition and classification [27], [35]. However,
deep learning has not only negated the issue of hand-crafted
feature extraction but also improved the generalization capa-
bility of classification models [35]. In affective computing,
numerous multi-modal deep learning techniques have been
investigated by researchers for physiological signals-based
emotion recognition. for instance, EEG signals in addition
with GSR signals are used for emotion recognition using
convolutional neural networks (CNN) and recurrent neural
networks (RNN) [36], [37]. Similarly, ECG signals are
also used in literature in combination with GSR and EEG
signals to recognise human emotions using deep learning
models [38], [39], [40]. Lin et al. [41] also introduced a
CNN-based emotion recognition model that exploits EEG,
ECG, GSR, electrooculography (EOG) and skin temperature.
In this, the feature extracted from different modalities are
concatenated using fully connected layer. A similar study
is also carried out by Santamaria et al. [42] to classify two
levels of arousal and valence. Moreover, Grapgh Neural
Networks (GNN) are also used in literature to quantify the
interrelationship between different physiological signals for
efficient prediction of emotion state [43], [44], [45].

D. ATTENTION IN MULTIMODAL EMOTION RECOGNITION
Choosing the most appropriate and relevant channels and
features is a crucial concern in EEG-based emotion identi-
fication [27]. Many channel selection and feature selection
strategies have been suggested in the literature on this matter
[35], [46]. Nevertheless, these traditional approaches depend
on predetermined standards and hence are not applicable to
real-life scenarios.To overcome this issue, many researchers
employed attention mechanisms in deep models for effi-
cient classification of emotions. For instance, bidirectional
LSTM-RNNs embedded with attention mechanism are used
for multi-modal emotion recognition [47]. This attention
module is designed to learn most relevant temporal features.
Similarly, pre-trained transformers are also employed to
classify multi-modal emotion [48]. However, unlike, [47]
and [48], the proposed mutual attention mechanism in this
study selects the most relevant and mutually important chan-
nels and features to improve the classification performance
of deep multi-modal architecture.
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FIGURE 2. Overview of proposed multi-modal emotion recognition
system.

III. EMOTION RECOGNITION METHODOLOGY
An overview of the proposed deep multimodel emotion
classification system is given in Fig. 2. This system aims
to classify complex emotions using physiological signals
by learning a balanced and emotion-specific representation
from an imbalanced physiological dataset. We used ECG
and EEG data to classify arousal and valence levels
(high/low). The proposed deep model is responsible for
collecting spatio-temporal information by exploiting short
and long-term variations of EEG and ECG signals triggered
by emotional stimuli. We introduce an attention mechanism
for the selection of emotion-specific information and assure
the extraction of themost relevant and significant information
associated with the target emotion. In [49] attention-based
auto-encoders are presented that only focus on channels for
attention estimation. However, in this work, we introduce
a mutual attention mechanism that focuses on mutually
important content for the target emotion. In addition, we also
proposed a dense max-margin loss function that computes
affective scores at the feature level and ensures the maximum
margin between different classes and minimum variance
inside class samples.

A. DEEP MODEL ARCHITECTURE
We designed a two-branch architecture for multi-modal
emotion classification. This architecture takes EEG and ECG
signals as input to recognize different levels of arousal and
valence for human emotion identification as depicted in Fig.3.
The first branch makes use of the ECG feature extractor
to extract deep features of ECG signals. The proposed
ECG feature extractor consists of CNN layers followed by
LSTM layer. The attention module in the ECG model is
placed after the CNN layers to emphasize the intrinsic deep

features extracted by CNN layers. In CNN layers, we used
the batch normalization and dropout layer to overcome
the overfitting issue. For activation, we use the parametric
ReLu function instead of ReLu to avoid the dying ReLu
issue. To mitigate the issue of information loss, we also
use skip connections in CNN layers. This architecture aims
to learn an efficient representation learning by exploiting
short-term and long-term variations of HRV series and
thus improves classification performance with target-specific
feature extraction.

Similarly, the EEG representation learning model is used
in the second branch of the multi-modal framework. The
proposed EEG feature extractor is composed of two CNN
layers and an LSTM layer. The CNN layer is used in
combination with the batch normalization and dropout layer.
The parametric ReLu layers are employed for activation
to mitigate the dying ReLu problem. The attention module
is placed at the start of the model to select the important
and most relevant channels and features for improved
classification. The same attention module is integrated in
both branches to refine the extracted features by highlighting
the target-specific content. The extracted features from both
modalities are concatenated to perform an intermediate
fusion of the target-specific information. After concatenation,
transformation is performed via two dense neural layers to
model the extracted features for target emotion identification.

