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ABSTRACT This study investigates the application of machine learning (ML) algorithms to enhance the
precision of wine quality assessment, focusing specifically on Portuguese red wine. Amidst the growing
interest in leveraging artificial intelligence (AI) for sensory analysis, our research distinguishes itself
by employing a rigorous methodological framework. Our approach, named the ‘Incremental Analysis of
Baseline Accuracy, identifies the chemical variables most predictive of wine quality. This framework
aims to streamline the predictive process by pinpointing key variables that significantly influence quality
assessments. In this paper, we demonstrate the feasibility of a methodology that precisely determines the
criticality of chemical inputs, both their exact values and their correct order, to identify which inputs
significantly contribute to the quality assessment of a sensory perception, such as taste. The centerpiece
of our paper is a vibrant 3D pie chart that illustrates the percentage criticality of different input variables
for perceiving the quality of red wine. This chart symbolizes the essence of our paper: a ‘pie’ representing
the empirical conclusion, not mere conjecture. Through this paper, we have shown that it is possible to
quantify a qualitative, perceptual aspect like taste perception, which is often believed to be assessable only
through subjective conjecture. Moreover, our findings, facilitated by the Incremental Analysis of the Baseline
Accuracy method, demonstrate that this perception can be systematically quantified, challenging traditional
assumptions about sensory analysis.

INDEX TERMS Algorithm comparison, artificial intelligence (AI), chemometric variables, data analysis,
machine learning (ML), Portuguese red wine, predictive analytics, random forest model, sensory analysis,
variable selection, wine quality assessment.

I. INTRODUCTION

The history of wine, with roots stretching back over millen-
nia, is rich and varied. Evidence suggests its production dates
as far back as 6000 BC in Georgia and 5000 BC in Iran. Wine
has been revered since ancient times, seamlessly integrating
into the fabric of human civilization and playing pivotal
roles in religious ceremonies, social gatherings, and culinary
traditions. Its journey from a simple fermented beverage to a
complex symbol of culture, refinement, and scientific intrigue
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illustrates the dynamic relationship between humans and this
esteemed nectar [1].

For much of its history, the quality of wine was assessed
solely through sensory evaluation: sight, smell, and taste.
These subjective methods, while the only means available,
provided a window into the nuances of wine’s character.
The art of winemaking, saturated with tradition and passed
through generations, was cloaked in mystique, with only a
surface understanding of the scientific underpinnings of wine
quality.

In the 19th century, significant advancements in the scien-
tific analysis of wine were made with the introduction of the
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first acidity tests in the 1820s, crucial for assessing a wine’s
tartness and stability, and the standardization of methods
to determine alcohol content. This enhancement improved
our understanding of wine’s fundamental characteristics.
Progress continued into the 20th century with the evolution of
analytical chemistry and microbiology, leading to advanced
techniques that could quantify volatile acidity, citric acid,
residual sugar, chlorides, sulfur dioxide levels, density, pH,
sulfates, and alcohol content, providing a comprehensive
overview of wine’s chemical makeup. Despite these advance-
ments, identifying variables most critical to wine quality
remained challenging. Wine’s intricacy, characterized by a
vast spectrum of volatile compounds and a delicate flavor
balance, made it difficult to single out key factors contributing
to quality. This complexity fueled ongoing debates regarding
the relative importance of physical, chemical, and sensory
characteristics in determining wine’s excellence, without
reaching a conclusive answer.

The emergence of machine learning (ML) and artificial
intelligence (AI) has ushered in a new era for wine quality
analysis, enabling extensive datasets to be examined to
uncover patterns and correlations beyond human detection.
This research, focusing on red wine, represents a significant
step forward by applying ML algorithms for a comprehensive
analysis of the chemical properties intrinsic to wine, with
the aim of identifying the most predictive factors of wine
quality. This endeavor not only enhances our understanding
of what constitutes exceptional wine but also advances
methodologies for more efficient and economical quality test-
ing. By focusing on crucial chemical properties, winemakers
can refine quality control practices, uphold high standards,
and minimize costs.

Major Contributions: The contributions to this paper can
be summarized as follows: First, we employed a brute-
force approach to training and testing ML models on all
11 possible combinations that determine the taste of wine,
providing concrete figures on the top 10 combinations
of variables which affect the accuracy of wine quality
prediction. Second, we identified the ‘‘baseline accuracy” as
the inherent predictive ability of our ML models to accurately
identify the quality of wine samples without any specific
input data. The baseline accuracy is the performance of the
Al when it uses this foundational understanding to make
educated guesses about wine quality, achieving an accuracy
of 40% in identifying the quality of wine samples without
direct information. This concept highlights the AI’s capability
to leverage its initial training to approximate the quality
distribution of wine effectively, even when not provided with
explicit input variables for each sample. Third, we calculated
the criticality of each variable in assessing wine quality
through a methodological framework called ‘‘Incremental
Analysis of Baseline Accuracy.” We began by training our
Al with a large dataset, which included various chemical
input variables associated with wine samples. To evaluate the
impact of each variable, we systematically added one variable
at a time to the model and observed how the predictive
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accuracy changed from the baseline measure. We explored
over 2,047 combinations of input variables, testing each
combination multiple times to ensure reliability and consis-
tency in our results. By measuring the change in accuracy
with the inclusion of each variable, we identified those
that significantly enhanced the model’s predictive capacity.
These impactful variables were then ranked and weighted
according to their importance in improving accuracy. This
detailed approach allowed us to quantify the criticality of each
variable, thereby enhancing our understanding of their roles
in the sensory perception of wine quality. We believe this
attempt was the first in the field of wine machine learning.

Il. BACKGROUND

A. RELATED WORK - RESEARCH MENTIONING CRITICAL
VARIABLES

We have selected the domain of chemical tests on red wine as
our primary focus because, through our review of research
papers, we observed that machine learning algorithms can
determine the quality of red wine with over 70% accuracy on
ascale of 0 to 10. We reviewed 19 papers related to algorithms
predicting wine quality using machine learning and selected
nine that specified critical variables. Here, we summarize
their work as follows.

(1) Yavas et al. [2] machine learning techniques such as
Random Forest and Logistic Regression were used to analyze
the taste profiles of Red Portuguese Wine. The research
found that a few critical variables, notably volatile acidity
and alcohol, are primary indicators for flavor prediction.
This suggests potential for a more simplified approach in
sensory analysis, with the Random Forest model yielding the
highest accuracy in predictions. Machine Learning (Decision
Tree, Random Forest, Logistic Regression, Support Vector
Machine), Input Variables (11), Critical Variables (Volatile
Acidity, Sulfates, Alcohol, Solid Acid), Wine Type (Red
Portuguese Wine). This paper is accepted to SERA 2024.

(2) Cortez et al. [3] in the paper titled “Using Data Mining
for Wine Quality Assessment,” the team applied machine
learning algorithms such as Support Vector Machines,
Multiple Regression, and Neural Networks to determine
the quality of White Vinho Verde wine. The research
identified alcohol, sulphates, pH, volatile acidity, and residual
sugar as key variables. Findings indicated that the Support
Vector Machine model was particularly effective in this
context, offering valuable insights into the relationship
between wine’s physicochemical properties and sensory
preferences. Machine Learning (Support Vector Machine,
Multiple Regression, Neural Networks), Input Variables (11),
Critical Variables (Alcohol, Sulphates, pH, Volatile Acidity,
Residual Sugar), Wine Type (White Vinho Verde).

(3) Gupta’s 2018 research [4], titled ““Selection of Impor-
tant Features and Predicting Wine Quality Using Machine
Learning Techniques,” delved into the efficacy of feature
selection in wine quality prediction using Linear Regression,
Neural Networks, and Support Vector Machines. Gupta’s
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work highlighted the varied significance of physicochemical
properties, such as volatile acidity and sulphates, in predicting
quality in red wines, and fixed acidity and residual sugar
in white wines. The study concluded that machine learning
models yielded more accurate predictions when trained
on a carefully selected subset of features, underscoring
the critical role of feature selection in enhancing model
performance. Machine Learning (Linear Regression, Neural
Networks, Support Vector Machine), Input Variables (11),
Critical Variables (Red wine: Volatile Acidity, Chlorides,
Free Sulfur Dioxide, Total Sulfur Dioxide, pH, Sulphates,
Alcohol; White: Fixed Acidity, Volatile Acidity, Residual
Sugar, Free Sulfur Dioxide, Density, pH, Sulphates, Alcohol),
Wine Type (Red and White).

(4) Anami et al. [5] concluded that the Support Vector
Machine (SVM) outperforms other techniques with an error
of 0.003 and a quality rate of 7.99 for predicting wine
quality as good or bad. This approach is deemed useful
for the wine industry for quality testing and assurance for
customers. Machine Learning: Neural Networks, Logistic
Regression, Support Vector Machine, Input Variables (4),
Critical Variables (4: Volatile Acidity, Citric Acid, Residual
Sugar, Free Sulfur Dioxide), Wine Type: Portuguese *Vinho
Verde” Wine.

(5) Zhang et al. [6], showed that both CART and Random
Forest models achieved high accuracy in predicting the
quality of red wine. Quality was converted into a binary clas-
sification to enhance prediction accuracy. Feature importance
analysis showed alcohol as a significant factor influencing
wine quality. The combination of Logistic Regression
with Random Forest did not significantly improve model
accuracy over using Random Forest alone. Machine Learning
(Decision Tree, Boosting, Classification and Regression Tree
(CART), Random Forest), Input Variables (11), Critical
Variables (Alcohol is the most influential), Wine Type (Red).

(6) Korade and Salunke [7], identified the Random Forest
algorithm as the most effective in predicting wine quality,
achieving the highest accuracy among the tested algorithms.
The study also highlighted the importance of feature selection
in improving prediction accuracy, with alcohol, volatile
acidity, and sulphates being the most indicative of wine
quality. Machine Learning (Logistic Regression, Decision
Tree, Random Forest, Support Vector Machine, AdaBoost
Classifier, Gradient Boosting Classifier, K-Nearest Neigh-
bors, Naive Bayes), Input Variables (11), Critical Variables
(Alcohol, Volatile Acidity, Sulphates), Wine Type (White).

(7) Jain et al. [8], found that Random Forest and XGBoost
algorithms were the most accurate for predicting wine
quality, with feature selection identifying Alcohol, Sulfates,
and Volatile Acidity as critical variables. The XGBoost
model demonstrated 100% accuracy when trained and tested
with selected features. The research also highlighted the
importance of feature selection in improving model accuracy
and performed hyperparameter tuning and clustering analysis
to refine the prediction model further. Machine Learning:
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Random Forest (RF), Extreme Gradient Boosting (XGBoost),
Decision Trees (DT), AdaBoost, Gradient Boost, Input
Variables (11), Critical Variables (Alcohol, Sulfates, Volatile
Acidity), Wine Type (Red Portuguese ‘“Vinho Verde”
Wine).

(8) Olatunde David Akanbi et al. [9], found that the
Random Forest model was the most accurate in predicting
wine quality when validated using a 10-fold cross-validation
technique. The study identified alcohol as the feature with
the most significant impact on wine quality, suggesting that
adjustments in alcohol level, along with fixed acidity, citric
acid, and sulphates, can enhance wine quality. Conversely,
volatile acidity and chlorides were found to contribute the
least to wine quality. Machine Learning (Linear Regres-
sion, Neural Network, Naive Bayes Classification, Linear
Discriminant Analysis (LDA), Classification and Regression
Trees (CART), k-Nearest Neighbors (kNN), Support Vector
Machines (SVM) with a linear kernel, Random Forest
(RF)), Input Variables (11), Critical Variables (Alcohol
(most contribution), Fixed Acidity, Citric Acid, Sulphates
(significant contribution), Volatile Acidity, Chlorides (least
contribution)), Wine Type (Red: Portuguese ““Vinho Verde’’).

(9) Dahal et al. [10], noted that the Gradient Boost-
ing Regressor outperformed other models with MSE, R,
and MAPE of 0.3741, 0.6057, and 0.0873 respectively,
demonstrating the effectiveness of statistical analysis in
identifying key components controlling wine quality. The
study emphasized alcohol as the main component influencing
wine quality. Machine Learning: Ridge Regression, Support
Vector Machine, Gradient Boosting Regressor, Artificial
Neural Network, Input Variables (11), Critical Variables
(Alcohol (highest correlation with wine quality), Citric Acid
(lowest correlation)).

In Table 1, we summarize related work for better clarity.

TABLE 1. Summary of wine quality analysis works.

Work | Ceritical Variables ML Techniques Wine
Type
2] Volatile  Acidity, Decision Tree, Red
Sulfates, Alcohol, RF, Logistic
etc. Regression, SVM
3] Alcohol, SVM, Regression, White
Sulphates, PH, Neural Networks
etc.
[4] Various acids and Linear Regression, Red/White
sulfates Neural Network,
SVM
[5] Acidity, Sugar, Decision Tree, Red
Sulfur dioxide Boosting, CART,
RF
[6] Alcohol influence Tree, Boosting, Red
CART, RF
[7] Alcohol,  Acidity, Regression, White
Sulphates Tree, RF, SVM,
Boosting
8] Alcohol, Sulfates, RF, XGBoost, DT, Red
Acidity AdaBoost, Boost
[9] Alcohol,  Acidity, Regression, Neural Red
Sulphates, etc. Network,  Naive
Bayes, etc.
[10] Alcohol, Citric Ridge, SVM, Red
Acid Boosting, ANN
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B. OTHER RELATED WORKS

(10) In their 2023 paper, Zaza et al. [11] found that the
Support Vector Machine (SVM) outperformed all other
models with a 96% accuracy rate after applying sampling
methods to balance the dataset. Alcohol was identified as
significantly impacting wine quality among the explored
features. They used ML techniques including Random Forest,
Support Vector Machine, Gradient Boosting, K-Nearest
Neighbors, and Decision Tree.

(11) Angus [12] developed binary and multi-class neural
network classifiers to predict wine quality based on physic-
ochemical properties. The study achieved good prediction
results and suggested that this makes it feasible to automate
wine quality assessments without professional testers. The
ML technique used was Neural Network (Binary and Multi-
class classifiers).

