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ABSTRACT Ensuring the stability of cable tunnels is crucial for power safety and urban reliability in light of
the increasing demand for urban electricity. However, frequent waterlogging incidents within tunnels pose a
significant threat to city safety by disrupting the power supply. Current methods have proven insufficient
in timely and effective water detection within cable tunnels. While visual methods show promise, the
complexity of cable tunnel environments degrades image quality under low-light conditions, intensifying
the challenge of detection. To address these issues, this study proposes a novel hierarchical approach for
waterlogging detection. The approach decomposes the problem into three subproblems: low-light image
enhancement, image segmentation, and detection. Firstly, low-light image enhancement techniques are
employed to improve image quality and enrich details for subsequent analysis. Next, image segmentation
accurately delineates waterlogged road areas while mitigating interference from complex backgrounds.
Finally, Faster R-CNN with ResNet as its backbone and integrated attention mechanisms enhances the
model’s capacity to identify essential features amidst complex backgrounds, significantly improving
accuracy in detecting waterlogged areas. Experimental results demonstrate our method’s superiority in
accuracy and robustness for tunnel waterlogging detection tasks compared to traditional approaches. This
proposed approach provides effective technical support for cable tunnel safety monitoring, contributing to
ensuring urban power safety and reliability in the face of waterlogging challenges.

INDEX TERMS Waterlogging detection, low-light image enhancement, image segmentation, cable tunnels.

I. INTRODUCTION
Power cables are a critical component of the power
distribution system, typically laid in underground tunnels,
providing a safe environment for the city’s power systems.
However, cables in underground tunnels face significant
operational risks [1]. Some tunnels are shallow or have
high groundwater levels, leading to poor waterproofing
capabilities [2], [3]. Prolonged water accumulation can also
erode tunnel linings, damage concrete structures, and even
corrode cable insulation, affecting the normal operation of
power systems. Waterlogging is where excessive amounts
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of water accumulate in an area. In urban areas and
infrastructure such as tunnels, water accumulation can disrupt
normal operations, cause structural damage, and pose safety
hazards.

At present, there are mainly six methods for tunnel
waterlogging detection: (1) using infrared thermal imaging
technology to detect tunnel waterlogging [4], (2) using
ultrasonic technology to detect tunnel waterlogging [5],
(3) using lidar system [6], (4) using capacitive sensors [7],
(5) using vision sensors with machine learning and artificial
intelligence algorithms [8], and (6) combining multiple
sensor networks [9], [10]. Since vision sensors have been
widely used in cable tunnels, this paper will study the (5)
direction mentioned above. In this paper, the object detection
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method in computer vision is used to solve the problem of
waterlogging identification in cable tunnels.

Traditional object detection methods [11], [12], [13], [14],
[15], [16] in tunnel environments struggle with issues such
as low light conditions, high background complexity, and the
long-tail distribution of waterlogging data. Firstly, low light
conditions and uneven lighting distribution within tunnels
seriously deteriorate image quality [17], thereby affecting
the accuracy of object detection algorithms. Secondly, the
complexity of cable tunnel environments [18] with elements
like cable conduits, maintenance equipment, and drainage
ditches can obscure targets, increasing false positives or
misses. For instance, the reflection from cable lines is
frequently misidentified as waterlogging in water detection.
Furthermore, the position and distance of surveillance
cameras often result in waterlogged areas occupying only
a minor portion of the image, which poses a significant
challenge in detecting smaller targets. In addition, the
variable conditions of tunnel environments, influenced by
maintenance personnel activities, introduce further complex-
ity to object detection efforts. Lastly, the training of object
detection models faces significant challenges due to sample
imbalance [19], characterized by a scarcity of waterlogged
instances compared to non-waterlogged ones. This imbalance
adversely impacts the model’s ability to generalize and
accurately identify waterlogged areas. Therefore, in such a
specific environment as tunnels, traditional object detection
methods need adjustments and optimizations to ensure the
accuracy and reliability of detection.