The training of all the models illustrated above is
performed using the proposed supervision strategy (dense
max-margin loss function). A series of comprehensive tests
are conducted to evaluate the effectiveness of the proposed
emotion recognition methodology. First, separate models
for EEG and ECG are trained and evaluated. Afterward,
the training and evaluation of multi-modal architecture is
performed.

B. ATTENTION LAYER
Attention mechanisms in deep learning have gained the
interest of many researchers recent years. The principle
of the attention mechanism is to emphasize task-relevant
information to assist themodel in efficient extraction. It scales
the input based on its importance. Thus the most relevant
information propagates through the model. Unlike [49], the
proposed mutual attention mechanism uses channel-wise
as well as feature-wise attention by estimating the mutual
statics of the channels and features. The key purpose of
the attention module is to determine the most suitable and
emotion-specific features while taking the importance of
the channels into account. Although the channel mean has
been used in the attention layer before; however, estimating
a mutual attention mask by exploiting the importance of
channels and features of each channel has not been explored
yet in affective computing. The proposed attention layer is
shown in Fig.4. First, an attention mask is generated and then
features are scaled based on their importance for the target
emotion. The formulation of the proposed attention layer
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FIGURE 3. Proposed multimodal emotion recognition network.

FIGURE 4. Architecture of proposed attention layer.

is given below.

Channelmean =
1
c

c∑
1

fc,s (1)

Featuremean =
1
s

s∑
1

fc,s (2)

Totalstat = Channelmean × Featuremean (3)

Vs = tanh(Totalstat ·W1 + b1) (4)

Ac,s = sigmoid(Vs ·W2 + b2) (5)

Fmasked = fc,s · Ac,s (6)

Eq. (1) shows the channel-wise mean of the input
matrix, while Eq. (2) shows the feature-wise mean. Both
channel-wise and feature-wise operations incorporate intrin-
sic information along the respective dimension. The attention
matrix (2D) is computed using Eq. (5) which assigns a
different score to each entity based on the mutual importance
of channels and their features. The attention matrix is then
multiplied with the input feature map to mask the input.

C. PROPOSED DENSE MAX-MARGIN LOSS FUNCTION
We designed a novel loss functions to accomplish two
objectives. 1) Enforcing compactness inside class clusters to
reduce the variance of class samples. 2) To induce margin
between different classes to ensure the correct classification

of minority class samples. The best way to achieve these
objectives is to measure class similarities using feature
space representation instead of class prediction. This method
provides the flexibility to manipulate feature space directly
in order to induce margin and compactness at the feature
level. Therefore, instead of using Euclidean similarity at the
class level, we used Gaussian similarity measure [50] at the
instance level that can be computed as follows.

d(fi,wj) = exp(−
∥ fi − wj ∥

2

σ
) (7)

where, σ is a weighting parameter that normalizes the dis-
tance between features and their predictive class projections.
Based on the Gaussian similarity measure, we employed
hard sample mining strategy to improve the classification of
hard samples and to address the issue of overlapped feature
distributions. First, we defined hard samples based on the
Gaussian similarity measure. A hard positive sample can be
defined as a sample xi of class c that is classified as a class c
sample with a minimum Gaussian similarity measure. A hard
negative sample can be defined as a sample xi, not from class
c but classified as a class c sample with a high Gaussian
similarity measure.We define hard positive and hard negative
samples mathematically as follows:

Pinsi = {xi|ai = c, low similarity d(fi,wj)} (8)

N ins
i = {xi|ai ̸= c, High similarity d(fi,wj)} (9)

In order to maximize the margin between different class
samples, we employed the Gaussian similarity measure [50]
along with a hard sample mining technique to alleviate
the degree of entanglement in the features associated
with different classes. Enforcing sufficient margins between
different class features can significantly alleviate the mis-
classification of the neighbor emotions and also assist
the model in classifying minority class samples correctly.
Therefore, we proposed a max-margin loss function, which
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FIGURE 5. 2D feature visualization illustrating hard negative samples. The visualization is drawn considering two
nodes at the final fully connected layer. The left figure shows the hard negative sample while the right figure shows
the impact of margin for accurate classification of hard negative samples.

