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ABSTRACT This paper presents an initial exploration into understanding the intricate relationship between
space utilization and electricity consumption within buildings. Leveraging Wi-Fi probe data for physical
space utilization in 10 buildings at the Faculty of Engineering, Chiang Mai University, Thailand, the study
introduces a novel approach to comprehend space utilization. Through the analysis of factors inferred from
theWi-Fi data including crowdedness, mobility, and entropy, correlated with changes in electricity consump-
tion, the research aims to reveal strategies for optimizing real-time energy use. The temporal relationship is
scrutinized by examining correlations between each space utilization attribute and electricity consumption
at various time lags. Fluctuations in space utilization levels offer valuable insights into anticipated energy
consumption in the near future. Results, in general, indicate that the 30–45 minutes timeframe serves as
an early indicator for anticipated increases in electricity usage when considering crowdedness, while the
15–30 minutes timeframe is indicative when mobility and entropy are concerned. Buildings were clustered
together based on electricity usage profiles and space allocation, yielding intuitive results. By delving into
the dynamic interplay between space utilization and electricity consumption, the study contributes valuable
insights to discussions on sustainable building practices and energy management.

INDEX TERMS Urban informatics, energy, building, temporal correlation, space utilization, electricity
consumption, Wi-Fi data analysis.

I. INTRODUCTION
The efficient utilization of energy resources has become a
paramount concern in the face of increasing energy demand
and the pressing need to address environmental sustainability.
In this context, buildings stand as significant contributors
to energy consumption, particularly in urban areas where
they account for a substantial portion of the total energy
usage [1]. Within the realm of building energy consumption,
the interplay between space utilization patterns and electricity
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consumption has emerged as a critical area of investigation
[2], [3], [4]. Understanding the temporal correlation between
how spaces are used within buildings and the corresponding
electricity consumption holds the potential to unveil oppor-
tunities for energy optimization, design enhancements, and
policy interventions.

In recent years, advancements in sensing technologies,
data analytics, and building management systems have
facilitated the collection and analysis of comprehensive occu-
pancy and energy usage data within buildings [5], [6]. This
wealth of data opens the door to unraveling the intricate
dynamics that link space utilization patterns and electricity
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consumption [7]. However, despite the growing body
of research in this domain, several questions remain
unanswered, demanding a systematic exploration of the
underlying causal mechanisms.

The link between space utilization and energy consump-
tion in buildings has garnered considerable attention from
researchers, architects, urban planners, and policymakers
alike. Studies have underscored the potential for significant
energy savings by aligning building operations with actual
space occupancy patterns. For instance, Erickson et al. [8]
demonstrated that occupancy modeling can lead to more
effective scheduling of heating, cooling, and lighting systems,
resulting in substantial reductions in energy consumption.
Furthermore, Latha et al. [9] revealed a direct correlation
between spatial configuration and energy demand, emphasiz-
ing the importance of layout design in determining lighting
and cooling requirements. This suggests that the physi-
cal arrangement of spaces within a building can exert a
causal influence on energy usage, an aspect that requires
further exploration in diverse building types and contexts.
In parallel, the emergence of smart building technologies
has enabled the real-time monitoring of space occupancy
and energy consumption. Through advanced sensor net-
works and data analytics, Tien et al. [10] demonstrated how
occupancy-driven lighting and climate control adjustments
can lead to energy efficiency improvements. These findings
highlight the potential of dynamic space utilization man-
agement in influencing energy demand patterns. Moreover,
a study by Gui [11] examined how various types of space
usage in university buildings impact energy consumption.
They found that wet laboratories and health-related areas
use more energy due to equipment and ventilation needs.
While research-focused buildings have higher energy use,
increasing teaching space has a bigger energy impact.

Despite these insights, the establishment of a temporal
correlation between space utilization and electricity con-
sumption remains uninvestigated. Traditionally, assessing
space utilization has been reliant onmanual observations, sur-
veys, or sensor-based systems, each with its own limitations
and complexities. The proliferation of Wi-Fi networks within
built environments offers an innovative avenue for capturing
space utilization patterns in a non-intrusive and cost-effective
manner. Motivated by our previous study in utilizing Wi-Fi
probe data for physical space segmentation [12], this work
delves into the innovative use of Wi-Fi connectivity data as
a tool for sensing and understanding space utilization within
buildings.