To address the issues in waterlogging detection in cable
tunnels, we propose a three-stage processing workflow aimed
at enhancing the accuracy and robustness of detection. In the
first stage, we enhance the low-light images from within the
tunnel to recover rich image information, thereby improving
the performance of subsequent tasks. Next, in the second
stage, image segmentation is used to accurately delineate
the road areas within the cable tunnel, effectively mini-
mizing background interference from other fixed structures
within the tunnel. Finally, in the third stage, waterlogging
detection is carried out on the segmented road areas.
In the waterlogging detection, we incorporate regularization
and attention mechanisms into the Faster R-CNN, which
effectively mitigates model bias and enhances the recognition
of fine-grained features, significantly improving the model’s
generalizability and robustness across various scenarios.

Our contributions can be summarized as:
• We introduce a three-stage detection method focusing
on image segmentation to precisely identify water-
logged areas in cable tunnels, improving accuracy and
robustness.

• Our improved Faster R-CNN model integrates attention
modules and label smoothing, significantly improving
feature recognition and model stability.

• Experiments confirm our method outperforms tradi-
tional detection techniques in waterlogging detection,
proving its effectiveness and practicality.

II. RELATED WORK
A. OBJECT DETECTION
With the advancement of deep learning, modern object
detection methodologies increasingly rely on techniques
such as proposals [11], [20], anchors [13], [14], and
points [15], [16], [21] for accurate box regression and
category classification, based on empirical data priors. The
introduction of Faster R-CNN [11] marked a significant leap,
merging candidate area proposals and object detection into a
unified framework via the Region Proposal Network (RPN),
thereby substantially improving detection precision and
speed. The evolution of single-stage detectors, represented
by the YOLO series [13] and SSD [22], facilitated real-time
object detection by directly predicting object categories
and locations, although they generally lag behind two-stage
methods in accuracy.

The success of Transformers in natural language process-
ing, attributed to their attention mechanism, has sparked
interest in their application within the computer vision
domain. DETR [23] pioneered the application of Transform-
ers in object detection by discarding the conventional anchor
and proposal mechanisms and proposing an end-to-end
detection strategy. This approach highlighted Transformers’
potential in complex scene object detection, inspiring further
developments [24], [25], [26] such as Deformable DETR [26]
and TSP-R-CNN [27], which have enhanced detection
capabilities and efficiency beyond the foundational work
of DETR. In this work, we study the problem in the task
of waterlogging detection in cable tunnels and present our
method.

B. LOW-LIGHT IMAGE ENHANCEMENT
In recent years, deep learning-based methods for enhancing
low-light images have seen notable advancements, primarily
through supervised learning approaches to map low-light
to normally-exposed images [28], [29], [30]. LLNet, for
example, utilizes an autoencoder to enhance visibility in low-
light conditions [31]. Studies have also employed multi-scale
features to grasp global content and salient structures more
effectively [32], [33], [34], while Retinex remains influential
in guiding the decomposition of images into reflection and
illumination maps [35], [36], [37]. Additionally, unfolding-
based methods have focused on refining low-light enhance-
ment priors [38], [39]. Beyond enhancements in sRGB space,
the exploration of image space has led to a focus on realistic
noise modeling to bridge the domain gap in synthetic training
data, with the Poisson-Gaussianmodel playing a foundational
role [40], [41], [42].

C. IMAGE SEGMENTATION
Image segmentation is a core task in computer vision that
aims to divide images into regions representing different
instances or categories. This task traditionally splits into three
subfields: semantic segmentation, instance segmentation,
and panoptic segmentation. In semantic segmentation, early
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FIGURE 1. Overview of our framework.

methods used CNNs for pixel-level classification [43],
[44], [45]. The success of transformers in language and
visual tasks [23], [46] led to their adoption in semantic
segmentation with great results [47], [48], [49]. For example,
MaskFormer [50] approaches semantic segmentation as
a mask classification problem. Instance segmentation has
traditionally been seen as a mask classification problem too,
where each instance gets a unique mask and category [51],
[52], [53]. Panoptic segmentation [54] aims to unify semantic
and instance segmentation. Early models like Panoptic-
FPN [55] used separate branches for different tasks. Later
research improved performance using transformer archi-
tectures [56], [57], [58]. Despite these advances, panoptic
segmentation models have not fully reached their unification
potential.