(12) Bhardwaj et al. [ 13] found that the AdaBoost classifier
achieved 100% accuracy in wine quality prediction using
both features extracted by the XGB method and essential vari-
ables. The performance of the Random Forest significantly
improved to 100% accuracy when using essential variables.
The study highlighted the effectiveness of synthetic data
generation and feature selection in predicting wine quality.
They utilized ML techniques such as Adaptive Boosting
(AdaBoost), Random Forest (RF), Extreme Gradient Boost-
ing (XGB), Stochastic Gradient Decision Classifier (SGDC),
Support Vector Machine (SVM), Gaussian Naive Bayes
(GNB), Decision Tree Classifier (DTC), and K-Nearest
Neighbors (KNN).

(13) In their study, Koranga et al. [14] found that both J48
and Random Forest algorithms exhibited high accuracy in the
classification of white wine quality, achieving an accuracy of
99.895%. They noted that no single algorithm consistently
outperformed others across all error measures in regression
analysis, but J48 and MLP showed formidable performance.
This study highlights the effectiveness of machine learning
algorithms in predicting wine quality, indicating that it can
be accurately achieved without relying on a single algorithm.

(14) Among the evaluated machine learning models,
Mani et al. [15] concluded that Random Forest achieved
the highest accuracy in predicting wine quality. The study
emphasized the effectiveness of Random Forest for quality
estimation, particularly in the food industry, due to its ability
to handle complex datasets and provide robust predictions.
They also highlighted the importance of model optimization
for enhancing prediction accuracy. The ML techniques used
in this study included Logistic Regression, Support Vector
Machine (SVM), Adaboost, Decision Tree, and Random
Forest.

(15) In their 2020 paper, Ye et al. [16] proposed a
framework that combines MF-DCCA with XGBoost and
LightGBM algorithms for predicting red wine quality ratings.
The methodology demonstrated a higher accuracy (91.04%)
compared to other machine learning algorithms on the same
dataset. The study also highlighted the significant role of
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residual sugar in the complexity of red wine quality, while
they identified volatile acidity and chlorides as weakly
correlated attributes. They used ML techniques like XGBoost
and LightGBM.

(16) Sinha and Kumar [17] found that among the tested
algorithms, Random Forest exhibited the highest accuracy
of 87.33%. Their study revealed that high quality is usually
associated with low levels of volatile acidity, indicating
its impact on wine quality. It also noted the significance
of alcohol content in determining wine preferences among
consumers. This work implemented ML techniques such as
Logistic Regression, Stochastic Gradient Descent, Support
Vector Classifier, and Random Forest.

(17) Aich et al. [18] found that feature selection-based
feature sets provided better prediction accuracy than using
all features. Accuracy ranged from 95.23% to 98.81%
with different feature sets. Simulated Annealing-based
feature selection outperformed Genetic Algorithm (GA)-
based feature selection in achieving higher accuracy, with
the SVM classifier showing the best performance among
the tested classifiers. This work utilized ML techniques
such as Nonlinear, Linear, Probabilistic Classifiers, Genetic
Algorithm (GA)-based feature selection, and Simulated
Annealing (SA)-based feature selection.

(18) Olatunde David Akanbi et al. [9] found that the
Random Forest model was the most accurate in predicting
wine quality when validated using a 10-fold cross-validation
technique. They identified alcohol as the feature with the
most significant impact on wine quality, suggesting that
adjustments in alcohol level, along with fixed acidity, citric
acid, and sulphates, can enhance wine quality. Conversely,
they found that volatile acidity and chlorides contributed
the least to wine quality. They utilized ML techniques
such as Random Forest, Linear Regression, Neural Network,
Naive Bayes Classification, Linear Discriminant Analysis
(LDA), Classification and Regression Trees (CART), k-
Nearest Neighbors (kNN), and Support Vector Machines
(SVM) with a linear kernel.

(19) In his 2021 study, Zhou Tingwei [19] used active
learning and the KNN algorithm for predicting red wine
quality. The prediction accuracy reached nearly 90% after
several iterations. The approach demonstrated the potential of
active learning in reducing the need for large labeled datasets,
with accuracy depending on various factors such as dataset
size and iteration number. He used the ML technique K-
Nearest Neighbor (KNN).

C. RELATED WORK ANALYSIS

Numerous studies have evaluated wine quality using Machine
Learning, demonstrating varying degrees of success. How-
ever, among these studies, only nine have identified critical
variables. To our knowledge, no study has investigated
how these variables impact the judgment of wine qual-
ity. We address this gap by exploring every possible
combination of variables to determine which set, when
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used as inputs to an ML model, would yield the highest
accuracy.

lll. COMPARISON WITH EXISTING STUDIES

In this section, our intention was to conduct a comprehensive
analysis of existing research on wine quality assessment, and
compare various methods used in prior studies. By evaluating
these studies, we pinpointed the strengths and weaknesses
of previous research methodologies, and pinpointed the most
effective variables employed in these studies. Comprehensive
comparisons between existing works were provided, through
which the strengths and weaknesses of prior research
were scrutinized. Additionally, we discussed the effective
variables and their respective definitions, clarifying the
reasoning behind their selection. Moreover, we demonstrated
comparative results with alternative approaches, to show
how our proposed method aligns with existing techniques.
This analysis not only places our study within a broader
literature context, but it also highlights the innovative aspects
of our approach, thereby addressing the limitations of existing
methods and enhancing the accuracy and reliability of wine
quality predictions.

A. COMPARISON WITH THE STUDY BY ZHAN ET AL.

Zhan et al. [20] investigated the forecasting of red wine
quality utilizing machine learning algorithms, with specific
emphasis on the effects of alcohol content, sulphates,
total sulfur dioxide, and citric acid. Their study used the
same dataset of Portuguese “Vinho Verde” red wine from
2009 as ours, but reclassified it into binary classes to denote
low quality (ratings 1-5) and high-quality (ratings 6-10)
wines. Four machine learning techniques, namely Logistic
Regression, K-Nearest Neighbors (KNN), Decision Tree, and
Naive Bayes, were employed. Among these, the Decision
Tree technique exhibited superior performance, with an
accuracy rate of 74.7%.

In contrast to their study, our research uses the full
spectrum of wine quality ratings and employs a broader set of
physicochemical attributes to enhance the precision of wine
quality assessment, specifically pertaining to Portuguese red
wine. Our study utilizes attributes such as fixed acidity,
volatile acidity, citric acid, residual sugar, chlorides, free
sulfur dioxide, total sulfur dioxide, density, pH, sulphates,
alcohol, and quality.

Zhan et al’s primary strength lies in their comparative
analysis of various machine learning techniques, and the
identification of the most effective economic model for
wine quality prediction. However, their binary classification
approach may oversimplify the quality assessment process,
compared to our detailed multi-class quality ratings.

B. COMPARISON WITH THE STUDY BY TINDAL ET AL.

Tindal et al. [21] emphasized mathematical modeling to
enhance winemaking efficiency by examining the extraction
and evolution of polyphenols, specifically anthocyanins
and tannins, during the fermentation process. They applied
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dynamic and spatial mathematical models to comprehend
the kinetics and spatial behavior of phenolic substances.
Their study underscored the importance of elements like
temperature, oxidation, and mixing regimes on the phenolic
behavior over time.

Our study, in contrast, aims to identify the critical
variables determining wine quality with the use of machine
learning algorithms. Unlike Tindal et al., who focused on
the extraction and reaction kinetics of phenolic substances,
we concentrate on the application of various machine learning
models to enhance the precision of wine quality assessment,
related specially to Portuguese red wine. Our study uses
physicochemical attributes as variables to predict wine
quality, which include fixed acidity, volatile acidity, citric
acid, residual sugar, chlorides, free sulfur dioxide, total sulfur
dioxide, density, pH, sulphates, alcohol, and quality.

Tindal et al’s primary strength lies in their detailed
exploration of phenolic extraction and subsequent reactions
during winemaking, thereby providing valuable insights into
process parameters affecting wine quality. However, their
study does not incorporate sensory attributes or machine
learning methods for quality prediction, which are significant
aspects of our research.

C. COMPARISON WITH THE HOU ET AL. STUDY

Hou et al. [22] constructed a red wine rating credibility model
using the Analytic Hierarchy Process (AHP) and performed
cluster analysis to classify red grapes based on the evaluation
results of red wine. They analyzed the correlation between the
physical and chemical indicators of red grapes and red wine,
concluding that aromatic substances play an essential role in
red wine quality. Their study underscores the significance
of sensory evaluation in determining wine quality and
merges both sensory and physicochemical indicators for a
comprehensive assessment.

Conversely, our study primarily concentrates on the
physicochemical attributes of wine to predict quality using
machine learning algorithms. While we acknowledge the
significance of chemical indicators, we do not incorporate
sensory attributes critical in Hou et al.’s study. Our method-
ology aims to deliver a more accessible and automated
approach for quality assessment, utilizing machine learning
to manage large datasets and identify key variables affecting
wine quality.

The strength of the Hou et al. study resides in its
comprehensive approach, combining sensory evaluation with
statistical analysis to deliver a more holistic view of wine
quality. However, it does not employ machine learning
techniques for predictive modeling, which is a critical aspect
of our research.

D. COMPARISON WITH THE COZZOLINO ET AL. STUDY

Cozzolino et al. [23] investigated the use of visible and
infrared spectroscopy combined with chemometrics to mea-
sure phenolic compounds in grape and wine samples. Their
study demonstrated that spectroscopic techniques could
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simplify and reduce the analytical time for measuring a range
of grape and wine analytes. Cozzolino et al. underscored
the significance of phenolic compounds in determining the
quality of red wines, as these compounds contribute to the
color, taste, and mouthfeel of the wine.

Our study differs by focusing on the application of
machine learning algorithms to predict wine quality based
on physicochemical attributes rather than using spectroscopic
techniques for phenolic measurement. While Cozzolino et al.
provided a detailed methodology for phenolic measurement,
our research aims to recognize and utilize pertinent variables
that determine wine quality for predictive modeling.

The strength of the Cozzolino et al. study resides in its
ability to deliver rapid and non-destructive analysis of phe-
nolic compounds using advanced spectroscopic techniques.
However, it does not incorporate machine learning for quality
prediction, which is a critical aspect of our research.

E. COMPARISON WITH THE ARAPITSAS ET AL. STUDY
Arapitsas et al. [24] investigated the influence of sulfur
dioxide (SO2) on wine flavanols and indoles concerning wine
style and age. Their study focused on the chemical reactions
between wine metabolites and SO2, recognizing and quanti-
fying sulfonated derivatives of epicatechin, procyanidin B2,
and various indoles in wines. They pointed out how these
reactions affect wine quality, particularly in aged wines,
where sulfonated flavanols and indoles become conspicuous
markers.

In contrast, our study concentrates on recognizing the
crucial variables that determine wine quality using machine
learning algorithms. We do not specifically investigate the
chemical interactions involving SO2 or the formation of
sulfonated derivatives. Instead, we use a broader set of
physicochemical attributes to predict wine quality, such as
fixed acidity, volatile acidity, citric acid, residual sugar,
chlorides, free sulfur dioxide, total sulfur dioxide, density,
pH, sulphates, alcohol, and quality.

The strength of the Arapitsas et al. study resides in its
detailed observation of the impact of SO2 on wine chemistry
and its implications on wine quality, particularly for aged
wines. However, their study does not employ machine
learning techniques for predictive modeling, which is a
critical aspect of our research.

F. COMPARISON WITH THE STUDY BY LUO ET AL.

Luo et al. [25] investigated whether wine quality can be
predicted by analyzing small volatile compounds. They
collected and analyzed 157 commercial Shiraz wines from
a competitive wine show over two years. They found signif-
icant correlations between specific volatiles and the panel’s
wine quality scores, although these correlations were not
always consistent between years. Luo et al. used headspace
solid-phase microextraction-gas chromatography-mass spec-
trometry (HS-SPME-GC-MS) to measure the volatile profiles
of the wines. They suggested that while aroma determination
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is crucial, other factors like appearance and taste might be
more influential in wine quality assessment.

Our study focuses on a broader set of physicochemical
attributes for wine quality prediction using machine learning
algorithms. While Luo et al. provided valuable insights
into the relationship between volatile compounds and wine
quality, our research aims to identify and utilize multiple
physicochemical variables for a comprehensive predictive
modeling approach.

The strength of Luo et al’s study lies in its detailed
analysis of volatile compounds and their impact on wine
quality. However, they did not incorporate machine learning
techniques for predictive modeling, a significant aspect of our
research.

G. COMPARISON WITH THE STUDY BY STEIN ET AL.

Stein et al. [26] examined the quality of Cabernet Sauvignon
wines determined by climatic attributes. They investigated
how environmental conditions, such as rainfall, temperature,
and solar radiation, influence the physicochemical properties
of Cabernet Sauvignon wines. The research highlighted the
importance of factors like total acidity, anthocyanins, pH,
tannins, and total polyphenols for determining the sensory
quality and aging potential of wines.

In contrast, our study focuses on identifying critical
variables that determine wine quality using machine learning
algorithms. While Stein et al. analyzed the impact of climatic
conditions on wine quality, we employ a broader set of
physicochemical attributes, such as fixed acidity, volatile
acidity, citric acid, residual sugar, chlorides, free sulfur
dioxide, total sulfur dioxide, density, pH, sulphates, alcohol,
and quality, to predict wine quality.

The strength of Stein et al.’s study lies in its detailed
analysis of the relationship between climatic attributes and
wine quality. However, they did not incorporate machine
learning techniques for predictive modeling, a key aspect of
our research.

H. COMPARISON WITH THE STUDY BY KURTANJEK
Kurtanjek [27] explored the application of causal artificial
intelligence models to food quality data analysis. The
study emphasized integrating theoretical field knowledge
with process production, physicochemical analytics, and
consumer organoleptic assessments. They used Bayesian
networks and deep learning to infer causal relationships and
intervention effects between process variables and consumer
sensory assessments of food quality. The research highlighted
the importance of addressing confounding effects in causal
analysis and presented methodologies for predicting average
causal effects (ACE) of process interventions on food quality.
In contrast, our study focuses on predicting wine quality
using machine learning algorithms based on physicochemical
attributes. While Kurtanjek’s study applied causal AI models
to infer relationships and intervention effects, we concentrate
on identifying and utilizing critical physicochemical vari-
ables for predictive modeling. Our methodology leverages
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machine learning to handle large datasets and improve
precision in wine quality assessment.

The strength of Kurtanjek’s study lies in its advanced
causal modeling techniques, which provide insights into the
causal effects of process variables on food quality. However,
their study does not specifically focus on wine quality
prediction using machine learning, which is the primary focus
of our research.