FIGURE 6. 2D feature visualization illustrating hard positive sample. The visualization is drawn considering two nodes
at final fully connected layer. The left figure shows the hard positive sample while the right figure shows the impact of
variance reduction for more confident classification of hard positive samples.

is formulated as

Lmm =∥ β − d(fi,wf ) − max{d(fi,wk )} ∥
2 (10)

where β is the hyper-parameter that enforces the margin
between the two classes. In the above loss function, the
first term d(fi,wj) represents the closeness of the samples
with target classes in the feature space. The second term
max{d(fi,wk )} represents the hard negative sample of the
batch. The proposed loss function enforces the margin
between class features by taking hard negative samples into
account, as depicted in Fig.5.

A similar approach based on hard sample mining is also
adopted to reduce the features’ sparsity in intra-class samples.
This part of the loss function improves the compactness of the
deep features and thus facilitates the discrimination between
features of different neighboring classes. We formulated the
minimum variance loss function as follows.

Lmv =∥ d(fi,wf ) − min{d(fi,wj)} ∥
2 (11)

In the above loss function, the first term in the above equation
d(fi,wj) represents the anchor sample representing similarity
with the target class while the second term min{d(fi,wj)}
represents the hard positive sample. The difference in the

above equation represents the compactness of class features
as illustrated in Fig.6. The depletion of the gap illustrated by
Eq.11 induces compactness inside class features that results
in better classification. As both parts of the loss function
play their role in the classification of emotion-specific
data, therefore, we took the weighted sum of the minimum
variance and maximum margin losses. The cumulative dense
max-margin loss function is formulated as follows.

Lmvmm = 0.5 × (Lmv + Lmm) (12)

The above-mentioned weighted loss function takes both
hard positive and hard negative samples into account and thus
assures the maximization of the margin between different
classes and the minimization of the variance inside the
class. To boost the classification performance, we use
the aforementioned dense max-margin loss function with
conventional cross-entropy loss function.

IV. EXPERIMENTAL SETUP
The proposed technique for emotion recognition is evaluated
using a freely accessible AMIGOS [12] datasets. The Amigos
dataset contains ECG and 14 channels EEG recordings
of 40 participants [12]. These recordings are collected for
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16 movie clips covering four quadrants of the circumplex
model of affect. Each video clip is rated for arousal and
valence on a scale from 0 to 9. Besides these publicly
available datasets, we also acquired a new dataset under
Young Scientist Research Program (YSRP) to evaluate the
proposed methodology. Literature on affective computing
reveals that very few datasets provide quality ECG signals
for the analysis of emotion. Therefore, to mitigate this
issue, we used YSRP data for validating the proposed
models. The complete experimental setup, physiological
signal acquisition, and pre-processing steps carried out in this
study are explained in this chapter.

A. DATA ACQUISITION
The development of emotion recognition systems requires
emotion-related physiological data. However, the acquisi-
tion of real-life emotion-related data is almost impossible.
Therefore, data related to different emotions are acquired in
the laboratory using different types of stimuli. These stimuli
include pictures, audio clips, and video clips. However, it has
been demonstrated that emotion elicitation using videos is
comparatively better than audio and pictures. Therefore, for
emotion elicitation, we collected 36 video clips that have been
used in the DECAF [51] database. Out of the 36 movies
available, We chose 20 movie scenes. Each of the four
classes(high arousal, low arousal, high valence, low valence)
is represented by five videos to cover all the quadrants of the
two-dimensional circumplex model [18]. We presented these
video clips to each subject using PsychoPy. We also designed
an experiment for the collection of video clip ratings using
the same PsychoPy program. The rating of each video clip
for arousal and valence is recorded on a scale from 0 to 9.

We recorded Electroencephalogram (EEG) and Electro-
cardiogram (ECG) signals that have been used significantly
for emotion recognition [9], [10], [26]. These signals
are recorded from 25 students (25-34 years). For signal
acquisition, we used the Mind Media Nexus-10 device.
As EEG signals are considered to be the most suitable
indicators for emotion recognition [24], therefore, we used
two disc electrodes on the frontal lobe and significantly
recorded two-channel (right frontal lobe and left frontal lobe)
EEG data. We recorded ECG by adopting a wrist placement
strategy.