D. TUNNEL WATERLOGGING DETECTION
Traditional image processing techniques were among the
first to be used for vision-based waterlogging detection. For
example, an edge detection-based method uses the Canny
edge detection algorithm to extract edge information and
morphological operations to isolate waterlogged areas [59].
As the field progressed, machine learning methods began to
be applied to tunnel waterlogging detection due to their ability
to learn from data and make predictions. Reference [60] uses
mask-RCNN to improve the accuracy of water identification.
References [61], [62], [63], and [64] further improve the
detection result. However, most of the previous studies on
tunnel water detection focused on conventional tunnels such
as subway tunnels. They did not study cable tunnels, let
alone put forward solutions to the complex background of
cable tunnels. This is the problem that this paper wants to
solve.

III. METHODS
Waterlogging detection in cable tunnel environments poses
significant challenges due to low light conditions, reflective
surfaces in the surroundings, and dynamic changes within

the scene. These factors complicate the task of distinguishing
between waterlogged and dry areas, particularly when
faced with varying water depths and the potential for
the tunnel’s complex infrastructure to visually merge with
water reflections. To address these challenges, this study
introduces a three-stage processing pipeline that begins with
low-light image enhancement and is followed bywaterlogged
road segmentation before the detection stage. This strategy
improves detection accuracy and robustness by dividing the
complex problem into several sub-tasks and addressing the
specific difficulties of each sub-task. Figure 1 shows
the overview of our framework.

A. LOW-LIGHT IMAGE ENHANCEMENT
In environments like cable tunnels, image detection faces
challenges like limited dynamic range and increased noise
from high ISO settings, which impair algorithm performance.
Additionally, obtaining paired images for training under
variable lighting is often unfeasible. To address these issues,
we introduce EnlightenGAN, an unsupervised method using
generative adversarial networks for low-light enhancement
without needing paired images. In this way, we can improve
image quality and detail naturalness, which effectively helps
us in the following segmentation and detection.

EnlightenGAN combines an attention-guided U-Net with
a bi-discriminator mechanism for texture and structure
enhancement, effectively bridging the gap between low and
normal lighting conditions. To tackle spatial illumination
variations, EnlightenGAN employs a novel global-local
discriminator framework, which enhances adaptability by
evaluating both overall and localized image patches. This
ensures a balanced enhancement across images, avoiding
local overexposure or underexposure.

In addition, for the global discriminator, the relativistic
discriminator structure is utilized to estimate the probability
that the real data is more realistic than the fake data and to
guide the generator to synthesize a fake image that is more
realistic than the real data. The function of the relativistic
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FIGURE 2. The overall architecture of EnlightenGAN.

discriminator is:
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where C is the discriminator network, xr and xf are sampled
from the real and false distributions, respectively, and
σ denotes the sigmoid function. It made a slight modification
to the relativistic discriminator by replacing the sigmoid
function with a least squares GAN (LSGAN) loss. Finally, the
loss functions of the global discriminator D and generator G
are:
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For the local discriminator, the original LSGAN loss is used
as the adversarial loss by learning local patches randomly
cropped from the output and the real image. This design
enables the model to better simulate image features under
normal illumination at both the global and local levels. The
LSGAN as adversarial loss is as follows:

LLocalD = Exr∼Preal−patches
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B. WATERLOGGED ROAD SEGMENTATION
Following the initial low-light enhancement stage, we intro-
duced a YOLOv8-based image segmentation module
dedicated to processing enhanced images for accurately
segmenting potential waterlogged areas on the road surface.
Image segmentation for waterlogging effectively isolates
complex backgrounds in the image, thereby reducing
interference from non-target areas on the accuracy of

waterlogging detection. Thanks to the enhancement of
EnlightenGAN under low-light conditions, the overall quality
of the images has been significantly improved, including
brightness, contrast, and clarity of details, which considerably
simplifies the difficulty of image segmentation and enhances
the precision of segmentation.