I. COMPARISON WITH THE STUDY BY XU AND XU

Xu and Xu [28] conducted a study on the quality evaluation of
Chinese red wine using a cloud model approach. Their study
focused on sensory evaluation and the inherent uncertainties
in sensory data. They utilized a cloud model to quantify the
quality of wine based on sensory attributes, providing a way
to handle the uncertainty and subjectivity inherent in sensory
evaluations.

In contrast, our study utilizes machine learning algorithms
to predict wine quality based on measurable physicochemical
attributes rather than subjective sensory data. While Xu
and Xu’s cloud model addresses the uncertainty in sensory
evaluations, our approach aims to provide an objective and
consistent method for wine quality assessment.

The strength of Xu and Xu’s study lies in its innovative use
of a cloud model to address the complexities and uncertainties
in sensory evaluation. However, it does not incorporate
machine learning techniques for predictive modeling based
on physicochemical data, which is a significant aspect of our
research.

J. COMPARISON WITH THE STUDY BY ARCANJO ET AL.
Arcanjo et al. [29] conducted a study on the quality
evaluation of red wines produced from Isabella and Ives
grapes in Southern Brazil. They focused on analyzing physic-
ochemical parameters, phenolic composition, and antioxidant
activity. The study highlighted significant differences among
wines in phenolic compound content, flavonoids, antiox-
idant activity, anthocyanin levels, and color parameters.
The findings underscore the impact of the production
region, grape variety, and enological practices on wine
quality.

In contrast, our study employs machine learning algo-
rithms to predict wine quality based on a comprehensive set
of physicochemical attributes. While Arcanjo et al. focus
on the detailed chemical analysis and antioxidant activity
of specific grape varieties, our research aims to provide a
broader predictive model for wine quality assessment using
a diverse set of physicochemical variables.

The strength of Arcanjo et al’s study lies in its thor-
ough chemical analysis and the evaluation of antioxidant
activity, which provide valuable insights into the health
benefits and sensory characteristics of wines. However,
their study does not utilize machine learning techniques for
predictive modeling, which is a significant aspect of our
research.
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K. COMPARISON WITH THE STUDY BY PRESEROVA ET AL.
Preserova et al. [30] conducted a study on the phenolic profile
and antioxidant activity in selected Moravian wines during
the winemaking process using FT-IR spectroscopy. The study
aimed to develop a rapid, robust method for monitoring total
phenolic compounds (TPC) and total antioxidant activity
(TAA) during different stages of wine production. They found
significant variations in phenolic content and antioxidant
activity among red, white, and rose wines, with red wines
showing the highest levels of phenolics and antioxidant
activity. The study also highlighted the changes in these
compounds during different production stages, emphasizing
the role of FT-IR spectroscopy combined with chemometrics
as a reliable method for wine quality control.

In contrast, our study focuses on using machine learning
algorithms to predict wine quality based on physicochemical
attributes. While Preserova et al. utilize FT-IR spectroscopy
to monitor phenolic compounds and antioxidant activity, our
research leverages a broader set of physicochemical variables
for predictive modeling.

The strength of Preserova et al.’s study lies in its method-
ological innovation, providing a rapid and non-destructive
means of monitoring wine quality. However, their approach
does not include machine learning techniques for predictive
modeling, which is a key aspect of our research.

L. COMPARISON WITH THE STUDY BY SUPRIATNA ET AL.
Supriatna et al. [31] introduced an ensemble voting classifier
for red wine quality classification using machine learning
algorithms. Their study focused on enhancing classification
accuracy by combining multiple models, including Random
Forest and XGBoost, to leverage the strengths of each.
The dataset used included various physicochemical attributes
and quality ratings of red wines from Portugal’s Vinho
Verde region. They achieved an accuracy of 0.885 with their
ensemble approach, significantly improving the classification
performance compared to individual models.

In contrast, our study focuses on predicting wine quality
based on a selected set of critical variables identified through
feature importance analysis. While Supriatna et al. applied
an ensemble method to improve accuracy, our approach
aims to streamline the predictive process by focusing on key
attributes that directly impact wine quality.

M. COMPARISON WITH THE STUDY BY SAENZ-NAVAJAS
ETAL.

Sdenz-Navajas et al. [32] investigated the effect of aroma
perception on the taste and mouthfeel dimensions of red
wines, correlating sensory and chemical measurements.
The researchers used a rate-all-that-apply (RATA) sensory
methodology with Spanish wine experts to evaluate 42 non-
wooded red wines under two conditions: with and without
aroma perception. The research focused on understanding
how aroma influences mouthfeel and revealed that tannin
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concentration and activity, along with pH, are significant
predictors of mouthfeel dimensions related to dryness.

In contrast, our study employs machine learning algo-
rithms to predict wine quality based on physicochemical
attributes, not incorporating direct sensory evaluations or
aroma analysis. While Sdenz-Navajas et al. provide valuable
insights into sensory perceptions and their chemical correla-
tions, our research focuses on leveraging machine learning
for a more automated and scalable approach to wine quality
assessment.

N. COMPARISON WITH THE STUDY BY OFOEDU ET AL.
Ofoedu et al. [33] conducted a comparative evaluation of
the physicochemical, antioxidant, and sensory properties of
domestic and foreign red wines to ascertain quality and
authenticity. The study analyzed wines for parameters such
as pH, total titratable acidity (TTA), total sugar, Brix, alcohol
content, polyphenols, flavonoids, tannins, and antioxidant
capacity using DPPH, FRAP, and TEAC assays. The sensory
evaluation included attributes like color, taste, mouthfeel,
flavor, and overall acceptability. The researchers found
significant differences between domestic and foreign wines,
with foreign wines generally exhibiting higher quality mark-
ers such as polyphenols, flavonoids, tannins, and antioxidant
capacity.

In contrast, our study focuses on predicting wine quality
using machine learning algorithms based on a compre-
hensive set of physicochemical attributes. While Ofoedu
et al. perform a detailed analysis of the physicochemical
and sensory properties, our research aims to leverage
machine learning for predictive modeling, thereby offering
a more automated and scalable approach to wine quality
assessment.

O. COMPARISON WITH THE STUDY BY SEN ET AL.

Sen et al. [34] explored the combination of visible and mid-
infrared (MIR) spectra for predicting the chemical parameters
of wines. Their study used orthogonal partial least squares
(OPLS) regression to analyze wine samples from twelve
grape varieties across two harvest years. They aimed to
improve the prediction of various chemical compounds in
wines, including anthocyanins, total phenols, glycerol, the
glycerol/ethanol ratio, malic acid, o-coumaric acid, and
A°Brix. The results demonstrated that combining visible
and MIR spectra with multivariate methods improved the
prediction of anthocyanins and total phenols compared to
using MIR spectra alone.

In contrast, our study focuses on predicting wine quality
using machine learning algorithms based on a comprehen-
sive set of physicochemical attributes. While Sen et al.
employed spectroscopic techniques to predict specific chem-
ical parameters, our research leverages machine learning
for broader predictive modeling of wine quality, making it
more applicable for practical quality assessments in the wine
industry.

105436

1) STRENGTHS AND WEAKNESSES

Both Zhan et al., Tindal et al., Hou et al., Cozzolino et al.,
Arcanjo et al., Arapitsas et al.,, Luo et al., Steinetal.,
Kurtanjek, Xu and Xu, Preserova et al., Supriatna et al.,
Saenz-Navajas et al., Ofoedu et al., and Sen et al. offer robust
methodologies for understanding wine quality from different
perspectives—machine learning models, mathematical mod-
eling of phenolic extraction, sensory evaluation combined
with statistical analysis, spectroscopic analysis of phenolic
compounds, chemical interactions involving SO2, volatile
compound analysis, climatic attributes, causal Al models, and
cloud models for sensory evaluation. Our study combines
elements of these approaches by utilizing machine learning
to predict quality based on a variety of physicochemical
attributes.

The primary strength of our study is its predictive
capability, offering a practical tool for winemakers to assess
wine quality based on easily measurable variables. However,
it does not delve into the detailed chemical interactions
and extraction processes during fermentation as explored by
Tindal et al., incorporate sensory attributes as emphasized
by Hou et al. and Sdenz-Navajas et al., employ spectro-
scopic techniques for phenolic measurement as used by
Cozzolino et al. and Sen et al., investigate SO2 interactions
as detailed by Arapitsas et al., focus on volatile compounds
as investigated by Luo et al., analyze climatic attributes as
investigated by Stein et al., apply advanced causal Al models
as explored by Kurtanjek, address uncertainties in sensory
evaluation as done by Xu and Xu, utilize FT-IR spectroscopy
for rapid monitoring as demonstrated by Preserova et al.,
or provide a comparative analysis of domestic versus foreign
wines as done by Ofoedu et al.

2) EFFECTIVE VARIABLES AND THEIR DEFINITIONS

Zhan et al. highlighted variables such as alcohol content,
sulphates, total sulfur dioxide, and citric acid, which were
chosen for their significant impact on wine quality. These
variables were identified based on their strong correlation
with wine quality, as shown through heatmap analysis.

Tindal et al. highlighted variables such as temperature,
mixing regimes, and oxidation levels, which are critical in
the phenolic extraction process. These variables are defined
within the context of their impact on phenolic behavior,
influencing wine color, flavor, and stability. The rationale
behind their selection is based on their direct effect on
the kinetic and spatial distribution of phenolics during
fermentation.

Hou et al. focused on both physicochemical indicators
(e.g., acidity, sugar content) and sensory attributes (e.g.,
aroma, taste) to evaluate wine quality. They emphasized
the role of aromatic substances in determining quality
and used cluster analysis to classify wine based on these
attributes. The rationale behind their selection is to provide
a comprehensive assessment that captures both chemical and
sensory dimensions.
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Cozzolino et al. highlighted the use of spectroscopic
techniques (e.g., visible, near-infrared, mid-infrared) to
measure phenolic compounds in grapes and wines. These
variables were selected for their ability to provide rapid and
non-destructive analysis of key phenolic compounds that
influence wine quality.

Arcanjo et al. focused on phenolic composition,
flavonoids, anthocyanins, and antioxidant activity. They
selected these variables for their significant impact on wine
quality, particularly in terms of sensory attributes like color,
flavor, bitterness, and astringency, as well as health benefits
due to antioxidant properties.

Arapitsas et al. highlighted the impact of SO2 on fla-
vanols and indoles, emphasizing the formation of sulfonated
derivatives and their influence on wine quality, particularly in
aged wines. These variables were selected to understand the
chemical changes that occur during wine aging and the role
of SO2 in modulating wine quality.

Luo et al. highlighted volatile compounds such as linalool,
hexyl acetate, and 2-phenylethyl acetate, which were chosen
for their significant correlations with wine quality scores.
These variables were identified based on their impact on the
aroma profile of the wine, which is a critical factor in quality
assessment.

Stein et al. highlighted climatic attributes such as rainfall,
temperature, and solar radiation, which were chosen for
their significant impact on the physicochemical proper-
ties of wines. These variables were identified based on
their influence on total acidity, anthocyanins, pH, tan-
nins, and total polyphenols, which are crucial for wine
quality.

Kurtanjek highlighted process variables such as tem-
perature, pH, and fat content in dairy products, as well
as alcohol and volatile acidity in wines, using Bayesian
networks and deep learning to infer causal relationships and
intervention effects. These variables were selected based on
their significant impact on food quality and consumer sensory
assessments.

Xu and Xu focused on sensory attributes such as taste,
aroma, and appearance, using a cloud model to quantify
these subjective measures. These variables were selected to
address the uncertainty and subjectivity inherent in sensory
evaluations.

Preserova et al. focused on total phenolic compounds
(TPC) and total antioxidant activity (TAA) using FT-
IR spectroscopy. These variables were selected for their
significant impact on the quality and health benefits of wine.
The rationale behind their selection is to provide a rapid,
non-destructive method for monitoring changes in these
compounds during the winemaking process.

Supriatna et al. focused on a comprehensive set of
physicochemical attributes, including fixed acidity, volatile
acidity, citric acid, residual sugar, chlorides, free sulfur
dioxide, total sulfur dioxide, density, pH, sulfates, and alcohol
content. These variables were selected for their relevance to
wine quality and ability to be measured consistently.
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Sédenz-Navajas et al. emphasized the relationship between
sensory attributes (e.g., mouthfeel dimensions like dry, silky,
sticky, grainy, prickly, and oily) and chemical measurements
(e.g., tannin concentration, tannin activity, pH, ethanol
content, and spectroscopic measures). The rationale behind
selecting these variables is to understand how different
sensory dimensions are influenced by specific chemical
components.

Ofoedu et al. focused on physicochemical properties
such as pH, total titratable acidity (TTA), total sugar,
Brix, alcohol content, polyphenols, flavonoids, tannins, and
antioxidant capacity using DPPH, FRAP, and TEAC assays.
These variables were selected to provide a comprehensive
comparison of domestic and foreign red wines in terms of
quality and authenticity.

Sen et al. highlighted the combination of visible and MIR
spectra to predict chemical parameters like anthocyanins,
total phenols, glycerol, the glycerol/ethanol ratio, malic acid,
o-coumaric acid, and °Brix. These variables were selected for
their ability to improve predictive accuracy using multivariate
methods.

In our study, effective variables included chemical prop-
erties of the wine (e.g., acidity, sugar content) chosen for
their significant impact on the overall quality of the wine. The
rationale behind their selection is to capture critical chemical
dimensions that influence wine quality.