B. PHYSIOLOGICAL SIGNAL PROCESSING
ECGPre-processing: The quality of ECG signal significantly
deteriorates because of motion artifacts and power line
interference during recording. These noises suppress the
emotion-specific information and result in poor classification
performance. To eliminate these undesirable noises from
ECG signals, we adopted a filter-based method [24]. In this
method, first, a median filter with a sliding window of 200ms
is applied. Following that, a second median filter with a
600ms window is used. The first filter eliminates the P
peak and QRS segment while the second filter removes the

T peak from the ECG waveform and produces a baseline
signal. This baseline is subtracted from the original signal
to remove baseline drift. Additionally, a low pass filter is
utilized, with a 35Hz cut-off frequency, to alleviate high-
frequency disruption caused by power lines.
EEG Pre-processing: EEG signals are heavily distorted
by motion artifacts, electrooculogram artifacts, and power
supply noise during acquisition. These noises also suppress
the emotion-related content of the signals. Therefore pre-
processing is performed before feature extraction. First, the
eye blink distortions are eliminated through the undefined
source separation approach. Afterward, the high-frequency
noises are removed by utilizing a bandpass filter (1-45Hz)
that filters out all the unwanted noises. Each EEG channel is
further decomposed into five frequency bands, namely delta
(0-4HZ), theta (4-8Hz), alpha (8-12Hz), beta (12-30Hz),
and gamma (30+Hz) [35], [52]. These frequency bands
carry vital information about emotions triggered by external
stimuli.

C. INPUT DATA STRUCTURE
Differential entropy has shown significant performance in
emotion recognition using EEG in recent literatures [49]
and [53]. Therefore, for each EEG band, we computed the
differential entropy. First, the EEG signal from all channels
is decomposed into different frequency bands, namely theta,
alpha, beta, and gamma [35], [52]. Afterward, for each of
these bands in all channels, we computed differential entropy
as follows:

f (x) =

∫
∞

−∞

1
√
2πσ 2

exp
(x − µ)2

2πσ 2 log
1

√
2πσ 2

(13)

exp
(x − µ)2

2πσ 2 =
1
2
log 2πeσ 2 (14)

For ECG signals, after the detection of R peak, we compute
heart rate variability series. Prior to the heart rate variability
series the ECG signal are normalized. To get equal-length
segments of HRV series, we use the zero embedding
technique. We append zero at the end of each sample in such
a way that the length of all segments remains the same.

After preprocessing, all three datasets exhibit an imbal-
anced distribution of samples across different classes. The
separate arousal and valence models are trained to classify
two classes (High/low). Furthermore, we adopted a 10-fold
cross-validation approach in all tests to investigate the
efficacy of the method proposed in this study. First, the
dataset is split into 10 folds. The training is carried out with
nine folds, while the held-out fold is used for testing. A total
of ten trials are performed, and every time a new fold is used
as a test set. The final results are acquired by averaging the
results of ten trials.

V. RESULTS AND DISCUSSION
This section presents the experimental results of our proposed
emotion classification methodology. First, we trained and
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evaluated the unimodal architectures of ECG and EEG
separately. These experiments are performed to assess the
effectiveness of architecture and supervision strategies for a
single model based on ECG or EEG data. Second, we trained
a multi-modal network using both ECG and EEG data. The
experimental findings illustrate that the proposed model can
effectively extract deep temporal and spatial patterns that are
relevant to the target emotion.

A. ECG BASE CLASSIFICATION
To evaluate the ECG-based emotion classification model,
we used ECG recordings from AMIGOS [12] dataset.
We empirically selected a segment size of 100 samples of
the HRV series as the input array. The 1D input array with
100 samples of HRV demonstrates optimal classification
performance for ECG-based emotion classification. The clas-
sification is performed for two classes (high/low) of arousal
and valence. We use L2 regularization along with dropout
to address the overfitting in a better way. We maintained a
weightage of 0.5 for the dense max-margin loss function.
After extensive experimentation with various batch sizes,
we choose an optimal batch size of 32 samples.