YOLOv8 introduces an anchor-free detection mechanism
and an improved feature pyramid network, innovations
that provide higher efficiency and accuracy when handling
complex scenes like those found in cable tunnels. Addition-
ally, YOLOv8 utilizes the CSPDarknet-53 as its backbone,
optimizing gradient flow with the Cross Stage Partial (CSP)
structure, and further improving model segmentation and
detection performance with the Fast Spatial Pyramid Pooling
(SPPF) structure and a decoupled head strategy. These
technical features make YOLOv8 consistently demonstrate
strong performance in segmentation tasks. Therefore, it is an
ideal choice for us to segment images of road areas in cable
tunnels. In this paper, the pre-training model of YOLOv8n-
seg is used for training and reasoning.

C. WATERLOGGING DETECTION
After segmenting the cable road to remove distractions like
pipelines and lighting, we utilize our improved Faster R-CNN
for waterlogging detection in cable tunnels. Faster R-CNN,
being a two-stage detection method, offers superior accuracy
over one-stage networks, effectively addressing multi-scale
and small object detection challenges. Its incorporation of a
Region Proposal Network (RPN) ensures precise detection
performance, making it ideal for accurately identifying water
accumulation. Enhanced with our proposed global residual
attention module(GRAM) within its ResNet50 backbone,
our improved Faster R-CNN adaptation improves feature
extraction and recognition capabilities. The framework of our
improved Faster R-CNN is shown in Figure 3.
The original Faster R-CNN combines deep feature extrac-

tion, region proposal generation, and consistent proposal
sizing via the Region of Interest (ROI) Pooling, followed
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FIGURE 3. The overall architecture of our waterlogging detection.

by classification and bounding box regression in a unified
framework. This process begins with deep feature extraction
from the input image, followed by the generation of
region proposals by the RPN. These proposals are then
standardized through ROI Pooling, allowing for accurate
object localization and classification in the final detection
stages.

1) RESNET BACKBONE
In the traditional Faster R-CNN, VGG16 [65] is often
used as the feature extraction network. However, with
the increase in network depth, VGG16 faces issues such
as increased training difficulty, vanishing gradients, and
decreased gradient correlation. In contrast, the deep residual
network ResNet50, with its strong feature representation
capability, has become a more optimal choice. ResNet50
introduces residual connections, which not only reduce the
model’s parameter count and computational burden but
also effectively prevent information loss and gradient issues
during the training of deep networks. These characteristics
make ResNet50 highly suitable for object detection tasks
that require high real-time performance and accuracy. In this
paper, ResNet50 uses FrozenBatchNorm2d to save the
training scale.

2) CHANNEL AND SPATIAL ATTENTION MECHANISM
To further enhance the performance of Faster R-CNN in
complex scenarios such as waterlogging detection at the
bottom of cable tunnels, we propose a global residual
attention module(GRAM) based on the Convolutional Block
Attention Module (CBAM) [66] and integrates GRAM on
top of ResNet50. CBAM significantly improves the ability
of network on important image features by introducing
Channel Attention Module(CAM) and Spatial Attention
Module(SAM). The channel attention mechanism assigns
different importance weights to each channel of the feature
map, while the spatial attention mechanism highlights the
features at the target location in the image. This integration
enhances the capacity of model for precise identification
and localization of targets within images. Building upon
CBAM, GRAM introduces redesigned channel attention and
spatial attention submodules. It achieves improved attention
effectiveness by reorganizing features to preserve the image’s
dimensional information and leveraging convolutional layers
for spatial information fusion. Notably, GRAM assigns

adequate weight to small object features within the image,
enhancing its attention capabilities.