3) PERFORMANCE COMPARISON

Our proposed method using machine learning algorithms
shows promise in providing more precise and comprehensive
wine quality assessments compared to the approaches
reviewed by Zhan et al, Tindal et al., Hou et al,
Cozzolino et al., Arcanjo et al., Arapitsas et al., Luo et al.,
Stein et al., Kurtanjek, Xu and Xu, Preserova et al.,
Supriatna et al., Sdenz-Navajas et al., Ofoedu et al., and
Sen et al. While Zhan et al. provide a comparative analysis
of machine learning techniques, Tindal et al.’s models are
excellent for understanding the fundamental processes during
fermentation, Hou et al.’s study provides a holistic view by
integrating sensory evaluation, Cozzolino et al.’s research
offers rapid phenolic measurement using spectroscopy,
Arcanjo et al. focus on antioxidant activity and phenolic
composition, Arapitsas et al. highlight the impact of SO2
on wine chemistry, Luo et al. focus on the influence
of volatile compounds, Stein et al. analyze the impact
of climatic attributes, Kurtanjek applies advanced causal
Al models, Xu and Xu address uncertainties in sensory
evaluation, Preserova et al. utilize FT-IR spectroscopy for
rapid monitoring of phenolic compounds and antioxidant
activity, Supriatna et al. demonstrate the effectiveness of
ensemble classifiers, Sdenz-Navajas et al. explore cross-
modal interactions between aroma and mouthfeel, Ofoedu
et al. provide a comprehensive evaluation of domestic and
foreign wines, and Sen et al. combine visible and MIR
spectra for improved chemical parameter prediction. Our
approach excels in practical application for quality control
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and prediction in winemaking. The ability to analyze large
datasets and adjust for numerous variables simultaneously
gives our method a potential edge in real-world winemaking
scenarios.

IV. PROPOSED MODEL

A. DATASET

This paper utilizes the renowned datasets from the University
of California Irvine (UCI) Machine Learning Reposi-
tory [35], with specific emphasis on the Wine Quality Data
Set [36]. This dataset encompasses entries from two subsets
of Vinho Verde wines from northern Portugal, which are
categorized into red and white types. Our analysis will
primarily focus on the subset consisting of 1,599 red wine
samples, whose physicochemical features are presented in
Table 2. Each sample is analyzed based on 11 distinct
physicochemical traits and assigned a quality rating ranging
from O (indicating very poor quality) to 10 (indicating
excellent quality), each rating represented as an integer.

TABLE 2. Units of physicochemical features in wine quality dataset.

Feature Unit

Fixed Acidity g(tartaric acid)/dm®
Volatile Acidity g(acetic acid)/dm®
Citric Acid g/dm3

Residual Sugar g/dm3

Chlorides g(sodium chloride)/dm?
Free Sulfur Dioxide | mg/dm3

Total Sulfur Dioxide | mg/dm3

Density g/cm®

pH unitless

Sulphates g(potassium sulphate)/dm®
Alcohol % volume

Quality score (0-10)

B. STRATEGIES TO MITIGATE OVERFITTING

Overfitting is a common challenge in machine learning
where a model performs well on the training data but
performs poorly on unseen data. To address this, we propose
two strategies: ensuring the interpretability of features and
achieving better fitting and generalization capabilities.

1) ENSURING THE INTERPRETABILITY OF FEATURES
Interpretable features can significantly enhance a model’s
ability to generalize by providing insights into the relation-
ship between the input variables and the target variable. Inter-
pretability goes beyond just revealing feature importance;
it involves understanding relationships between multiple
features and how they interact to influence predictions [37].
This deeper exploration can unearth synergies or antagonisms
between features, hence providing a more comprehensive
understanding of the model’s behavior [37]. Characterizing
feature importance assists in explaining the primary factors
affecting model outcomes, thus facilitating the feature
extraction processes [38].

Various methods and algorithms such as Local Inter-
pretable Model-Agnostic Explanations (LIME) and Shapley
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Additive Explanation have been employed to enhance the
interpretability of machine learning models in different
domains, including healthcare and finance [39], [40]. These
techniques help in attributing output values to specific
features, enabling researchers to analyze and interpret model
decisions effectively [39], [40]. In our study, we focus on the
following features from the wine quality dataset:

« Fixed Acidity: The level of non-volatile acids present in
wine.

« Volatile Acidity: The amount of acetic acid in wine,
which can lead to an unpleasant vinegar taste.

« Citric Acid: This contributes to the freshness and flavor
of the wine.

o Residual Sugar: The amount of sugar remaining after
fermentation stops.

o Chlorides: The amount of salt present in the wine.

o Free Sulfur Dioxide: The free form of SO2 acts as an
anti-microbial and antioxidant.

« Total Sulfur Dioxide: The total amount of SO2 in both
free and bound forms.

« Density: The density of the wine is related to its alcohol
and sugar content.

« pH: A measure related to the acidity of the wine.

« Sulphates: These contribute to the wine’s antimicrobial
and antioxidant properties.

o Alcohol: The alcohol content of the wine.

By understanding these features, we can craft more
interpretable models that highlight the significant predictors
of wine quality.

2) ACHIEVING BETTER FITTING AND GENERALIZATION
CAPABILITIES

Multiple techniques can help improve model’s fitting and
generalization capabilities:

o Cross-Validation: Implementing k-fold cross-
validation aids in evaluating the model’s performance on
different subsets of the data, thereby providing a more
robust estimate of its accuracy. This process is repeated
multiple times to ensure the robustness and reliability of
the model [41]. Cross-validation is crucial in preventing
overfitting, a common issue in machine learning where
the model performs well on the training data but fails to
generalize to new, unseen data [42].

Various forms of cross-validation exist, such as k-Fold
Cross-Validation, where the data is divided into k
subsets, and the model is trained and tested k times, each
time using a different subset as the test set [43]. Another
approach is leave-one-out cross-validation, where each
data point is used as a test set once while the model
is trained on the remaining data points [44]. These
techniques aid in optimizing model hyperparameters,
selecting the best features, and assessing the model’s
performance on unseen data [45].

Cross-validation is not specific to any type of machine
learning algorithm but is a widely accepted practice
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in the field. It is extensively used in various domains
such as in healthcare for disease prediction [46], image
classification [44], environmental studies [47], and
material science [45].

« Ensemble Methods: Methods like Random Forest and
XGBoost aggregate multiple models to improve predic-
tive performance and robustness. Ensemble methods in
machine learning refer to supervised learning models
that combine different individual models to improve
predictive performance. These methods integrate diverse
data sources and computational functions to enhance the
accuracy and robustness of predictions [48]. Ensemble
methods have been applied in various domains, such
as healthcare for cancer prognosis and diagnosis [48],
agriculture for crop yield prediction [49], and activity
recognition using smartphone sensors [50].

Among the basic ensemble methods, we have majority
voting, where multiple models combine their predictions
to decide the final output [51]. Other ways of creating
ensembles include Basic Ensemble Method (BEM),
Generalised Ensemble Method (GEM), and stacked
generalised ensembles [49]. The goal of these methods is
to leverage the strengths of different models to improve
the overall performance.

Ensemble learning addresses key challenges in super-
vised learning that include the statistical problem (lim-
ited training data), the computational problem (complex
model search space), and the representational problem
(model compatibility) [52]. By combining multiple
models, an ensemble method can mitigate these issues
and achieve higher accuracy compared to individual
algorithms [53].

Furthermore, ensemble methods can be tailored to
specific applications, such as using stacking ensemble
learning for predicting renal cell carcinoma with a high
degree of accuracy [54]. Different ensemble strategies,
such as iterative ensemble learning and attention net-
work ensemble learning, can be employed to integrate
information from diverse feature types and improve
predictive modelling [55].

o Hyperparameter Tuning: Optimizing the model’s
hyperparameters ensures that it is neither too sim-
ple nor too complex, providing a balance between
bias and variance. Hyperparameter tuning in machine
learning involves selecting the optimal values for
the hyperparameters within these models to enhance
their performance [56]. Hyperparameters influence the
learning process of machine learning models, and tuning
them involves identifying the best values to make this
learning process more effective [57]. This optimiza-
tion aims to enhance the predictability of machine
learning algorithms while minimizing the consumption
of computational resources [58]. The automation of
hyperparameter tuning reduces the manual effort often
required to explore various configuration settings,
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leading to improved accuracy and reproducibility of
machine learning models [59].

Hyperparameter optimization is essential for deploying
effective machine learning algorithms, as it significantly
impacts their predictive power and generalization abil-
ity [60]. The process involves determining the best
values for each hyperparameter in a machine learning
algorithm to achieve the most effective results [61].
Proper tuning of hyperparameters can result in sub-
stantial performance gains, depending on the algorithm
used [62]. Hyperparameters control the behavior of
training algorithms and directly affect the performance
of machine learning models [63].

By applying these strategies, our aim is to develop a model
that fits the training data well, but also generalizes effectively
to unseen data, thus providing reliable predictions.

C. INPUT VARIABLES
To comprehensively assess the impact of different factors
on wine quality, our plan includes exploring all possible
combinations of the 11 variables (excluding the quality
variable itself) as inputs for our models. These 11 variables
are acidity, volatile acidity, citric acid, residual sugar,
chlorides, free sulfur dioxide, total sulfur dioxide, density,
pH value, sulfates, and alcohol content. This approach entails
calculating the total number of subsets of these 11 variables,
enabling us to methodically evaluate how each combination
of variables affects the quality of Portuguese wine.

When finding $x$-variable subsets from a set of $n$
elements, we use the general formula for combinations:

n!

Clnx) = o= M)

Here:

« n! denotes the factorial of n, which is the product of all
positive integers up to n,

¢ x!denotes the factorial of x,

« n — x represents the difference between n and x.

This formula calculates the number of different ways
to choose x elements from a set of n elements, without
considering the order of their selection.

For instance, with n = 11 and x = 2, there is a total of
55 2-variable subsets of the variables:

o (acidity, volatile acidity), (acidity, citric acid), ...,

(acidity, alcohol content),

e ..., (volatile acidity, citric acid), ..., (volatile acidity,
alcohol content),

e ..., (citric acid, residual sugar), ..., (free sulfur dioxide,
total sulfur dioxide),

e ..., (sulfates, alcohol content).

Similarly, we will calculate subsets for all counts of
variables, from x = 1 to x = 11. These subsets represent
all potential pairings of variables that could be explored to
assess their impact on the quality of Portuguese wine.
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The subsequent table illustrates the number of ways to
select various numbers of elements:

TABLE 3. The number of ways to choose elements.

Number of Elements Chosen ~ Number of Ways
To choose 1 element 11 ways
To choose 2 elements 55 ways
To choose 3 elements 165 ways
To choose 4 elements 330 ways
To choose 5 elements 462 ways
To choose 6 elements 462 ways
To choose 7 elements 330 ways
To choose 8 elements 165 ways
To choose 9 elements 55 ways
To choose 10 elements 11 ways
To choose all 11 elements 1 way
Total 2047 ways

The total number of ways to choose from 1 to 11 elements
from a set of 11 elements equals 2,047. To show that the total
number of subsets (including the empty set and the set itself)
of a set with n elements equals to 2", one might consider
a simple argument based on the concept of choice for each
element in the set: each element can either be included in a
subset or not. Since there are two choices for each of the n
elements, the total number of subsets amounts to 2". After
excluding the empty set, the solution becomes 2" —1 = 2047.

D. EXPLORING THE DIVERSITY OF WINE QUALITY AND
THE ACCURACY OF RANDOM PREDICTIONS

We investigated the number of distinct quality values within
the original wine data and analyzed the outcomes of random
predictions. The wine quality data contains six distinct
values: 3,4, 5,6, 7, and 8.

If we were to divide the dataset into samples of 1280 and
320 using an 80%-20% ratio and then make random guesses
for each quality in the 320 subset, we could calculate the
expected number of correct guesses. With 6 distinct quality
values, the probability of a correct guess for any given
wine is 1/6. This probability suggests that we could expect,
on average, 53 correct guesses out of 320.

Exp. corr. guesses = Sample size x Prob. of correct guess

2
1
Expected correct guesses for 320 = 320 x 3 3)
3
Expected correct guesses for 320 = e ~ 53.33 @)

Hence, we would expect to guess correctly approximately
53 times out of 320 random guesses. If any machine learning
algorithm’s accuracy is estimated to be close to 1/6, these
predictions would be considered statistically insignificant.

To evaluate the statistical significance of the mean squared
error (MSE) derived from machine learning algorithm
predictions on a dataset of 320 wine samples, we need to
calculate the expected MSE when guessing randomly among
the six distinct quality values in the wine dataset.
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Mean Squared Error (MSE) computation for random
guesses requires evaluating the expected squared difference
between the randomly guessed quality values and the actual
quality values. Given our entirely random guesses, the
expected squared error for a single prediction would be
the average of the squared differences between a guessed
value and all potential actual values—assuming a uniform
distribution of quality values.

Let’s calculate the expected MSE under these simplified
assumptions:

E=nxp 5)

where:

o E is the expected number of correct guesses.

« nis the number of samples or guesses made (320 in this
case).

« p is the probability of a correct guess, %.

] n
MSE = - i—Al‘z 6
n;@ D) (©)

where:
o n is the number of samples.
« y; is the actual value for the i-th sample.
o y; is the predicted value for the i-th sample.

1
Expected Squared Difference = —— Z Z (q1 — ¢)*
101 q1€0 920

)

where:

o Qs the set of all possible quality values: 3,4, 5, 6,7, 8.
o |Q| is the number of elements in Q (6 in this case).

Following these calculations:

. 1 2
Expected Sq. Difference = 6 Z Z (g1 — q2)” = 5.83
q1€Q q2inQ

®)

This value represents the Mean Squared Error (MSE)
expected when making random guesses for the quality values,
assuming those guesses are uniformly distributed across
the set Q. The expected MSE for our random guesses,
given a uniform distribution of actual quality values, would
be approximately 5.83. This value represents the average
squared difference between the guessed quality values and the
actual quality values across all possible guesses and actual
values. This information is vital as we delve deeper into
the accuracy and efficacy of machine learning predictions in
subsequent chapters.

V. METHODOLOGY

Figure 1 illustrates our methodology, which involves iterating
through 2,047 combinations of variable subsets using Logis-
tic Regression, Support Vector Machines (SVM), Decision
Tree Classifiers, and Random Forest Models to determine
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their accuracies. For each subset, we divide our wine dataset
into a training set and a testing set, allocating eighty
percent of the data randomly to the training set and the
remaining twenty percent to the testing set. The training
dataset is used to train the models, while the testing dataset
is used to assess their performance. We employ various
machine learning models, including Logistic Regression,
Support Vector Machine (SVM), Decision Tree Classifier,
and Random Forest Models, to analyze the dataset. The
performance of each model is evaluated by calculating its
accuracy and Mean Squared Error (MSE).

2047 ML
Subsets of Models
Variables

Highest
Accuracy

= Accuracies

Logistic
Regression ass

“ Accuracies

Random .
Forest oss

“Accuracies
Random om
Forest [— |oss
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\ i y /': Forest . :»
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FIGURE 1. Our methodology.