Beyond its role in occupancy estimation, this study extends
its scope to investigate the temporal correlation between
space utilization and electricity consumption in buildings.
Recognizing that the manner in which spaces are used
directly affects energy demand for lighting and cooling,
exploring this link provides essential insights for sustain-
able building operations. By examining whether variations
in space utilization coincide with changes in electric-
ity consumption, the research seeks to uncover potential

strategies for optimizing energy use based on real-time space
dynamics.

Through this dual exploration of using Wi-Fi connectiv-
ity data for space utilization analysis and understanding its
interplay with electricity consumption, this study addresses
vital concerns at the intersection of building management and
energy efficiency. The findings hold the potential to inform
smarter and more adaptive building strategies, ushering in a
new era of energy-conscious design and operational practices.

The subsequent sections of this paper will detail the
methodology employed, the dataset utilized, and the analyt-
ical framework constructed to discern the temporal correla-
tion between space utilization and electricity consumption.
Through an integrated approach that merges quantitative
analysis with real-world insights, we aspire to contribute to
the evolving discourse on sustainable building practices and
energy management.

II. METHODOLOGY
A. DATASET
This study was carried out based on two main data
sources collected from 10 academic buildings (total area of
28,224 m2) within the Faculty of Engineering, Chiang Mai
University, Thailand. Both datawere collected over the period
from 9th January – 3rd February 2020. Electricity consump-
tion data was collected from the energy usage meters, which
includes a building ID, energy consumption in kWh and its
corresponding timestamp with 15-minute sampling rate.

For space utilization, we take an opportunistic sensing
approach making use of data that has already been collected
for one purpose, but it can be used to opportunistically for
another purpose. In this case, a Wi-Fi network connectiv-
ity data recorded for network performance monitoring and
planning was used as a proxy for physical space utilization.
The data was collected from 97 Wi-Fi access points (APs)
belonging to these 10 buildings with a 15-minute sampling
rate. Each record includes a connected device ID, AP ID,
AP’s geolocation (latitude and longitude), building ID, and
its corresponding timestamp.

For our analysis, the data of each ith AP can be denoted as
Di, as follows.

Di =

{
id, lat, lon, {dj

(
timestamp,

{
Devij

})
|

j = 1, 2, 3, . . . , zi}} , (1)

where id represents the unique identifier of the AP, lat and lon
denote the latitude and longitude coordinates respectively of
the AP, dj signifies the connectivity log at the jth timestamp,
Devij represents the set of device IDs connected to the i

th AP at
the jth timestamp, while zi indicates the total count of unique
timestamps.

The locations of the buildings and APs considered in this
study are shown in Fig. 1, where the corresponding number
of APs in each building and its space area information are
given in Table 1. These buildings are multi-purpose buildings
with rooms allocated for different activities e.g., lecturing,
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TABLE 1. Building’s information including the number of access points, space area, and the percentage of room types in the building.

FIGURE 1. Locations of the buildings and Wi-Fi access points considered
in this study. Access point colors are used to differentiate their belonging
to different buildings. Geocoordinates of the upper left and bottom right
corners are 18.797390, 98.949412 and 18.793167, 98.955762, respectively.

meeting, research, and so on. As these different room types
may reflect on how the building is utilized, Table 1 also
includes the estimated percentage of different room types in
each building.

B. ANALYSIS FRAMEWORK
In conducting a temporal correlation analysis to explore
the relationship between space utilization and electricity
consumption in buildings, Time-lagged Cross-correlation
(TLCC) [13] was chosen as a rational approach in our study.
TLCC is a statistical method used to identify and measure
the degree of similarity between two time series datasets
as one is shifted in time relative to the other. This tech-
nique is particularly valuable in scenarios where the goal is
to uncover potential lead-lag relationships, which can indi-
cate causal effects or predictive patterns. TLCC has been
extensively applied in various fields to analyze temporal
dependencies [14], [15], [16]. By shifting one time series
relative to another and calculating the correlation at each
step, TLCC helps identify the time delay at which the corre-
lation between the two series is maximized. This is critical

for understanding whether changes in one variable (e.g.,
electricity consumption) precede changes in another variable
(e.g., space utilization), thereby suggesting a possible causal
relationship. The overview of our temporal correlation exam-
ination between the electricity consumption and the space
utilization in each building is shown in Fig. 2.

FIGURE 2. Overview of the temporal correlation examination between
the electricity consumption and the space utilization attributes in each
building.