The channel attention submodule first applies batch
normalization to emphasize prominent features, followed by
a rearrangement operation to maintain the integrity of the
three-dimensional information. Then, a two-layer multilayer
perceptron is used to enhance the dependency between the
channel and spatial dimensions, as shown in Figure 4. The
process can be described by the following formula:

F1 = Wγ (BN (F1)) , (7)

F2 = MLP (p (F1)) , (8)

F3 = sigmoid (p (F2)) , (9)

where Wγ represents the scaling factors for each channel,
F1 andF3 represent the input and output featuremaps, respec-
tively, p and p represent the three-dimensional rearrangement
operations performed on the feature maps. Specifically, if the
dimension of the input feature map is C × W × H , then
the p operation changes the dimension of the feature map to
W × H × C , while the p operation restores it to the original
C ×W × H dimension.

FIGURE 4. Convolutional block attention module diagram.

FIGURE 5. Channel attention module(CAM) diagram.

Within the CAM, as shown in Figure 5, the MLP is
characterized by a two-layer architecture that employs the
ReLU function for its activationmechanism. After processing
by the first layer of the perceptron, the number of channels
in the feature map is reduced to C/R, where R is the
channel compression ratio. After processing by the second
layer, the number of channels increases according to the
channel expansion ratio, and in this module, the channel
compression ratio and channel expansion ratio are kept
consistent, so the final number of channels in the feature
map remains unchanged. Moreover, BN represents batch
normalization, a preprocessing step for the input feature map
aimed at improving the stability and efficiency of model
training. The specific formula is as follows:

BN (F) = γ
F − µ

√
σ 2 + ε

+ β, (10)
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FIGURE 6. Spatial attention module(SAM).

where µ and σ represent the mean and standard deviation of
the batch data, respectively, γ and β are trainable scaling and
shifting parameters.

Compared to the original CBAM, to preserve rich feature
information, we eliminated the pooling operation in the spa-
tial attention module and adopted pixel-level normalization,
as depicted in Figure 6. Subsequently, spatial information
is deeply integrated through two consecutive convolutional
layers to enhance the representation capability of the feature
map. The specific expression of this process is as follows:

F1 = Wλ (BNs (F1)) , (11)

F2 = sigmoid
(
conv5×5

(
conv5×5 (F1)

))
, (12)

where F1 and F2 represent the input and processed output
feature maps, respectively. BNs represents the pixel-level
normalization operation, andWλ is the corresponding scaling
factor, calculated similarly to the channel attention module.
The difference is that the length of the scaling factor is
determined by the total number of pixels in the feature
map, not the number of channels. The feature map is first
processed through the first convolutional layer, where the
number of channels is reduced to C/r , with r being the same
channel compression ratio as in the channel attention module.
After processing through the second convolutional layer, the
number of channels is restored to the original C , completing
the integration and enhancement of spatial information in the
feature map.

3) LABEL SMOOTHING
In order to refine the accuracy and enhance the stability of
RPN head in the Faster R-CNN framework, this research
introduces label smoothing as a crucial part of the class logits
computation. It is integrated within the binary cross-entropy
loss function, aiming to alleviate the model’s overfitting and
furnish regularization, thereby fostering improved general-
ization and bolstering the model’s defenses against noisy
data.

The implementation adjusts the target labels by a smooth-
ing parameter ϵ, effectively softening the binary targets.
Instead of using hard 0 and 1 values, the targets are
transformed towards a more moderate value that reflects the
degree of uncertainty. Specifically, the adjusted target value
T ′ is computed as:

T ′
= T · (1 − ϵ) + 0.5 · ϵ, (13)

where T is original target value. T ′ effectively merging the
target with a midpoint value, which is conventionally set at
0.5. Such a formulation of label smoothing diminishes the
likelihood of the model’s overreliance on absolute label val-
ues, thereby mitigating risks of overfitting. By incorporating
this refinement into the class logits calculation of the RPN
Head, the Faster R-CNN is endowedwith a heightened capac-
ity for discrimination, while simultaneously accommodating
the labeling ambiguities frequently encountered in real-world
scenarios.

Our method enhances image brightness in low-light
conditions, adding semantic richness and employing a
segmentation strategy for tunnel road surfaces to avoid
extraneous interference. We enhance the Faster R-CNN
by integrating ResNet and GRAM for deeper and more
focused feature learning, along with label smoothing to
refine the detection accuracy. This approach improves feature
learning, stabilizes training against noisy data, and ensures
precise detection in challenging cable tunnel environments,
as illustrated in Figure 7.