A. PSEUDO CODE

1. Import necessary libraries
2. Set parameters
CV_Folds: Number of cross-validation folds
number_of_tests: Number of tests to perform
param_grids: Dictionary containing parameter grids for
Random Forest, Logistic Regression, SVM, and Decision
Tree models
thresholds: Minimum acceptable score for each model type
3. Define function evaluate_model_with_grid_search:
Inputs: df_subset (subset of features), model (the ML
model), target (the target variable), param_grid (grid of
parameters for the model)
Process:

Split data into training and test sets

Normalize feature values

Initialize and fit GridSearchCV with model and

parameters

Make predictions on test set

Calculate and return micro f1 score, mean squared error,

and best parameters
4. Load the dataset and preprocess:
Read dataset
Separate features and target
Define models dictionary with instances of Random Forest
Classifier, Logistic Regression, SVC, and
DecisionTreeClassifier
5. Main Loop:

Iterate over each model in models dictionary

for each model do

for each test in number_of_tests do
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for each combination of feature subsets do
Use evaluate_model_with_grid_search to get
model performance metrics
if score exceeds predefined threshold then
Update best score, parameters, and
combination
Save test number, model name, best feature
combination, score, MSE, and best parameters
toa CSV file
end if
end for
end for
end for
6. Output completion message

In our paper, we enhanced the default machine learning
accuracies by approximately 1-2% through the tuning of
hyperparameters. By pushing the boundaries of ML algo-
rithms and rigorously analyzing our results at these limits,
we identified the most robust solutions. Here’s an overview
of the key strategies we employed and the benefits they
offered:

o Hyperparameter Tuning with GridSearchCV: We
employed GridSearchCV to systematically explore a
wide range of hyperparameter combinations for several
models, including Random Forest Classifier, Logistic
Regression, SVC, and DecisionTreeClassifier. This
methodical approach allowed us to pinpoint the optimal
settings for each model, contributing to the accuracy
improvements.

« Feature Selection: By examining all possible combi-
nations of features from the dataset, we were able to
identify the most predictive subsets for each model.
This improved model accuracy and provided insights
into which features were most significant for predicting
outcomes, enhancing our understanding of the data.

« Normalization: We applied MinMaxScaler to normal-
ize the feature values, ensuring that our models were not
biased by the scale of the data.

« Evaluation Metrics: Focusing on both the f1 score and
mean squared error allowed us to have a comprehensive
view of model performance beyond simple accuracy
measures.

o Iterative Testing: By running a specified number of
tests for each model and feature combination, we were
able to iteratively refine our models and hyperparam-
eters. This approach also enabled us to estimate the
stability and robustness of each model under different
configurations.

« Result Analysis and Reporting: For each model and
test iteration, we recorded the best feature combination,
score, mean squared error, and the corresponding hyper-
parameters. This detailed record-keeping facilitated
deeper analysis of what worked best and why, allowing
us to extract actionable insights and best practices for
future research.
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o Performance Thresholds: We set minimum perfor-
mance thresholds to focus our efforts on the most
promising model configurations.

Through these strategies, we deepened our understanding
of model behavior at its performance limits.

B. ESTABLISHING THE OPTIMAL ML MODEL FOR WINE
QUALITY ANALYSIS

In this part of our research, we compared the Random Forest,
Logistic Regression, SVM, and Decision Tree models to
select the one with the highest accuracy for subsequent
critical variable analysis. We conducted five tests using the
Random Forest, Decision Tree, Support Vector Machine, and
Logistic Regression models, each with 2047 subsets. In our
research, we included the highest accuracies from the first
10 results of each test. The results are given in Appendix A
for Random Forest, in Appendix B for Decision Tree,
in Appendix C for Logistic Regression, and in Appendix D
for Support Vector Machine.

Our study conclusively demonstrates the superiority of
the Random Forest model as the most effective predictor of
Portuguese red wine quality, assessed on a scale from O to 10.
Contrary to our initial assumption that alternative machine
learning algorithms might excel in smaller subsets, the
Random Forest model uniformly outperformed other mod-
els, including Logistic Regression, which is traditionally
favored for its simplicity and effectiveness with fewer
variables. Across all tested subsets, the Random Forest
model consistently emerged as the top performer, leading
us to the definitive conclusion that further exploration of
alternative machine learning algorithms is unnecessary when
the Random Forest provides superior results.

C. PRECISION-RECALL AND ROC ANALYSIS FOR RANDOM
FOREST

To further demonstrate the applicability of our results,
we included Precision-Recall (PR) and Receiver Operating
Characteristic (ROC) figures specific to the wine quality
dataset. For this part of the study, the target variable, ‘quality*,
was binarized to classify wines as “good” (quality >= 7) or
“not good” (quality < 7). The PR and ROC curves provide
visual evidence of the model’s performance. These analyses
were performed using the Random Forest Classifier.

1) MATHEMATICAL BACKGROUND
a: PRECISION-RECALL CURVE
- Precision (Positive Predictive Value) is defined as:

- TP
Precision = —— O]
TP + FP
where TP is the number of true positive predictions and FP is
the number of false positive predictions.

- Recall (Sensitivity or True Positive Rate) is defined as:

TP

Recall = ——
TP + FN

(10)
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where TP is the number of true positive predictions and FN
is the number of false negative predictions.

- The Precision-Recall curve is a plot of Precision (y-axis)
versus Recall (x-axis) for different threshold values. A curve
closer to the top-right corner indicates better performance,
with high precision and high recall.

b: ROC CURVE
- True Positive Rate (Recall or Sensitivity) is defined as:
TP
TPR= —— 1D
TP + FN
- False Positive Rate is defined as:
FP
FPR= —— (12)
FP+1TN

where TN is the number of true negative predictions.

- The ROC curve in Figure 3 is a plot of the True
Positive Rate (y-axis) versus the False Positive Rate (x-axis)
for different threshold values. A curve closer to the top-
left corner indicates better performance. The Area Under
the Curve (AUC) provides a single measure of overall
model performance, with values closer to 1 indicating better
performance.

2) PRECISION-RECALL CURVE

The Precision-Recall curve in Figure 2 plots Precision
against Recall for different threshold values. Precision is
the ratio of true positive predictions to the sum of true
positive and false positive predictions, indicating the accuracy
of positive predictions. Recall (Sensitivity) is the ratio of
true positive predictions to the sum of true positive and
false negative predictions, indicating the coverage of actual
positive instances. Precision, also known as positive predic-
tive value, measures the proportion of correctly predicted
positive instances among all instances predicted as positive,
while recall, also known as sensitivity or true positive
rate, measures the proportion of correctly predicted positive
instances out of all actual positive instances [64]. This curve
is particularly useful when dealing with imbalanced datasets,
where one class significantly outnumbers the other, as it
provides a more informative picture of model performance
compared to ROC curves in such scenarios [65]. The
Precision-Recall curve is especially beneficial for evaluating
classification performance in situations where the data is
heavily imbalanced in favor of the negative class, such as in
information retrieval systems [66].

The area under the Precision-Recall curve (AUPRC) is a
common metric used to assess model performance, especially
in cases involving rare events, as it is not dependent on model
specificity and is suitable for imbalanced datasets [67]. This
metric, along with other evaluation metrics like accuracy, F1
score, and the area under the ROC curve, provides a compre-
hensive assessment of a model’s predictive capabilities [68].
The Precision-Recall curve is often used in conjunction with
other metrics like the receiver operating characteristic (ROC)
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curve to evaluate prediction performance in various domains,
including healthcare for tasks such as predicting stroke events
or classifying skin lesions [69], [70].

A curve closer to the top-right corner indicates better
performance, with high precision and high recall. For this
wine dataset, high precision means that most of the wines
predicted as ‘““‘good” are actually ‘“good,” and high recall
means that most of the “good’” wines are correctly identified.

Precision-Recall Curve with Thresholds

3 073
10 —— Precision- Recall Curve

00 02 04 06 08 10
Recall

FIGURE 2. Precision-Recall Curve for Wine Quality Prediction.

Analysis: The Precision-Recall curve in Figure 2 shows
that the model maintains high precision and recall at lower
thresholds, indicating that the Random Forest Classifier
effectively identifies good quality wines with minimal
false positives. However, as the recall increases, precision
decreases, suggesting that the model encounters more false
positives at higher thresholds.

3) ROC CURVE

The Receiver Operating Characteristic (ROC) curve in
Figure 3 plots the True Positive Rate (Recall) against the
False Positive Rate for different threshold values. The False
Positive Rate is the ratio of false positive predictions to the
sum of false positive and true negative predictions. A curve
closer to the top-left corner indicates better performance, with
a high true positive rate and a low false positive rate.

The Receiver Operating Characteristic (ROC) curve is a
fundamental tool in machine learning for evaluating the per-
formance of classification models, particularly in diagnostic
medicine studies [71]. The ROC curve plots the true positive
rate against the false positive rate as the discrimination
threshold varies, providing a visual representation of a
model’s ability to distinguish between classes [72]. It is
widely used in biomedical research to assess the performance
of diagnostic tests, where the area under the ROC curve
(AUCQ) is a preferred measure as it does not depend on specific
discrimination thresholds [73].

ROC curves are not limited to binary classification tasks
but can also be extended to regression problems, survival
analysis, and outlier detection [74], [75] [76]. They have been
applied in various fields such as biology, medicine, and com-
puter science to assess classifier performance and understand
the trade-off between sensitivity and specificity [77], [78].
ROC curves have been utilized in the context of visual search
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models and in the evaluation of virtual screening and docking
performance [79], [80].

ROC curves can be used to compare different algorithms
or models by analyzing the area under the curve (AUC) and
assessing discrimination capabilities [81], [82].

For this wine dataset, a high True Positive Rate means that
most of the “good” wines are correctly identified, and a low
False Positive Rate means that few “not good” wines are
incorrectly classified as “good.” The Area Under the Curve
(AUC) for the ROC curve provides a single measure of overall
model performance, with values closer to 1 indicating better
performance.

Receiver Operating Characteristic (ROC) Curve with Thresholds
005 000

1.0{ —— RoC curve

00 02 04 06
False Positive Rate

FIGURE 3. ROC curve for wine quality prediction.

Analysis: The ROC curve in Figure 3 indicates excellent
model performance, with the Random Forest Classifier
achieving a high true positive rate and a low false positive
rate. The curve’s proximity to the top-left corner and the
high AUC value suggest that the model is highly effective in
distinguishing between good and not good quality wines.

VI. REFINING THE MODEL: SINGLE VARIABLE ANALYSIS
FOR WINE QUALITY

Upon examining Table 4, we observe that even single
variables exhibit surprisingly high accuracy. One might
anticipate their accuracies to be around 1/6, yet they
significantly surpass this expectation. This raises a question:
does their performance deem them critical for evaluating
wine quality? It might seem that accuracies exceeding 1/6
indicate critical importance, but this is not necessarily the
case. To grasp the underlying dynamics, an analysis of the
wine quality data is essential.

The histogram in Fig 4 reveals an uneven distribution of
test samples across different wine qualities. The learning
model identifies a higher probability of wine samples being
rated 5, 6, or 7, even when trained with variables that
are ostensibly unrelated. In scenarios where the model is
uncertain, it tends to predict a quality of 5, achieving accuracy
superior to random guessing. A purely random guess
would correctly predict more than 53 cases (approximately
53.33 qualities), whereas our model impressively forecasts
around 160 correct guesses, all while maintaining a remark-
ably low Mean Squared Error (MSE) of about 0.6. This
phenomenon was further elaborated in the section ‘Exploring
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TABLE 4. Average scores and MSE of single variables for random forest
model across 5 tests.

Variable Average Score Average MSE
Alcohol 0.545625 0.664375
Sulphates 0.484375 0.760625
Total Sulfur Dioxide 0.482500 0.760625
Density 0.476875 0.913125
Free Sulfur Dioxide 0.473125 0.924375
Volatile Acidity 0.471875 0.845625
Citric Acid 0.460625 0.860625
Fixed Acidity 0.460000 0.945000
Residual Sugar 0.439375 0.915000
pH 0.433750 0.913750
Chlorides 0.423750 0.962500

the Diversity of Wine Quality and the Accuracy of Random
Predictions’ of our document, where we demonstrate that the
MSE of random guesses, not based on a quality scale of 0 to
10 but on the actual observed quality levels of 3, 4, 5, 6, 7,
and 8, can reach as high as 5.83.

Number of Wine Samples for Each Quality Score

Number of Samples

Quality Score

FIGURE 4. Histogram for wine quality.

The Random Forest Model is an ensemble learning method
used for classification and regression tasks. Random Forest
is a renowned machine learning algorithm introduced by
Breiman in 2001 [83]. It aggregates multiple decision trees
into a “forest” to improve prediction accuracy and combat
overfitting [83]. The Random Forest model is commonly
utilized for regression and nonparametric classification tasks
based on the decision tree algorithm [84]. It constructs a series
of binary trees using recursive partitioning, enabling it to
effectively handle nonlinear data [85]. The model randomly
selects training datasets to create numerous classification
and regression trees, with predictions being generated by
consolidating the outcomes from each tree [86].

Random Forest models are recognized for their adapt-
ability and predictive capabilities [87]. They are particularly
well-suited for medical data modeling and have demonstrated
effectiveness in accurately modeling biomedical data for
various applications [88]. The algorithm excels at capturing
nonlinear relationships in data, making it suitable for
intricate datasets with complex relationships [89]. Random
Forest models find applications in various fields such as
genetics, environmental science, and finance due to their
robustness and efficiency [90], [91] [92]. It operates by
constructing a multitude of decision trees during the training
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process and outputting the class that is the mode of the
classes (classification) or mean prediction (regression) of the
individual trees. The model divides the data into subsets to
train each tree, ensuring that the trees are diverse and reduce
overfitting.

The process is as follows:

1) Bootstrap Aggregating (Bagging): Random Forest
starts by performing bootstrap aggregating, or bagging,
where it randomly selects a subset of the training
data with replacement to train each tree. This process
ensures that each tree learns from a different portion of
the data, making the model more robust.

2) Building Decision Trees: Each tree in a Random
Forest grows by making decisions based on the values
of different features in the data. A decision (or split) is
made at each node of a tree, dividing the data into two
subsets. This process continues recursively, forming a
tree structure with nodes and leaves.

e Nodes: Each node represents a condition on a
single feature, designed to split the dataset into two
so that similar response values end up in the same
set.

o Leaves: Leaves represent the final outcomes or
decision results. In classification tasks, a leaf
represents a class label; in regression tasks,
it represents a continuous outcome.