As described in the literature, the utilization of physical
space is often defined by two key factors: the density of
individuals engaged in activities within the space, resulting in
varying degrees of crowdedness [17], [18], and the movement
of people, which generates dynamism and different levels of
mobility within that space [19], [20]. Utilizing Wi-Fi data,
we determined the degree of crowdedness for each AP as the
maximum number of unique device IDs connected simulta-
neously within a defined time period, denoted as T . In this
study, T was set to 15 minutes so that it aligns with the
electricity consumption’s sampling rate. If Ci represents a set
of crowdedness values for the ith AP across multiple time
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periods, it can be defined as follows.

Ci = {c1, c2, c3, . . . , ct , . . . , cN } (2)

where ct represents the crowdedness observed during the t th

time period, while N denotes the total number of periods.
In our analysis, employing a 15-minute interval (T ), the aver-
age crowdedness value was calculated for each quarter-hour
segment within an hour, across each hour of the day, and for
every day of the week. Denoted as C ′

i, this set encompasses
these average values, defining the crowdedness attributes
specific to the AP, as follows.

C ′
i = {c′(q, h, d)|q ∈ Quarters, h ∈ Hours, d ∈ Days},

(3)

where c′(q, h, d) is the average crowdedness observed during
the quarter q of hour h of day d , where Quarters = {1, 2,
3, 4}, Hours = {0, 1, 2, 3, . . . , 23}, and Days = {Monday,
Tuesday, Wednesday, . . . , Sunday}. Consequently, the set
C ′

i comprises 4 × 7 ×24 = 672 members, ranging from
c′(1, 0,Monday) to c′(4, 23, Sunday).

Similarly, the mobility level for each AP is defined by
tallying the total number of device ID connections and dis-
connections within a time period T . These instances of AP
connection and disconnection are regarded as indicators of
individuals entering and leaving the AP, intuitively reflecting
mobility patterns. Representing the set of mobility values for
the ith AP across multiple time periods,Mi can be defined as
follows.

Mi = {m1,m2,m3, . . . ,mt , . . . ,mN }, (4)

where mt represents the mobility observed during the t th

period, while N is the total number of periods. Similar to
the crowdedness value, using a 15-minute interval (T ), the
mobility attribute is calculated as a collection of average
mobility values across each quarter-hour segment within an
hour, for every hour of the day, and for each day of the week,
as follows.

M ′
i = {m′(q, h, d)|q ∈ Quarters, h ∈ Hours, d ∈ Days},

(5)

where m′(q, h, d) is the average mobility during the quarter
q (where q = 1, 2, 3, 4) of hour h (where h = 0, 1, 2, 3, . . . ,
23) of day d (where d = Monday, Tuesday, Wednesday, . . . ,
Sunday).

While individual human behavior might seem unpre-
dictable, recognizable patterns and routines often emerge.
These collective behavioral patterns becomemore discernible
when viewed over time, revealing varying degrees of ran-
domness. Shannon’s entropy, a measure of uncertainty or
randomness in human behavior [21], proves relevant in ana-
lyzing Wi-Fi connectivity behavior in our context. Hence,
apart from crowdedness and mobility, connectivity entropy
was derived from the data as another feature defining physical
space characteristics. The entropy computations aimed to

gauge the level of randomness in connectivity observed dur-
ing each quarter-hour segment within an hour, across every
hour of the day, and for each day of the week. Thus, a set of
connectivity entropy values (H ′

i) for the ith AP can be defined
as follows.

H ′
i = {Hi(X (q, h, d))|q ∈ Quarters, h ∈ Hours, d ∈ Days},

(6)

where Hi(X (q, h)) is calculated according to the Shannon’s
entropy [21] as follows.

Hi(X (q, h, d))=−

∑M

k=1
P (xk (q, h, d)) log2 P (xk (q, h, d)),

(7)

where M is the total number of connections occurred in the
data during the quarter q (where q = 1, 2, 3, 4) of hour h
(where h = 0, 1, 2, 3, . . . , 23) of day d (where d = Monday,
Tuesday,Wednesday, . . . , Sunday).P (xk (q, h, d)) denotes the
probability of the connectivity being k or xk (q, h, d), com-
puted as xk (q, h, d)/

∑M
k=1 xk (q, h, d). The connectivity of

each AP is quantified by the aggregate count of connections
established by any device IDs.