IV. EXPERIMENTS
We evaluated the performance of our proposed three-stage
road segmentation flood detection method in a real cable
tunnel. Comparative experimental results indicate that our
method outperforms existing object detection methods in
cable tunnel scenarios. Ablation experimental results demon-
strate that each module in our method contributes to the
improvement of flood detection tasks.

A. EXPERIMENTAL SETUP
The experimental environment used in this study consisted
of Ubuntu 20.04.6 LTS operating system with NVIDIA
TITAN RTX GPU and 20GB video memory. The software
environment for algorithm experiments was built on the
PyTorch 1.13.0 framework using the Python programming
language. The specific Python version employed was 3.8.18.
For accelerated computations, CUDA 11 and the correspond-
ing version of CUDNN were utilized.

1) DATASET
To validate the feasibility and effectiveness of the proposed
algorithm for cable tunnel waterlogging identification in our
study, we created our dataset of cable tunnel waterlogging.
The data was obtained from monitoring images of real-
world cable tunnels in Chengdu, Sichuan Province, China.
To ensure the applicability of the algorithm to different sce-
narios in cable tunnels, we selected images from different
monitoring points in various cable tunnels, capturing different
flood conditions and angles. In total, we collected hundreds of
images of cable tunnels. We annotate the cable tunnel images
of the dataset. The tunnel road annotation was performed
for training and testing of the segmentation algorithm, and
the waterlogging annotation was performed for training and
testing of the detection algorithm. We divided the original set
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FIGURE 7. The pipeline of three-stage waterlogging detection process.

into a training set and a validation set using a split ratio of
0.85:0.15.

2) PERFORMANCE METRICS
In object detection and image segmentation tasks, IOU
(Intersection over Union) and Average Precision (AP) are
key metrics for evaluating performance. IOU measures the
overlap between the predicted bounding box or segmentation
result and the true bounding box or segmentation mask.
Average Precision (AP) assesses the model’s performance
by calculating the average precision value at different recall
levels, particularly at an IOU threshold of 0.50 and ranging
from 0.50 to 0.95. Precision (P) also focuses on the model’s
accuracy in predicting the positive class, while Recall (R)
represents the ratio of correctly detected objects to the total
number of true objects. The F1 Score, as the harmonic
mean of Precision and Recall, balances the two to evaluate
a model’s accuracy and coverage for imbalanced datasets
comprehensively.

B. COMPARATIVE EXPERIMENTS
To evaluate the detection performance of our proposed
method for cable tunnel bottom, we compared it with
the latest object detection methods, including YOLOv5,
YOLOv8, and Faster R-CNN. The YOLOv5 model used in
our comparison is the YOLOv5s-det model, with default
parameters for YOLOv5s. Similarly, the YOLOv8 model
used is the YOLOv8n-det model, with default parameters for
YOLOv8n. The Faster R-CNN model is an improved Faster
R-CNN model, utilizing ResNet50+FPN as the backbone.

For the YOLOv5s model, we trained it for 100 epochs,
divided the entire dataset into 16 batches, set the initial
learning rate (lr0) to 0.01, and the cyclic learning rate (lrf) to
0.01. The network settings for YOLOv8n are approximately
the same as YOLOv5s.

As for the baseline Faster R-CNN, we trained it for
30 epochs with a learning rate of 0.02, batch size of 2, SGD
momentum parameter of 0.9, and weight decay parameter
of 1e-4.

We conducted comparative experiments to evaluate the
performance of our proposed method against the baseline
methods, including YOLOv5, YOLOv8, and Faster R-CNN.
The results of the comparative experiments are summarized
in Table 1. In detail, we find that our method achieves the best
results among all state-of-time methods on all metrics with a

TABLE 1. Model performance comparison.