3) Random Feature Selection: Unlike a single decision
tree, Random Forest introduces more randomness
when it splits nodes by selecting a random subset of the
features. This strategy makes the trees more diverse and
leads to more robust overall predictions.

4) Aggregating Trees: After training, predictions are
made by aggregating the predictions of the ensemble
of trees. For classification tasks, this typically means
taking the majority vote among all trees. For regression
tasks, it means taking the average of the predictions.

In summary, the Random Forest Model creates a ‘forest’ of
diverse trees to make predictions, thereby reducing the risk of
overfitting and improving prediction accuracy.

Therefore, predictions made by a Random Forest, even
when trained with the least important variable, are not
random. The model is informed beforehand that the quality
of the collected Portuguese wines typically ranges between
5 and 7. Given this, how can we determine which variables
are critical when even single variables, or no variables at all,
lead to high accuracy?

The Random Forest Model understands the probabilities of
wine quality being 3, 4, 5, 6, 7, and 8, as detailed in Table 5.
However, its predictive capability exceeds mere probability
matching. We will demonstrate that while mere guessing
based on these probabilities yields an accuracy of around
0.35, the Random Forest’s predictions fluctuate around an
accuracy of 0.40. This improvement is due to the model’s
ability to discern patterns in the output variable that transcend
simple probabilistic distributions.
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TABLE 5. Probabilities of wine quality.

Quality  Probability (%)
0.63
3.31
42.59
39.90
12.45

1.13

00NN W

These percentages indicate the distribution of wine quality
ratings in the dataset.

To illustrate our argument that machine learning algo-
rithms can predict the quality of wine with high accuracy even
when the input variable is unrelated, simply by leveraging
the probabilities of the outcomes, we have crafted a concise
Python script. This script, depicted in Figure 5, generates
numbers (output_a) based on the precise probabilities of our
dataset, while simultaneously making guesses (guess_b) with
identical probabilities. Upon executing this script 320 times,
we observe accuracies that align closely with those of
machine learning models, approximately 0.35. Consequently,
this empirically derived accuracy of 0.35 serves as a
foundational benchmark for our predictions, substantiating
the capability of machine learning algorithms to forecast
outcomes effectively through statistical probabilities inherent
in the output, independent of direct relationships with input
variables.

import numpy as np

# Define the probabilities and numbers according to the dataset
probabilities = [0.0063, 0.0331, 0.4259, 0.399, 0.1245, 0.0113]
numbers = [3, 4, 5, 6, 7, 8]

# Ensure the probabilities sum to 1
prob_sum = sum(probabilities)
if prob_sum != 1.0:
probabilities = [p/prob_sum for p in probabilities]

# Initialize the counter for coincidences (accurate guesses)
coincidences = @
# Tterate 320 times
for _ in range(320):
# Machine A output (or the "true" number based on dataset probabilities)
output_a = np.random.choice(numbers, p=probabilities)
# Machine B guess (guessing numbers with the same probabilities)
guess_b = np.random. choice(numbers, p=probabilities)
# Increment coincidences if guess matches the output
if output_a == guess_b:
coincidences += 1
# Calculate and print the accuracy
accuracy = coincidences / 320
print(f"Accuracy: {accuracy}")

FIGURE 5. Estimating machine learning accuracy through probability
matching.

In Table 6, we observe the accuracy outputs of the
Python script in Fig 5, which guesses the qualities by solely
considering the given probabilities.

TABLE 6. Accuracy values.

Test#  Accuracy
1 0.3625
2 0.340625
3 0.3375
4 0.33125
5 0.340625
6 0.334375
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« Without the application of any intelligent method, the
baseline predictive accuracy is approximately 0.16.

o Incorporating human intelligence into the process
increases accuracy to around 0.35.

« Utilizing machine learning algorithms without any
variables yields a baseline accuracy of about 0.40.
Setting the random_state variable to 42 for the
sake of repeatability in our experiments, we achieve an
accuracy of exactly 0.4062.

The results are summarized in Table 7.

TABLE 7. Comparative predictive accuracies.

Method Predictive Accuracy
No intelligence applied 0.16
Probability matching 0.35
ML algorithms (baseline) | 0.40

Indeed, once we grasp what we’re working with, iden-
tifying the critical variables becomes quite straightforward.
The critical variables would be those that elevate the base
accuracy levels from 0.40 to the higher accuracy levels of
0.75. Although accuracy levels of 0.40 are also notable, they
are solely based on the predictive capability of the ML models
by observing the pattern of the output, not the influence
of individual input variables. The improvement in accuracy
from 0.40 to 0.75 is attributable to the combination of input
variables.

Influence of
Subset
Combinations
on Accuracy

0.75
Enhanced Accuracy of
Quality Due to the
Influence of Subset
Combinations

0.40
The Baseline Accuracy
of Quality, Uninfluenced
by Subset Combinations|

it

FIGURE 6. This is where we will conduct our critical variable analysis.

As illustrated in Figure 6, our next step involves identifying
the critical variables capable of elevating the base accuracy
level from 0.4 to 0.75. These variables represent the key
factors our brains use to assess wine quality.

VII. SQUARES TO GRAPES: UNRAVELING THE MYSTIQUE
OF ML WITH SAVANNAH’'S GEOMETRY AND
PORTUGUESE WINE

To conclusively demonstrate that 0.40 serves as a baseline
accuracy for machine learning (ML) algorithms, we propose a
unique experiment. Our aim is to further explore the impact of
seemingly irrelevant variables on model predictions. Specif-
ically, we hypothesize that even when trained on data that
seems entirely unrelated to the target variable, ML algorithms
can still achieve a significant level of accuracy. To test this
hypothesis, we examine an unconventional predictor: the
number of squares in Savannah, Georgia, and its relationship
to the quality of wine in Portugal.
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Our experiment involves modifying a dataset on the quality
of red wine to include only one predictor variable: the number
of squares in Savannah, which is 22. By stripping the dataset
to this single, seemingly irrelevant factor, we aim to challenge
the algorithms’ predictive capabilities.

The methodology follows these steps:

1) Read data from a CSV file named ‘winedata.csv‘,
which now includes only one input variable: the
number of squares in Savannah, Georgia.

2) Designate the ‘quality column as the target variable.

3) Split the dataset, allocating 80% for training and 20%
for testing.

4) Normalize the feature data to ensure that the input
variable is scaled properly for the machine learning
models.

5) Apply four machine learning algorithms: Logistic
Regression, Support Vector Machine (SVM), Decision
Tree Classifier, and Random Forest Classifier.

6) Report the accuracy and Mean Squared Error (MSE)
values for each model to evaluate their performance.

As shown in Table 8, contrary to expectations, the results
show:

TABLE 8. Performance of machine learning algorithms.

Algorithm Accuracy MSE

Logistic Regression 0.4062 1.1219
SVM 0.4062 1.1219
Decision Tree 0.4062 1.1219
Random Forest 0.4062 1.1219

These outcomes suggest that ML algorithms can predict
outcomes with a certain baseline accuracy, purely based on
the distribution inherent in the target variable, regardless
of the relevance of the predictor. This baseline accuracy of
0.40 underscores the potential of ML algorithms to identify
patterns even in seemingly unrelated data. Our experiment
paves the way for identifying ‘critical variables’, those that
can elevate accuracy from this baseline of 0.40 to higher
levels, such as 0.75, thereby revealing the factors that are
genuinely predictive of the target variable’s outcomes.

We have presented an unconventional approach to exam-
ining the predictive capabilities of ML algorithms. This
exploration of the impact of seemingly irrelevant variables on
model predictions challenges traditional perceptions of data
relevance in ML.

Our experiment, which utilizes the number of squares in
Savannah, Georgia, as a predictor for the quality of wine
in Portugal, uniquely illustrates this hypothesis. By demon-
strating that ML algorithms can predict wine quality with a
baseline accuracy of 0.40, based solely on the distribution
inherent in the target variable, we have highlighted an
important aspect of ML, the capability of algorithms to
identify patterns and make predictions even in the absence
of directly relevant data.

This idea of a ‘baseline accuracy’ suggests that there
is a foundational level of predictive capability in ML
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algorithms, independent of the specific characteristics of
the predictor variables. This opens up a broader discussion
about the nature of prediction in ML and the identifica-
tion of ‘critical variables. These are the variables that,
when included in the model, can significantly elevate its
accuracy beyond the baseline. Understanding these vari-
ables can lead to more effective and efficient predictive
models.

High accuracy does not always imply that the variable is
directly related; it can also suggest that there is a pattern
in the quality of Portuguese wines. This pattern could
be attributed to the wine production techniques involving
Portuguese grapes, which yield wine in a consistent manner,
or because the selection process for quality assessment
inherently follows a specific pattern.

VIIl. IDENTIFYING CRITICAL VARIABLES: ADDING
INCREMENTAL CONTRIBUTIONS ON TOP OF

BASELINE ACCURACY

A. ESTABLISHING THE BASELINE

First, we establish the baseline for gauging the significance
(or criticality) of each involved variable. If no variables are
under consideration, we set a preliminary accuracy level—
measured by the micro F1 score—at 0.4062 (our baseline
above) to serve as a reference point.

Baseline accuracy in machine learning refers to the
performance level of a model before any learning or training
is applied to it. Studies have shown that the baseline accuracy
of machine learning models can significantly impact their
performance [93], [94].

B. EXPLORING ALL POSSIBLE COMBINATIONS

We meticulously examine every possible combination of
variables, ranging from individual variables to the collective
analysis of all 11 variables, to evaluate their predictive
power concerning wine quality. This examination begins
with individual variables (single variable subsets), such as
acidity or sugar level, before progressing to their various
combinations, for example, analyzing both acidity and sugar
level simultaneously.

C. DETERMINING VARIABLE IMPORTANCE (CRITICALITY)
For each variable combination, we deploy the Random
Forest algorithm (with random state=42) to predict
wine quality and subsequently calculate the micro F1
score. This process enables us to ascertain the extent
of each variable’s contribution to the predictive accuracy.
In scenarios involving a single variable, the assessment is
straightforward: we compare its score against the baseline
(0.4062). For combinations comprising multiple variables,
we sequentially remove one variable at a time, recompute
the score, and observe the resulting deviation. The magnitude
of this deviation indicates the significance of the omitted
variable.
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D. ILLUSTRATIVE EXAMPLE

Consider a scenario where we analyze a combination of
acidity and alcohol, yielding a score of 0.7. Upon excluding
acidity and relying solely on alcohol, the score reduces
to 0.65, revealing that acidity’s contribution resulted in a
0.05 increase. Conversely, when alcohol is removed, leaving
only acidity, the score drops to 0.6, indicating that alcohol’s
presence contributed to a 0.1 increase in the score.

E. ITERATIVE PROCESS AND UPDATES

This methodology is repeatedly applied across all variable
combinations, with the significance of each variable being
updated whenever its inclusion in a combination leads to an
improved score.

F. CONCLUSION

Upon the completion of this comprehensive analysis,
we report the cumulative significance (or criticality) of each
variable. This scaled outcome elucidates those variables that
are paramount in predicting wine quality, as determined by
their contribution to the accuracy of predictions.

For the critical variable analysis, we consistently set
random_state to 42 in the Random Forest method across
all methodologies, including when calculating the baseline,
to ensure reproducibility, as shown in Table 9.

Let’s reiterate our methodology. We began by evaluating
the Random Forest Model using a variable unrelated to the
study, set to any constant value, to determine the initial
accuracy devoid of the effects of input variables, thereby
establishing a baseline accuracy. This baseline represents the
accuracy achievable in the absence of any input variables.
Subsequently, we explored all possible combinations of
variable subsets, assigning a criticality value to each variable
based upon its contribution to the accuracy of the subset. For
instance, consider a subset containing pH value and chlorine,
which achieves an accuracy of 0.6. If alcohol is added to this
subset and the accuracy increases to (.7, this indicates that
the contribution of alcohol is 0.1, prompting us to increase
alcohol’s criticality value by 0.1. This incremental analysis
was repeated for every subset throughout the iteration
process. Following this analysis, we calculated criticality
values for all variables, which are listed in descending order
in Table 9.

By understanding the baseline accuracy, we can accurately
interpret these numbers as the contributions of each variable
to the overall accuracy. Specifically, when the random state is
set to 42, the cumulative contribution of alcohol to the overall
accuracy across all subset combinations is exactly 48.19.

In Table 9, we note the cumulative criticality of variables.

Algorithm 1 outlines the pseudocode for calculating
the cumulative criticality of each variable. It initiates by
establishing a baseline accuracy, then assesses the criticality
of each variable. This evaluation hinges on observing
incremental improvements in accuracy when each variable
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TABLE 9. Cumulative criticality of variables.

Variable Cum. Criticality
alcohol 48.1917
sulphates 23.8251
density 22.5084
volatile acidity 17.2375
total sulfur dioxide 16.8334
free sulfur dioxide 11.7500
residual sugar 9.8063
pH 9.6021
chlorides 9.3792
fixed acidity 5.5980
citric acid 4.6084

Algorithm 1 Calculate Cumulative Criticalities in Wine
Quality Prediction
Initialize data variables and load the dataset:

o Load the dataset from ‘winequality-red.csv’

o Define X as features (all columns except ‘quality’)

o Define y as the target (‘quality’)
Initialize the criticalities dictionary with variables as keys
and zeroes as values
Set the base F1 score for zero variable subset to 0.4062
Set random_state to 42
Define a function to calculate the micro F1 score:

« Split the data into training and testing sets
« Initialize the Random Forest Classifier
o Train the classifier on the training data
« Predict the target variable for the test data

o Calculate and return the micro F1 score
Iterate through all subsets of variables
from 1to 11:

o For each subset:

possible

-- Convert the subset to a list and select the corre-
sponding columns from X

- - Calculate the current F1 score

- - If the subset has only one variable:

# Update the variable’s criticality
- - If the subset has more than one variable:
% For each variable in the subset:

- Create a new subset without the current
variable

- Calculate the F1 score without the current
variable

- Update the variable’s criticality

Output total criticalities for each variable

is included into the subsets as it iterates through all possible
combinations.