First, we train a baseline model to investigate the
effectiveness of the mutual attention module and dense
max-margin loss function. The baseline model has the same
architecture illustrated in Section III-A but without a mutual
attention module. Similarly, for baseline model training, only
conventional cross-entropy loss function is adopted. The
baseline model achieved 69% and 71% accuracy for arousal
and valence levels, respectively. Subsequently, a second
variant of ECG model is also trained by including a mutual
attention module. For this configuration of ECG model,
the arousal and valance accuracies improved by 3.45% and
6.7%, respectively. These findings depict the significance and
efficacy of the attention layer that ensures the selection of
suitable and emotion-specific features. Afterward, the third
variant of ECG model with a mutual attention module and
dense max-margin loss function is trained. Table 1 presents
the performance of all three variants of the ECG model.
These experiments elucidate that the dense max-margin
loss function in addition to the mutual attention module
significantly enhances the performance of the classifier and
achieves 78.55% accuracy for Arousal and 82.35% accuracy
for valence.

B. EEG BASED CLASSIFICATION
To evaluate EEG-based emotion recognition model, we use
14 channels EEG data from the AMIGOS dataset [12].
We use one-second long segments of four different frequency
bands of EEG data, a similar approach as adopted in [24].
The differential entropy for each band in each channel is
computed and a tensor with a dimension of 32 × 4 is
used as model input. The proposed model with an input
tensor of size 32 × 4 can significantly characterize the
interrelation between different EEG channels. The reverse
is also possible. In other words, the model can also learn

TABLE 1. Classification performance of ECG-based model on AMIGOS
dataset.

TABLE 2. Classification performance of EEG-based model on AMIGOS
dataset.

and determine the correlation between different frequency
bands as well if the input with a shape 4 × 32 is used
as input to the model. The mutual attention module masks
the input by assigning learned weights to each channel
and its features. Unlike [49], the proposed attention layer
learns mutual attention using channels mean and features
mean and thus assures that suitable and emotion-specific
information propagates forward in the model for better
feature representation learning. We use L2 regularization
along with dropout to address the overfitting. For the
dense max-margin loss function, we kept the 0.5 weightage.
We used a batch size of 128 for training EEG-based model.

We also trained three variants of EEG based emotion
classification model. First, we train a baseline model without
a mutual attention layer using conventional cross-entropy
loss function and achieve 68.34% and 67.68% accuracy for
arousal and valence, respectively. Second, to examine the
impact of the attention module, the baseline model integrated
with the mutual attention module is trained using the
cross-entropy loss function. For this second configuration of
EEG model, we get 72.23% accuracy for arousal and 75.36%
accuracy for valence. This improvement in classification
performance illustrates that the proposed attention module
also significantly emphasizes the emotion-related content
in EEG features. In the last, we train and evaluate the
proposed EEG model with a mutual attention mechanism
using a dense max-margin loss function. Table 2 illustrates
the performance of three variants of the EEG model.
The proposed methodology achieves 86.26% and 84.40%
accuracy for arousal and valence, respectively. These findings
elucidate the effectiveness of themutual attentionmodule and
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TABLE 3. Multi-modal classification performance on AMIGOS dataset.

dense max-margin loss function for imbalanced EEG data
classification.

C. MULTI-MODAL EMOTION CLASSIFICATION
Themulti-modal network takes both EEG and ECG segments
that share the exact time span to classify emotions. Therefore,
we use 10-second long synchronized segments of EEG and
ECG data. We extract the HRV series with zero padding
from ECG segments. Similarly, for EEG, the differential
entropy features are computed from the 10-second segment of
EEG in each frequency band. The evaluation of multi-modal
emotion classification is performed on AMIGOS [12] and
YSRP dataset. Table 3 displays the potential of the proposed
method to differentiate entangled and unevenly distributed
features of arousal and valence classes. These findings
demonstrate the significance of the proposed approach in
distinguishing between complex emotions. First, the deep
architecture assisted by themutual attentionmodule performs
a key role in learning suitable and emotion-specific deep
representation. Afterward, the max-margin loss function
enforces the required margin between class boundaries.
We also evaluated three different variants of multi-modal
system for emotion recognition. Table 3 demonstrates the
classification performance of the three different config-
urations of the multi-modal emotion recognition system.
These results indicate that The proposed mutual attention
mechanism and dense max-margin loss function outperform
the conventional supervision method and achieve better
classification performance with imbalanced data.