FIGURE 8. The detection result images for different models. It is
noticeable that the detection results of the original Faster R-CNN method
are influenced by various factors in the cable tunnel. On the other hand,
the YOLO series methods tend to produce detection boxes that are larger
than the actual water accumulation. In contrast, our method addresses
these issues and offers improved detection performance.

large margin. In Figure 8, we present illustrative examples of
detection results for various models.

Our approach uses image enhancement and an attentional
backbone, which gives it a significant lead over other models
in AP. Besides, the smoothness of the loss function enables
a better improvement in the recall rate compared with
the original Faster rcnn and YOLOv5. Although YOLOv8
slightly exceeds us in terms of recall rate, it can be seen from
Figure 7 that YOLOv8’s detection box is so large that it covers
many non-water-standing areas. Such detection boxmakes its
recall rate relatively high, and the detection box of ourmethod
happens to be the water-standing area. However, we are both
ahead of other models in f1, proving the superiority of our
model.

To investigate the impact of different hyperparameters
on our algorithm, we conducted a series of combination
experiments on the two most crucial hyperparameters:
learning rate and smoothing parameter. The results of the
experiments are illustrated in the Table 2 as shown.
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FIGURE 9. Comparative analysis of training loss and learning rate across different hyperparameter settings. The varying combinations of learning rate
and smoothing factor are investigated to discern their effect on the convergence behavior of the model during training. Each subplot corresponds to a
specific pairing of learning rate and smooth factor, with the training loss and learning rate plotted over training iterations.

TABLE 2. Impact of hyperparameter tuning on model performance.

From Figure 9, it is evident that the first combination of
hyperparameters—learning rate at 0.02 and smoothing factor
at 0.1—yields the best results. This setup shows the highest
precision in detecting the objects at the basic intersection
over a union (IoU) threshold of 0.5, as indicated by the
highest Average Precision (AP) at 50% (AP50). Moreover,
the superior performance is consistent across various IoU
thresholds, from 0.5 to 0.95 (AP50:95), suggesting that
this parameter tuning not only achieves the best balance
in learning new features but also retains learned features
effectively, leading to a more accurate and robust model.

When the learning rate is set to 0.02, the model exhibits
the best performance in terms of AP(50), scoring 0.871. This
suggests that a learning rate of 0.02 is a suitable choice,
as it enables the model to achieve the highest precision in
object detection at the basic Intersection over the Union (IoU)
threshold of 0.5. Conversely, with a learning rate of 0.001,

there is a noticeable decline in AP(50) to 0.642, which
may indicate that the rate is too low for the model to learn
adequately within the stipulated number of training epochs.

Models with a smoothing coefficient of 0.1 demonstrate
the best results for AP(50), implying that a moderate
smoothing coefficient helps balance the acquisition of new
features with the retention of previously learned features.
When the smoothing coefficient is increased to 0.2, there is a
reduction in performance, likely due to excessive smoothing
impeding the model’s ability to capture new features.

The AP(50:95) metric reflects the model’s average per-
formance across a range of IoU thresholds from 0.5 to
0.95. Although some parameter settings occasionally achieve
similar performance to the best settings (e.g., Lr: 0.02,
Smooth: 0.05 with an AP(50:95) of 0.275), the initial
parameter grouping with an AP(50) of 0.871 and AP(50:95)
of 0.296 consistently outperforms the others. This indicates a
higher accuracy in bounding box localization, suggesting that
this parameter configuration yields a more precise detection
model across various IoU thresholds.

Our method was employed to address diverse challenging
conditions present in cable tunnels water accumulation
scenarios, such as low illumination, lighting interferences,
watermark disturbances, and complex background noise. The
experimental results are presented in Figure 10. Extensive
evaluations across a range of demanding environments

106020 VOLUME 12, 2024



J. Zhu et al.: Cable Tunnel Waterlogging Detection for Low-Light and Interference

FIGURE 10. Performance evaluation of waterlogging detection in cable
tunnels under challenging conditions. This figure demonstrates that our
approach effectively overcomes these challenges.

indicate that our method not only robustly detects water
hazards under suboptimal conditions but also maintains high
accuracy and precision, illustrating its reliability and potential
for practical applications in safety-critical infrastructure
monitoring.