IX. CRITICALITY ANALYSIS IN ACTION: QUANTIFYING
THE IMPORTANCE OF PLAYERS IN SOCCER FOR
ENHANCED TEAM DYNAMICS

Numerous research papers have produced varying orders of
criticality for variables, many of which use the same wine
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dataset as our study. In our research, we do not only rank
the variables by their criticality, but we also assign a value
to each variable. This approach quantifies the extent to which
one variable is more important than another, as outlined in
Table 10.

To simplify the understanding of how to solve the
incremental criticality problem using the baseline accuracy
methodology, we present an analogy involving a soccer team.
Suppose you are the coach of soccer Team A, and you
intend to understand the criticality of your star players. While
you recognize they are all significant, the hierarchy of their
importance remains unclear.

A. QUANTIFYING STARDOM: A CRITICALITY ANALYSIS
APPROACH TO RANK STAR PLAYERS BY IMPORTANCE
Imagine that we have 11 star players, and we aim to
assign a criticality value to each, recognizing their unique
contributions. Despite knowing they are all stars, empirically
ranking their importance proves challenging. Our goal is to
determine which player is more critical than another and to
quantify the difference in their importance by percentage.
This process involves conducting a criticality analysis to
assign a criticality value to each star.

Suppose we are asked to predict the winner between two
teams in an upcoming weekend match. Initially, lacking
specific information, we estimate Team A’s chances of
winning against Team B in a soccer match at 40% based on
prior knowledge—this 40% serves as our baseline accuracy.

Upon learning that a star player, John, will play for Team
A, we revise our prediction to a 42% chance of Team A’s
victory, attributing this 2% increase to John’s critical solo
contribution.

John: + 2% (for solo group contribution)

When we find out that another star player, Michael, will
also play for Team A, but without any other stars, we adjust
our forecast to a 43% chance of victory, starting from 40%.
This 3% increase is attributed to Michael’s criticality.

Michael: 4 3% (for solo group contribution)

It is then revealed that Michael will play alongside John.
This information leads us to adjust our prediction to a 45%
winning chance for Team A. Since John’s presence alone
resulted in a 42% chance, this incremental 3% for the first
two-player combination is added to Michael’s score.

Michael: 4 3% (for the first two-player group)

Similarly, the increase from 43% to 45% is allocated to
John for his contribution to the first two-player combination.

John: 4+ 2% (for the first two-player group)

By exploring all combinations of the 11 star players,
we aim to reward significant contributions more accurately,
culminating in a criticality value for each player. As we
progress, the number of ways a player can combine with
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others, with each player receiving one criticality point
for their individual contribution, plus additional points for
contributions in pairs, triples, etc., up to the full team,
is detailed as follows:

o First run: Each player receives 1 criticality value for
their individual contribution.

o Second run: Each player receives 10 additional critical-
ity values for contributing alongside each of the other ten
players.

o Third run: Each player receives 45 more criticality val-
ues for their contributions to three-player combinations.

o Fourth run: An additional 120 criticality values are
assigned for contributions to four-player combinations.

« Fifth run: Each player receives 210 extra criticality val-
ues for their contributions to five-player combinations.

o Sixth run: An additional 252 criticality values are
given to each player for contributing to six-player
combinations.

« Seventh run: Each player receives another 210 critical-
ity values for contributing to seven-player combinations
(mirroring the values in the fifth run).

« Eighth run: An additional 120 criticality values are
allocated for contributing to eight-player combinations
(mirroring the values in the fourth run).

o Ninth run: Each player earns a further 45 criticality
values for contributing to nine-player combinations
(mirroring the values in the third run).

o Tenth run: An additional 10 criticality values are
awarded for participation in ten-player combinations
(mirroring the values in the second run).

« Eleventh run: Each player is given one criticality value
for contributing to the full team, reflecting a contribution
that includes all players.

To calculate the cumulative criticality value for each
player, we consider their individual and collective contribu-
tions across various scenarios. These values are then summed
to determine their total criticality score, with each player’s
score calculated 1,025 times.

Suppose your star players are volatile acidity, citric acid,
residual sugar, chlorides, sulfur dioxide levels, density, pH,
sulfates, and alcohol content. Their cumulative importance is
reflected in Table 9 above.

To thoroughly understand the methodology, it is essential
to grasp what occurs after each run, including how the
criticality value of variables changes. To this end, we refer to
Table 31 in Appendix E. This table is of utmost importance as
it provides insight into the underlying dynamics of criticality
analysis.

Let’s delve deeper into our analysis, assuming our goal
is to understand the relative importance of each variable by
percentage. To accurately compare the resulting total values
for each variable, we must scale our results by the number
of criticality values received in each run (1, 10, 45, 120,
etc.), as shown previously. By doing so, we construct the
most critical table of this research paper, found as Table 32
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in Appendix E. This approach ensures a fair comparison,
highlighting the significance of each variable in our study.

TABLE 10. Critical variable comparison post-scaling.

Variable Criticality
Alcohol 0.5671
Sulfates 0.3116
Density 0.3068
Volatile Acidity 0.2738
Total Sulfur Dioxide 0.2479
Free Sulfur Dioxide 0.2291

pH 0.1620

Residual Sugar 0.1503
Citric Acid 0.1328
Chlorides 0.1319
Fixed Acidity 0.1026

As seen in Table 10, alcohol (0.5671) leads the list in
its impact on wine quality, followed by sulfates (0.3116),
density (0.3068), volatile acidity (0.2738), total sulfur dioxide
(0.2479), free sulfur dioxide (0.2291), pH value (0.1620),
residual sugar (0.1503), citric acid (0.1328), chlorides
(0.1319), and rounding off the list, fixed acidity (0.1026),
illustrates the nuanced and complex chemistry that shapes the
quality of wine.

Given the criticality scores in Table 10 of various
factors in wine quality prediction, we can draw several
compelling comparisons. For example, alcohol, with a score
of 0.5671, is significantly more important than most other
factors, being approximately 5.52 times more critical than
fixed acidity, which has the lowest score of 0.1026. This
difference underlines the important role alcohol content plays
in determining wine quality compared to the foundational
aspect of fixed acidity.

Another intriguing comparison is between sulfates and
density. With scores of 0.3116 and 0.3068 respectively,
these two factors hold almost equal significance. This
observation suggests that both the concentration of sulfates—
affecting microbial stability and antioxidant properties—and
the density—indicative of the wine’s body and alcohol
content—play nearly equal roles in determining the wine’s
overall quality.

Volatile acidity, scoring 0.2738, is less critical than alcohol,
sulfates, and density, but it is more pivotal than factors such as
total sulfur dioxide (0.2479) and free sulfur dioxide (0.2291).
This ranking implies that while the acidity level, which can
contribute to the wine’s aroma, is important, it is not as
decisive as alcohol content or the wine’s body.

Looking further down the list, we see that chlorides
and citric acid are nearly equally critical, with scores of
0.1319 and 0.1328, respectively. This comparison indicates
that the chloride content—which can influence saltiness—
and citric acid—which contributes to the wine’s freshness
and flavor—hold almost equal significance in affecting
wine quality. Still, they are less critical than the previously
mentioned factors.
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These comparisons help us appreciate the nuanced inter-
play of various chemical properties in determining the quality
of wine, with alcohol emerging as a particularly important
factor.

CRITICALITY

fixed acidity
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chlorides
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FIGURE 7. Critical variable comparison post-scaling.

X. CONCLUSION

In our research, we explored the use of machine learning
(ML) algorithms to improve the accuracy of assessing wine
quality, with a particular focus on Portuguese red wine.
As interest in applying artificial intelligence (Al) for sensory
analysis increases, our study distinguishes itself through the
adoption of a comprehensive methodological approach. This
method aimed to pinpoint the chemical variables that most
effectively predict wine quality. By examining a dataset of
diverse physicochemical properties, our objective was to
refine the prediction process by highlighting the variables that
substantially impact quality evaluations.

Central to our investigative endeavor was the ambition
to dissect the influence of various factors on wine quality,
prompting an exhaustive analysis across all possible com-
binations of the 11 variables. This approach facilitated a
nuanced understanding of how variable interplays affect the
quality of Portuguese wine.

The Random Forest model emerged as the keystone in
our predictive analysis, outshining other machine learning
algorithms by a significant margin. This finding underscored
the model’s ability to navigate the complexity of variable
interactions, thereby solidifying its position as the premier
tool for wine quality prediction.

We assessed the performance of machine learning models
against a random guess generator that reflected the dataset’s
quality distribution probabilities. Our findings revealed that
the predictions from the Random Forest model, even when
using the least significant variable, were not arbitrary.
ML models, despite processing an unrelated input variable,
could detect patterns linked to the probabilities of the target
variable.

This discovery prompted a critical question: How can we
identify the variables that are truly essential for assessing
wine quality, especially when minimal or unrelated variables
yield significant accuracy? Our subsequent analysis aimed
to identify these crucial variables, classifying them as
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TABLE 11. Top 10 scores for random forest test number 1.

Combination Score MSE
fixed acidity, free sulfur dioxide, total sulfur dioxide 0.746875 0.365625
chlorides, free sulfur dioxide, total sulfur dioxide 0.743750  0.446875
volatile acidity, citric acid, free sulfur dioxide 0.743750  0.350000
volatile acidity, free sulfur dioxide, total sulfur dioxide 0.740625  0.387500
volatile acidity, citric acid, residual sugar, total sulfur dioxide = 0.737500  0.356250
volatile acidity, residual sugar, total sulfur dioxide 0.737500  0.362500
fixed acidity, volatile acidity, citric acid, residual sugar 0.737500  0.446875
volatile acidity, residual sugar, free sulfur dioxide 0.737500  0.384375
citric acid, free sulfur dioxide, total sulfur dioxide 0.734375  0.365625
fixed acidity, volatile acidity, citric acid, chlorides 0.734375 0.356250
TABLE 12. Top 10 scores for random forest test number 2.
Combination Score MSE
fixed acidity, volatile acidity, citric acid, residual sugar, chlorides 0.750000  0.306250
fixed acidity, citric acid, free sulfur dioxide, total sulfur dioxide 0.750000 0.315625
volatile acidity, citric acid, residual sugar, chlorides 0.746875  0.318750
fixed acidity, volatile acidity, citric acid, chlorides, free sulfur dioxide 0.746875  0.396875
volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide  0.746875  0.318750
volatile acidity, citric acid, chlorides, total sulfur dioxide 0.743750  0.359375
volatile acidity, citric acid, residual sugar, chlorides 0.743750  0.321875
volatile acidity, chlorides, total sulfur dioxide, free sulfur dioxide 0.740625 0.359375
fixed acidity, citric acid, residual sugar, chlorides, free sulfur dioxide 0.740625  0.325000
volatile acidity, chlorides, free sulfur dioxide 0.740625  0.325000
TABLE 13. Top 10 scores for random forest test number 3.
Combination Score MSE
fixed acidity, citric acid, residual sugar, free sulfur dioxide 0.756250  0.306250
fixed acidity, volatile acidity, chlorides, total sulfur dioxide 0.753125  0.375000
fixed acidity, citric acid, chlorides, free sulfur dioxide 0.746875 0.318750
citric acid, residual sugar, chlorides, free sulfur dioxide 0.746875  0.346875
fixed acidity, volatile acidity, residual sugar, chlorides 0.743750  0.350000
fixed acidity, volatile acidity, residual sugar, free sulfur dioxide  0.743750  0.368750
volatile acidity, citric acid, residual sugar, chlorides 0.740625 0.315625
fixed acidity, citric acid, total sulfur dioxide 0.737500  0.371875
fixed acidity, volatile acidity, citric acid, residual sugar 0.734375  0.412500
citric acid, chlorides, total sulfur dioxide, density 0.734375  0.350000
TABLE 14. Top 10 scores for random forest test number 4.
Combination Score MSE
volatile acidity, citric acid, chlorides, total sulfur dioxide 0.756250  0.365625
volatile acidity, citric acid, residual sugar, total sulfur dioxide 0.753125 0.384375
fixed acidity, residual sugar, sulphates, alcohol 0.750000  0.325000
fixed acidity, citric acid, free sulfur dioxide, total sulfur dioxide 0.746875  0.328125
volatile acidity, citric acid, residual sugar, chlorides 0.743750  0.356250
citric acid, residual sugar, chlorides, total sulfur dioxide 0.743750  0.400000
fixed acidity, volatile acidity, residual sugar, chlorides 0.743750  0.359375
fixed acidity, citric acid, residual sugar, free sulfur dioxide 0.743750  0.356250
fixed acidity, volatile acidity, residual sugar, chlorides, free sulfur dioxide  0.743750  0.337500
fixed acidity, volatile acidity, citric acid, residual sugar 0.740625  0.393750

key contributors to enhancing prediction accuracy. Critical

variables are those that contribute more significantly than 0.75.
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others to improving the base accuracy from about 0.4 to over
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TABLE 15. Top 10 scores for random forest test number 5.

Combination Score MSE

fixed acidity, volatile acidity, chlorides, free sulfur dioxide 0.753125 0.331250
fixed acidity, volatile acidity, citric acid, residual sugar, chlorides 0.750000  0.306250
chlorides, total sulfur dioxide, sulphates, alcohol 0.750000  0.278125
fixed acidity, volatile acidity, citric acid, residual sugar, free sulfur dioxide = 0.743750  0.321875
fixed acidity, volatile acidity, chlorides, free sulfur dioxide, sulphates 0.743750  0.331250
fixed acidity, citric acid, residual sugar, total sulfur dioxide 0.743750  0.340625
volatile acidity, citric acid, residual sugar, chlorides 0.743750  0.331250
fixed acidity, total sulfur dioxide, sulphates, alcohol 0.743750  0.303125
fixed acidity, volatile acidity, citric acid, residual sugar 0.740625  0.400000
volatile acidity, residual sugar, total sulfur dioxide 0.740625  0.403125

TABLE 16. Top 10 scores for decision tree test number 1.

Combination Score MSE

volatile acidity, residual sugar, free sulfur dioxide 0.703125 0.481250
fixed acidity, volatile acidity, residual sugar, chlorides 0.681250  0.625000
citric acid, chlorides, free sulfur dioxide, density 0.678125  0.496875
citric acid, chlorides, total sulfur dioxide, pH 0.678125  0.575000
volatile acidity, citric acid, residual sugar, total sulfur dioxide 0.678125  0.496875
fixed acidity, citric acid, residual sugar, chlorides, free sulfur dioxide 0.675000  0.575000
chlorides, free sulfur dioxide, total sulfur dioxide, density 0.675000 0.503125
fixed acidity, volatile acidity, residual sugar, chlorides, free sulfur dioxide = 0.671875  0.471875
volatile acidity, citric acid, residual sugar, total sulfur dioxide, density 0.671875 0.621875
citric acid, chlorides, free sulfur dioxide, density, sulphates 0.671875  0.550000

TABLE 17. Top 10 scores for decision tree test number 2.