Table 4 illustrates the potential of the proposed emo-
tion classification methodology to classify emotions using
different datasets. Moreover, the imbalanced ratio (IR) of
different datasets for two classes of arousal and valance is
also given in Table 4. The deep model incorporated with a
mutual attention module supervised by a dense max-margin
loss function significantly elevates the classifier’s confidence
in discriminating complex emotions. These results also
demonstrate that the proposed supervision strategy efficiently
alleviates the impact of imbalanced data distribution on
deep representation learning. The multi-modal classification
results of YSRP dataset exhibit lower classification accuracy
in comparison to the accuracy score achieved by the model
on AMIGOS dataset. This reduction in classification score is
due to the decrease in number of samples caused by lower

FIGURE 7. Attention visualization of EEG model.

number of participants. For segmentation, a window size of
10 seconds is used for both EEG and ECG data which reduces
the total number of samples for training.

D. IMPACT OF ATTENTION MECHANISM
To interpret the impact of the proposed attention mechanism
and dense max-margin loss function, we considered EEG
signals for further investigation for the following reasons.
First, EEG is the most suitable and optimal signal to inspect
the autonomic nervous system’s activation triggered by any
external or internal stimulus [7], [54]. Second, EEG has been
widely investigated for emotion and therefore, the findings of
this study can easily be corroborated with other theoretical
studies. Third, in comparison to ECG, EEG model with
2D input (channels x frequency bands) is the most suitable
candidate to evaluate the impact of the mutual attention
mechanism.

The proposed mutual attention mechanism is designed
to learn and determine both the efficient channels and
the corresponding frequency bands in EEG that contribute
to emotion recognition. It generates a mutual statistical
matrix based on the importance of EEG channels and
associated bands for a target emotion. During computation,
both channel-wise and feature-wise mean are considered to
incorporate both axes (channels and bands) to learn a mutual
mask for the input tensor. We examine the attention mask
learned by the EEG model for two levels of arousal and
valence. The acquired attention maps of the EEG model are
given in Fig.7. It shows clearly that the attention mechanism
does not treat all the channels uniformly but rather allocates
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TABLE 4. Classification performance on different datasets.

FIGURE 8. Topographic maps for attention visualization of EEG model.

relative significance by assigning special weights to each
EEG channel. Similarly, different importance score is also
given to each band of EEG based on their contribution
to the target task. The arousal and valance classes show
clear discrimination between the selection of channels and
features for processing through the model. This approach
of emphasizing the most appropriate and emotion-specific
features leads the model to produce remarkable results.

The improvement in classification accuracy acquired with
the integration of the mutual attention module implies that the
relative significance score assigned by the attention module
corresponds to the autonomic nervous system’s activation.
Moreover, the attention mask is additionally associated
with a considerable increase or decrease in EEG power
for the target task. Numerous studies have investigated the
correlation between EEG (bands) and emotions [24], [35],
[37], [54]. For instance, an upsurge of power in low-frequency
bands such as theta and alpha is inked with an elevation
in valence level [24]. Similarly, an increase in activation
of the left temporal lobe corresponds to sadness while a
heightened activity in the right temporal lobe is associated
with happiness [24]. In addition, an emotion lateralization
hypothesis also suggests that the center for positive emotions
exists in the left part of the brain while the negative feelings
are processed in the right part of the brain. Fig.8 shows the
topographic maps for attention and substantiates previous
findings in the literature. The discrimination between various
bands in two classes of arousal and valence significantly
justify that these findings corroborate previous theories [24],

FIGURE 9. Feature visualization of arousal and valence models.

[35], [37], [54] of emotion lateralization and can be seen
clearly by the attention masks depicted in Fig.8.

E. IMPACT OF DENSE MAX-MARGIN LOSS FUNCTION
The proposed dense max-margin loss function aims to
enhance the classifier’s confidence to accurately classify
adjacent and hard entangled samples of different emotions.
Fig.9 shows feature visualization of arousal and valence. For
the arousal and valence models, the significant impact of the
proposed dens max-margin loss function can be observed
by visualizing the feature space. At the start of training,
the samples from different levels of arousal and valence
yield an overlap and uneven feature distribution. However,
the supervision of the model under dense max-margin
loss function efficiently discriminates class clusters with a
significant margin after 300 epochs. A clear depiction of
margin induction and variance reduction can be seen in Fig.9.