Based on the calculations described previously, Fig. 3
shows the values of crowdedness, mobility, and entropy
observed for the building B5 during the week of 13th – 19th

January 2020, along with its electricity consumption. B5 is
a versatile nine-story building, serving as a primary hub for
the faculty encompassing the faculty offices, the Department
of Computer Engineering, research labs, and lecture rooms.
The observed values exhibit distinct patterns, notably dif-
ferentiated between weekdays and weekends. Crowdedness
peaks during daytime hours and diminishes during the night.
Interestingly, Wednesday displays lower crowdedness com-
pared to other weekdays, attributed to a reduced number of
scheduled lectures on that day. Mobility values, intertwined
with crowdedness, offer valuable insights into the dynamics
of movement within these crowds. Notably, the observations
reflect varying levels of motion corresponding to crowd den-
sity. The entropy values exhibit a noteworthy trend, notably
lower on Wednesday compared to other weekdays. This dis-
crepancy likely stems from the unique Wednesday schedule
with fewer classes and more regular weekly meetings. This
predictability renders Wednesdays less random in terms of
space utilization compared to other weekdays, aligning with
the lower entropy observed.

Coefficient of determination or r-squared has been one of
the most widely used metrics for interpretation of relation-
ships. So, we employed the coefficient of determination to
examine the temporal correlation between the space utiliza-
tion electricity consumption in the buildings in this study.
We examined the resulting r-squared value between the elec-
tricity consumption and each of the three space utilization
attributes (i.e., crowdedness, mobility, and entropy) with
varying time shifts.

For each building, let yc = C̄ ′
i, ym = M̄ ′

i, and yh = H̄ ′
i

denote the set containing the average values of crowdedness,
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FIGURE 3. Values of (a) crowdedness, (b) mobility, (c) entropy, and
(d) electricity consumption of the building B5 during the week of
13th – 19th January 2020.

mobility, and entropy, respectively across all APs with the
same building ID. Hence, yc = {c̄′(q, h, d)|q ∈ Quarters,
h ∈ Hours, d ∈ Days}, yc = {m̄′(q, h, d)|q ∈ Quarters, h ∈

Hours, d ∈ Days}, and yc = {H̄i(X (q, h, d))|q ∈

Quarters, h ∈ Hours, d ∈ Days}.
Let’s consider the r-squared value, denoted as ru(t − j),

representing the correlation between the electricity consump-
tion and one of the space utilization attributes, where u ∈

{yc, ym, yh. For instance, ryc (t − j) reflects the r-squared
value between electricity consumption and crowdedness j
minutes prior. Our investigation covered time lags from 0 to
60 minutes, with a 15-minute interval, constrained by our
electricity data. Given multiple data for each day of the week,
we calculated the average r-squared value (r̄du ) to portray the
observed correlation for each day. We examined time lags
for all three space utilization attributes across all buildings,
seeking to identify the maximum values obtained – hence,
highest correlation.

III. RESULTS
Our analysis began with an examination of the resulting
r-squared values obtained from considering all 10 buildings
together. The findings are shown in Fig. 4, utilizing a heatmap
that portrays the correlation across time lags ranging from 0 to
60 minutes for various days of the week. Notably, the cor-
relation is significantly higher on weekdays compared to
weekends. This observation aligns with intuition, given that
weekdays are characterized by regular working days and
scheduled activities, whereas weekends tend to feature more
irregular events. The maximum value observed for each day
of the week, considering different time lags, is emphasized
by being underlined for clarity.

FIGURE 4. The heat map displays the r-squared values correlating
electricity consumption with (a) crowdedness, (b) mobility, and
(c) entropy across various time lags for all buildings combined. The
underlined number denotes the highest r-squared value observed for
each day of the week across different time lags.

Crowdedness in a building can have a direct and multi-
faceted temporal correlation with electricity consumption due
to increased device usage, elevated lighting requirements,
higher demand on HVAC systems, frequent elevator usage,
shared appliances, audio-visual equipment, and so on. The
result in Fig. 4(a) shows that Monday has the highest cor-
relation between crowdedness and electricity consumption
occurring at a 45-minute time lag (r2 = 0.859). This suggests
that an increase in crowdedness precedes a subsequent rise in
electricity consumption by approximately 45 minutes, indi-
cating a conceivable temporal correlation between the two.
Fluctuations in crowdedness levels offer valuable insights
into the anticipated energy consumption in the near future,
particularly within a 45-minute timeframe on Mondays.
In fact, the 30-minute time lag also shows a relatively high
correlation (r2 = 0.858). From a planning perspective, the
30–45 minute timeframe could serve as an early indicator for
anticipated increases in energy usage for Monday. Similar
patterns are noticeable on Tuesday, Wednesday, and Friday,
where the 30–45 minute timeframe may act as an early
indicator of anticipated increases in energy usage. In contrast,
Thursday shows a shorter time lag of 15 minutes as the
most reliable predictor for energy consumption as far as the
crowdedness is concerned.