Combination Score MSE

volatile acidity, residual sugar, chlorides, free sulfur dioxide 0.703125  0.450000
volatile acidity, citric acid, total sulfur dioxide, density 0.687500  0.478125
volatile acidity, citric acid, chlorides, density 0.684375  0.490625
residual sugar, chlorides, sulphates, alcohol 0.678125  0.556250
volatile acidity, citric acid, residual sugar, total sulfur dioxide 0.671875  0.506250
fixed acidity, residual sugar, density, pH, alcohol 0.671875  0.643750
fixed acidity, residual sugar, total sulfur dioxide, density 0.668750  0.503125
fixed acidity, citric acid, residual sugar, chlorides 0.668750  0.596875
volatile acidity, residual sugar, chlorides, total sulfur dioxide 0.668750  0.515625

citric acid, chlorides, free sulfur dioxide, total sulfur dioxide, density ~ 0.665625  0.503125

TABLE 18. Top 10 scores for decision tree test number 3.

Combination Score MSE
citric acid, residual sugar, chlorides, total sulfur dioxide 0.703125 0.428125
fixed acidity, volatile acidity, chlorides, free sulfur dioxide 0.681250  0.493750
volatile acidity, citric acid, total sulfur dioxide, density 0.681250  0.503125
fixed acidity, citric acid, residual sugar, free sulfur dioxide 0.678125 0.537500
fixed acidity, volatile acidity, free sulfur dioxide, density 0.678125  0.490625
fixed acidity, volatile acidity, residual sugar, chlorides 0.678125 0.559375
volatile acidity, citric acid, residual sugar, chlorides 0.675000  0.546875
volatile acidity, citric acid, residual sugar, pH 0.675000  0.468750
volatile acidity, citric acid, residual sugar, chlorides, density ~ 0.675000  0.496875
citric acid, residual sugar, chlorides, density, pH 0.671875  0.509375
In our paper, we went beyond simply listing the essential the quantification of their relative importance. Alcohol was
variables; we also assigned criticality values to each, enabling identified as having the most substantial impact on wine
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TABLE 19. Top 10 scores for decision tree test number 4.

Combination Score MSE
fixed acidity, residual sugar, chlorides, total sulfur dioxide 0.684375  0.528125
fixed acidity, citric acid, residual sugar, chlorides 0.681250  0.537500
volatile acidity, residual sugar, free sulfur dioxide 0.678125  0.450000
fixed acidity, volatile acidity, citric acid, residual sugar 0.675000  0.650000
fixed acidity, volatile acidity, residual sugar, chlorides 0.675000 0.618750
volatile acidity, citric acid, chlorides, total sulfur dioxide 0.671875 0.603125
citric acid, free sulfur dioxide, alcohol 0.671875  0.568750
volatile acidity, residual sugar, chlorides, total sulfur dioxide 0.668750  0.606250
volatile acidity, citric acid, residual sugar, sulphates 0.668750  0.490625
fixed acidity, volatile acidity, residual sugar, chlorides, free sulfur dioxide = 0.665625  0.537500
TABLE 20. Top 10 scores for decision tree test number 5.
Combination Score MSE
fixed acidity, volatile acidity, citric acid, residual sugar 0.700000  0.453125
fixed acidity, chlorides, free sulfur dioxide, total sulfur dioxide  0.687500  0.509375
volatile acidity, citric acid, chlorides, free sulfur dioxide 0.681250  0.531250
fixed acidity, total sulfur dioxide, density, sulphates 0.678125  0.509375
volatile acidity, residual sugar, free sulfur dioxide 0.675000  0.543750
volatile acidity, citric acid, residual sugar, pH 0.671875  0.459375
fixed acidity, chlorides, free sulfur dioxide, pH 0.668750  0.506250
volatile acidity, residual sugar, chlorides, free sulfur dioxide 0.668750  0.606250
fixed acidity, volatile acidity, free sulfur dioxide, density 0.668750  0.625000
citric acid, residual sugar, free sulfur dioxide, density 0.668750  0.468750
TABLE 21. Top 10 scores for logistic regression test number 1.
Combination Score MSE
chlorides, sulphates, alcohol 0.671875  0.465625
volatile acidity, citric acid, residual sugar, free sulfur dioxide 0.665625  0.434375
fixed acidity, volatile acidity, residual sugar, chlorides 0.650000  0.440625
volatile acidity, chlorides, free sulfur dioxide, alcohol 0.646875  0.465625
residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide 0.646875  0.496875
volatile acidity, free sulfur dioxide, total sulfur dioxide, alcohol 0.643750  0.459375
chlorides, pH, sulphates, alcohol 0.643750  0.496875
fixed acidity, residual sugar, chlorides, free sulfur dioxide 0.643750  0.500000
volatile acidity, citric acid, residual sugar, free sulfur dioxide, alcohol ~ 0.643750  0.484375
fixed acidity, chlorides, free sulfur dioxide, density 0.640625 0.471875
TABLE 22. Top 10 scores for logistic regression test number 2.
Combination Score MSE
fixed acidity, volatile acidity, chlorides, free sulfur dioxide 0.659375  0.387500
fixed acidity, volatile acidity, residual sugar, chlorides 0.653125  0.437500
fixed acidity, chlorides, total sulfur dioxide, density 0.646875  0.465625
fixed acidity, volatile acidity, chlorides, free sulfur dioxide, alcohol 0.643750  0.421875
fixed acidity, volatile acidity, residual sugar, chlorides, free sulfur dioxide 0.643750  0.450000
fixed acidity, volatile acidity, citric acid, residual sugar, chlorides 0.643750  0.496875
volatile acidity, free sulfur dioxide, total sulfur dioxide, alcohol 0.637500  0.390625
volatile acidity, chlorides, free sulfur dioxide, alcohol 0.634375  0.487500
fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide  0.631250  0.471875
volatile acidity, citric acid, residual sugar, chlorides 0.631250  0.453125

quality, with a value of 0.5671. It was followed by Sulphates
(0.3116), Density (0.3068), Volatile Acidity (0.2738), Total
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Sulfur Dioxide (0.2479), Free Sulfur Dioxide (0.2291),
pH Value (0.1620), Residual Sugar (0.1503),
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TABLE 23. Top 10 scores for logistic regression test number 3.

Combination Score = MSE
volatile acidity, citric acid, residual sugar, chlorides 0.668750  0.415625
volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide 0.662500  0.412500
volatile acidity, citric acid, residual sugar, free sulfur dioxide, total sulfur dioxide = 0.653125  0.421875
fixed acidity, volatile acidity, total sulfur dioxide, density 0.646875  0.456250
volatile acidity, chlorides, free sulfur dioxide, total sulfur dioxide 0.646875  0.446875
volatile acidity, residual sugar, chlorides, total sulfur dioxide, density 0.646875  0.390625
volatile acidity, citric acid, residual sugar, chlorides, density 0.640625  0.434375
volatile acidity, citric acid, residual sugar, free sulfur dioxide, density 0.640625  0.468750
fixed acidity, volatile acidity, citric acid, residual sugar 0.637500  0.446875
volatile acidity, citric acid, free sulfur dioxide, density 0.634375  0.450000
TABLE 24. Top 10 scores for logistic regression test number 4.
Combination Score MSE
fixed acidity, residual sugar, free sulfur dioxide, density 0.650000 0.471875
residual sugar, chlorides, total sulfur dioxide, density 0.646875  0.534375
volatile acidity, citric acid, residual sugar, total sulfur dioxide, density ~ 0.640625  0.425000
fixed acidity, volatile acidity, citric acid, residual sugar, density 0.640625  0.490625
fixed acidity, volatile acidity, citric acid, chlorides, density 0.634375  0.487500
fixed acidity, volatile acidity, chlorides, free sulfur dioxide, density 0.631250  0.453125
fixed acidity, volatile acidity, citric acid, free sulfur dioxide, density 0.631250 0.481250
sulphates, alcohol 0.631250  0.425000
fixed acidity, residual sugar, chlorides, free sulfur dioxide, density 0.631250 0.471875
volatile acidity, citric acid, residual sugar, alcohol 0.628125  0.409375
TABLE 25. Top 10 scores for logistic regression test number 5.
Combination Score MSE
volatile acidity, chlorides, total sulfur dioxide, density 0.662500 0.421875
volatile acidity, citric acid, residual sugar, chlorides 0.653125  0.450000
volatile acidity, residual sugar, total sulfur dioxide, density 0.643750  0.456250
fixed acidity, volatile acidity, citric acid, chlorides, density 0.643750  0.446875
fixed acidity, residual sugar, density, pH, alcohol 0.643750  0.418750
fixed acidity, volatile acidity, citric acid, residual sugar, density ~ 0.640625  0.471875
fixed acidity, citric acid, chlorides, density, pH 0.640625  0.425000
volatile acidity, citric acid, residual sugar, chlorides, density 0.637500 0.518750
fixed acidity, citric acid, free sulfur dioxide, density 0.637500  0.484375
citric acid, residual sugar, chlorides, free sulfur dioxide, density ~ 0.637500  0.453125
TABLE 26. Top 10 scores for SVM test number 1.
Combination Score
residual sugar, chlorides, density, sulphates, alcohol 0.646875
fixed acidity, volatile acidity, citric acid, chlorides, free sulfur dioxide 0.643750
fixed acidity, volatile acidity, citric acid, free sulfur dioxide, density 0.640625
fixed acidity, volatile acidity, residual sugar, chlorides, free sulfur dioxide  0.637500
fixed acidity, volatile acidity, citric acid, chlorides, density 0.637500
fixed acidity, pH, sulphates, alcohol 0.634375
volatile acidity, citric acid, free sulfur dioxide, alcohol 0.634375
fixed acidity, volatile acidity, citric acid, alcohol 0.631250
volatile acidity, citric acid, residual sugar, total sulfur dioxide, density 0.631250
fixed acidity, volatile acidity, residual sugar, density, alcohol 0.628125
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TABLE 27. Top 10 scores for SVM test number 2.

Combination Score
volatile acidity, chlorides, free sulfur dioxide, density 0.646875
volatile acidity, citric acid, free sulfur dioxide, density 0.646875
fixed acidity, volatile acidity, citric acid, chlorides, density 0.646875
fixed acidity, volatile acidity, chlorides, total sulfur dioxide, density 0.643750
fixed acidity, citric acid, residual sugar, total sulfur dioxide, density 0.643750
fixed acidity, volatile acidity, residual sugar, chlorides, density 0.643750
fixed acidity, volatile acidity, citric acid, chlorides, free sulfur dioxide 0.643750
residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density ~ 0.640625
chlorides, total sulfur dioxide, density, pH, sulphates, alcohol 0.640625
fixed acidity, volatile acidity, free sulfur dioxide, density 0.640625
TABLE 28. Top 10 scores for SVM test number 3.
Combination Score
fixed acidity, volatile acidity, citric acid, residual sugar 0.665625
residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide 0.653125
fixed acidity, volatile acidity, citric acid, chlorides 0.646875
volatile acidity, citric acid, total sulfur dioxide, density 0.643750
fixed acidity, volatile acidity, citric acid, residual sugar, density 0.640625
volatile acidity, residual sugar, chlorides, total sulfur dioxide 0.640625
volatile acidity, citric acid, chlorides, free sulfur dioxide 0.637500
citric acid, free sulfur dioxide, total sulfur dioxide, density 0.637500
fixed acidity, volatile acidity, citric acid, residual sugar, free sulfur dioxide  0.637500
volatile acidity, citric acid, residual sugar, chlorides 0.637500
TABLE 29. Top 10 scores for SVM test number 4.
Combination Score
fixed acidity, volatile acidity, free sulfur dioxide, density 0.665625
fixed acidity, volatile acidity, citric acid, chlorides, density 0.659375
fixed acidity, volatile acidity, chlorides, total sulfur dioxide, density 0.650000
fixed acidity, volatile acidity, citric acid, residual sugar, chlorides 0.650000
fixed acidity, volatile acidity, citric acid, residual sugar, density 0.640625
fixed acidity, volatile acidity, citric acid, residual sugar, free sulfur dioxide, density ~ 0.640625
volatile acidity, citric acid, chlorides, total sulfur dioxide, density 0.637500
volatile acidity, citric acid, residual sugar, free sulfur dioxide, density 0.637500
volatile acidity, citric acid, residual sugar, chlorides, density 0.634375
fixed acidity, volatile acidity, residual sugar, chlorides, density 0.634375
TABLE 30. Top 10 scores for SVM test number 5.
Combination Score
fixed acidity, volatile acidity, total sulfur dioxide, density 0.653125
volatile acidity, residual sugar, free sulfur dioxide, density 0.643750
volatile acidity, density, pH, alcohol 0.640625
fixed acidity, citric acid, residual sugar, chlorides, density 0.637500
fixed acidity, volatile acidity, citric acid, chlorides, density 0.637500
residual sugar, total sulfur dioxide, density, sulphates, alcohol 0.634375
fixed acidity, volatile acidity, citric acid, residual sugar, density 0.634375
fixed acidity, volatile acidity, citric acid, chlorides, free sulfur dioxide, density ~ 0.634375
fixed acidity, volatile acidity, citric acid, free sulfur dioxide, density 0.634375
fixed acidity, residual sugar, chlorides, free sulfur dioxide, density 0.631250
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Citric Acid (0.1328), Chlorides (0.1319), with Fixed Acid-
ity (0.1026) being the least impactful among the factors
listed.

APPENDIX A
RESULTS FROM THE RANDOM FOREST MODEL
see Tables 11-15.

APPENDIX B
RESULTS FROM THE DECISION TREE MODEL
See Tables 16-20.

APPENDIX C
RESULTS FROM THE LOGISTIC REGRESSION MODEL
See Tables 21-25.

APPENDIX D
RESULTS FROM THE SUPPORT VECTOR MACHINE MIODEL
See Tables 26-30.

APPENDIX E
See Tables 31 and 32.
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