To further validate the effectiveness of the proposed
method, this study employs EigenCAM technology for visual
analysis of the model’s attention mechanism. As illustrated
in Figure 11, the proposed model effectively focuses its
attention on areas of water accumulation on the road surface,
achieving precise detection.

FIGURE 11. Representative examples demonstrate our method’s focus on
water accumulation through attention maps, significantly boosting
detection accuracy and effectiveness.

C. ABLATION STUDY
To verify the contributions of each component of our method,
we design a series of ablation experiments, as presented
in Table 3. Our results confirm that each module of

TABLE 3. Ablation study of the proposed module.

our approach significantly improves waterlogging detection,
highlighting the critical roles of low-light enhancement and
data balance. The Enhance module notably boosts detection
precision, while the GRAM and Smooth techniques improve
recall. Low-light enhancement alone raises performance by
approximately 20%, with GRAM increasing recall by 3-4%
and further reducing false positives.

In Figure 12, we use a scatter plot to more clearly represent
the contribution of each module in our method to the result.
From this diagram, we can see that the enhanced module
significantly improves precision, while GRAM and smooth
contribute to the recall rate.

FIGURE 12. The scatter plot of the ablation study results where the
horizontal axis is the recall and the vertical axis is the precision with an
IOU of 50.

V. DISCUSSION
In this study, we introduce a novel waterlogging detection
method tailored to the complex environment of cable tunnels.
Our approach, which combines low-light image enhance-
ment and a unique strategy for segmenting waterlogged
surfaces, demonstrates significant improvements in accuracy
and robustness against conventional methods. The use of
GRAM further refines our model’s precision and recall,
proving particularly effective in identifying subtle water
accumulations.

Despite these advancements, challenges remain. Our
method’s recall rate is below the desired threshold, which
could hinder the practical application in cable tunnels
where accurate detection of waterlogged areas is crucial.
Additionally, the comprehensive three-stage approach, while
effective, introduces time-consuming processes that could be
optimized for quicker detection. Future work will aim to
enhance the recall rate and streamline the detection process,
addressing these limitations to better meet the operational
demands within cable tunnels.

In recent studies of waterlogging detection, it is often
the multi-sensor approach that combines advanced artifi-
cial intelligence and machine learning techniques that is
most effective. However, this paper adopts a pure vision
approach and tries to solve the problem only through visual
sensors. Indeed, the combination of other multi-sensors can
effectively solve the problem of waterlogging detection.
The combination of multiple sensors can solve the recall
problem in this paper. For example, ultrasonic sensors can
find more areas of stagnant water than visual sensors can see.
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However, the problems faced by multi-sensors are high
cost and inconvenient maintenance. Vision cameras are
already widely deployed in cable tunnels, while other sensor
deployments still cost a lot to deploy. Therefore, it is
necessary to study the pure vision method for waterlogging
accumulation in cable tunnels.

VI. CONCLUSION
In this study, we propose a novel three-stage approach for
detecting waterlogging in cable tunnels. To overcome the
challenge of feature blurring caused by low illumination,
we introduce a data enhancement module that effectively
improves the quality of images captured within the tunnel
environment. By focusing on image segmentation specifi-
cally on the road surface of the cable tunnel, we successfully
mitigate the impact of complex internal elements, such as
cables, thereby reducing interference and improving the accu-
racy of waterlogging detection. Furthermore, we enhance the
Faster R-CNN model by integrating the GRAM attention
mechanism and incorporating label smoothing techniques.
This enhancement significantly boosts the precision and
recall of the detection system. Through extensive experiments
conducted on a dedicated waterlogging dataset in cable
tunnels, we demonstrate the superior performance of our
proposed method compared to existing techniques.

Looking ahead, our future research will focus on further
improving the recall rate while concurrently reducing the
processing time of the system. This will enable more effective
and efficient waterlogging detection in cable tunnels, con-
tributing to enhanced safety and reliability in urban power
systems.
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