People’s mobility within a building can indeed influence
electricity consumption, establishing a causal relationship
between the two [22]. From the mobility’s perspective,
the result in Fig. 4(b) shows that Monday and Thursday
both have the highest correlation at the 15-minute time
lag, while Wednesday and Friday’s mobility correlates most
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strongly with electricity consumption at a 30-minute time lag.
Notably, Tuesday’s time lag remains consistent at 45 minutes,
mirroring the pattern observed in crowdedness.

Entropy has been used to describe the diversity of indi-
vidual movement patterns [23], [24]. In the context of the
building occupancy, the entropy can serve as a measure of
disorder or randomness, which can be applied to analyze
the complexity and predictability of occupant movements.
This, in turn, can have implications for understanding and
predicting electricity consumption in buildings. The result
concerning the entropy in Fig. 4(c) reveals that Monday and
Friday both exhibit the highest correlation with electricity
consumption at a 30-minute time lag. In contrast, Tuesday,
Wednesday, and Thursday show that the 15-minute time lag
holds the greatest potential as an early indicator of anticipated
increases in energy usage within the buildings.

To determine whether the correlation depends on the pat-
tern of electricity consumption across different buildings,
we clustered the buildings into groups based on their elec-
tricity usage profiles. Each building’s energy usage profile is
represented by a vector of size 4×24× 7= 672, capturing the
average consumption over four quarters of an hour, 24 hours
a day, and seven days a week, which is then used as an
input for the clustering. Employing the k-means clustering
algorithm [25], in conjunction with the elbowmethod [26] for
selecting the optimal number of clusters (k), resulted in three
clusters. The k-means algorithmwas chosen for its simplicity,
efficiency, and ability to handle large datasets, making it
suitable for clustering buildings based on their electricity
usage profiles. The elbow method was used to determine the
optimal number of clusters by identifying the point where
the within-cluster sum of squares (WCSS) starts to level off,
ensuring that we do not add unnecessary complexity with
too many clusters. The resulting WCSS values are shown in
Fig. 5(a) from which k was selected at 3 clusters. This com-
bination of techniques provides a balanced and interpretable
clustering result that facilitates our analysis. Cluster 1 com-
prises B2, B6, and B10, Cluster 2 includes B5, and Cluster 3
consists of B1, B3, B4, B7, B8, and B9.

FIGURE 5. Resulting WCSS values used for consideration in the elbow
method for selecting the optimal number of clusters of buildings
according to their (a) electricity usage profiles and (b) space allocation.

The correlation results are shown Figs. 6, 7, and 8 for the
Clusters 1, 2, and 3, respectively. Overall, it can be observed
that Clusters 1 and 3 exhibit a relatively lower correlation

FIGURE 6. The r-squared values correlating electricity consumption with
(a) crowdedness, (b) mobility, and (c) entropy across various time lags for
the electricity consumption-based cluster 1’s buildings combined.

compared to cluster 2. Notably, Cluster 2 consists only of
building B5, a primary hub for the faculty and the most pop-
ulated high-rise building. The lower correlation in Clusters
1 and 3 may be attributed to the fact that these buildings are
low-rise structures situated close to parking spaces, poten-
tially leading to interference from Wi-Fi connections used
by nearby commuters outside the buildings. Nevertheless, the
entropy emerges as a reliable indicator with a notably high
correlation for buildings in the Clusters 2 and 3. The intuitive
connection lies in their proximity to parking spaces, whereby
entropy serves as a reflection of the fluctuations in people’s
movement, providing insights into electricity consumption.

Upon grouping buildings according to the allocation of
their spaces for various purposes, as outlined in Table 1,
we used the k-means clustering algorithm with the elbow
method.With its WCSS result shown in Fig. 5(b), the number
of optimal clusters was selected at k = 4. The outcomes
are depicted in Figs. 9, 10, 11, and 12 for Clusters 1, 2, 3,
and 4, respectively. Cluster 1 comprises solely building B6,
while Cluster 2 encompasses B3, B9, B8, and B10. Cluster 3
is composed solely of B4, and Cluster 4 encompasses B1, B2,
B5, and B7.