In our view, the classification performance and visualiza-
tion illustration emphasize the validity of the proposed dense
max-margin loss function. These results offer compelling
evidence to endorse the implications of three things in the
proposed loss function. First, the reduction in variance inside
the class cluster. Second, the induction of discrimination
margin between classes, and third, the incorporation of
a hard mining strategy. These three factors collectively
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FIGURE 10. Comparison between cross entropy and dense max-margin loss function.

TABLE 5. Performance comparison.

contribute to yielding overwhelming results. Similarly, the
incorporation of a hard sampling mining strategy also boosts
classification performance. The adjacent emotions induced
by external stimuli are responsible for yielding hard negative
samples. Moreover, the imbalanced distribution of data
among different classes also contributes to hard negative
samples. However, the classification results reinforce the
usefulness of assimilating the hard mining strategy into a loss
function that alleviates the issue of adjacent emotions and
imbalanced data distribution.

Similarly, keeping the imbalance ratio (as shown in
Table able 4) into consideration, the proposed loss function
learned an efficient representation of ECG and EEG for
two-class classification of arousal and valence as compared
to the conventional cross-entropy loss function. Fig.10 illus-
trates the performance comparison between cross entropy and
dense max-margin loss function. Unlike the cross entropy
function, our proposed loss function mitigates the issue of
adjacent emotions and imbalanced data by providing the
flexibility to induce margin and reduce cluster variance at the
feature level.

F. PERFORMANCE COMPARISON
This section presents a comparison between the experimental
outcomes of the proposed emotion recognition methodology

and the most relevant studies. For a fair comparison on the
same basis, we chose the studies that reported multimodal
results and employed AMIGOS database for model training
and evaluation. Table 5 gives the summary of the most
relevant studies. A most relevant study that addressed the
issue of a discriminative margin between adjacent emotions
by introducing the temporal margin loss function [37]
achieved 79.03% accuracy for arousal and 78.72% accuracy
for valence on DEAP dataset [24]. Although in [37], the
experiments are performed on a different datasets, however,
we compare this study based on its relevance. Unlike [37],
our proposed loss function operates at the feature level to
induce margin and mitigate the adverse impacts of skewed
data distribution on classification performance. Similarly,
the proposed method also outperforms the most recently
published methods that exploit graph neural networks for
emotion classification [43], [44], [45].

Moreover, the bidirectional LSTM-RNNs embedded with
attention mechanism are used for multi-modal emotion
recognition in [47]. However, the proposed mutual atten-
tion mechanism achieved high classification performance
in comparison to [47] due to the fact that the mutual
attention module significantly selects the mutually important
information on the channel as well as on the feature axis.
Similarly, the the proposed model with mutual attention also
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outperforms the pre-trained transformers embedded model
for the classification of emotion. In comparison to the relevant
studies mention in Table 5, our proposed methodology
demonstrated better classification performance.

G. CHALLENGES AND LIMITATIONS
In this study, the most challenging step is the efficient
optimization of the model. The proposed model include
LSTM layers that are prone to overfitting, especially on
smaller datasets, and are sensitive to the configuration of
hyperparameters. Finding the right set of hyperparameters
can be time-consuming and requires extensive experimen-
tation. Additionally, during the deep representation learning
of physiological signals, the model may easily encounter
vanishing gradient problem. Therefore considerable attention
is needed to be paid during training.

VI. CONCLUSION
This research aims to develop a physiological signal-based
emotion recognition systemwith a principle focus on learning
an efficient deep representation for classifying complex
emotions using imbalanced data. For spatio-temporal feature
extraction, a deep architecture with a mutual attention
module is designed that grabs the short and long-term
variations of physiological signals and focuses on the most
relevant features of the target class. Additionally, for efficient
discrimination of adjacent emotions with imbalanced data,
this study introduces a novel dens max-margin loss function
that minimizes intra-class variance and maximizes inter-class
margin for efficient classification.

The results of this study significantly substantiate the
efficacy of the proposed emotion recognition method. The
impact of the mutual attention module is considerably high
which determines the relative importance of channel and
channel-related features of EEG and ECG signals for a
particular target. In addition, the maximum margin and
minimum variance approach based on Gaussian similarity
measure significantly improves the classification of adjacent
emotions with entangled and unevenly distributed features in
emotion recognition. Future work should concentrate on data
scalability issues and integrating multiple channels of affect
(facial, speech, and postures) for emotion analysis to further
improve classification performance.
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