The faculty canteen, denoted as B6 and forming its exclu-
sive Cluster 1, exhibits a relatively weak correlation, likely
attributed to the fact that its electricity consumption is not
strongly tied to crowd size. Typically, the canteen’s lights
remain on during business hours, irrespective of the presence
of customers. Consequently, fluctuations in people’s presence
do not significantly impact the electricity consumption of the
canteen building, as depicted in the results shown in Figure 8.
The buildings within Cluster 2 demonstrate a notably

strong correlation, particularly in terms of entropy.
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FIGURE 7. The r-squared values correlating electricity consumption with
(a) crowdedness, (b) mobility, and (c) entropy across various time lags for
the electricity consumption-based cluster 2’s building.

FIGURE 8. The r-squared values correlating electricity consumption with
(a) crowdedness, (b) mobility, and (c) entropy across various time lags for
the electricity consumption-based cluster 3’s buildings combined.

These buildings are designated for use by individuals from
specific departments and adhere to regular schedules for area
utilization, such as lectures and meetings. For instance, B3 is
exclusively utilized by individuals from the Department of
Electrical Engineering’s high voltage discipline, while B10
serves solely the field of survey engineering. The specificity
of usage patterns in these buildings establishes a correlation
that aligns well with electricity consumption, enabling us to
discern their robust temporal relationship.

FIGURE 9. The r-squared values correlating electricity consumption with
(a) crowdedness, (b) mobility, and (c) entropy across various time lags for
the space allocation-based cluster 1’s building.

FIGURE 10. The r-squared values correlating electricity consumption with
(a) crowdedness, (b) mobility, and (c) entropy across various time lags for
the space allocation-based cluster 2’s buildings.

Cluster 3 comprises solely building B4, the primary
office facility for Mechanical Engineering (ME), housing
staff offices exclusively, without any lecture rooms. Inter-
estingly, the observed correlation within this cluster is
relatively low. This might be attributed to a diminished office
occupancy, particularly among academic staff who, during
non-teaching hours, often deliver lectures in other buildings
and engage in research labs located elsewhere. Consequently,
ME academic staff may not consistently utilize their offices,
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FIGURE 11. The r-squared values correlating electricity consumption with
(a) crowdedness, (b) mobility, and (c) entropy across various time lags for
the space allocation-based cluster 3’s buildings combined.

while the building’s electricity consumption is driven by
supporting staff who regularly occupy the premises. Fur-
thermore, with no lectures conducted in this building,
student occupancy and movement are relatively low. The
limited variability in both building occupancy and electric-
ity consumption values may contribute to an insignificant
correlation.

Cluster 4’s buildings show a strong correlation. Since all
buildings have rooms allocated for lectures, it creates dynam-
ics in space occupancy. Typically, lights and air conditioners
are turned on only while the lecture room is occupied. So,
the room occupancy and the movement of people within the
buildings can certainly ripple the use of electricity, causing a
high correlation at different time lags.

Cluster 4 demonstrates a pronounced correlation among
its buildings. This strong correlation is attributed to the pres-
ence of lecture rooms in each building, introducing dynamic
changes in space occupancy. Typically, the activation of lights
and air conditioners aligns with the occupancy of these lec-
ture rooms. As a result, the movement of individuals within
the buildings, particularly during lecture sessions, markedly
influences electricity consumption, leading to a discernible
temporal relationship across various time lags.

The examination was extended to individual buildings
using a similar approach. However, the observed correla-
tions were not statistically significant, with the exception
of building B5, the primary hub of the faculty. The signif-
icant characteristics of B5, such as its high-rise structure,
expansive area, and elevated occupancy rate, presumably
are key factors in capturing a meaningful temporal relation-
ship between space utilization and electricity consumption.

FIGURE 12. The r-squared values correlating electricity consumption with
(a) crowdedness, (b) mobility, and (c) entropy across various time lags for
the space allocation-based cluster 4’s buildings combined.

Detailed results from the examination of individual buildings
are provided in the Appendix (Fig. 13). For practical insights
into energy management, it is important to note that the
faculty’s Facilities Management Office estimates the ratio of
HVAC to lighting and other electricity usage to be approxi-
mately 70:30%. This significant proportion of HVAC usage
highlights the need to prioritize HVAC system optimization
in our energy management strategies.

In addition to space utilization, other potential factors can
influence a building’s electricity consumption. One of the
main factors is weather conditions, including temperature
and humidity. Research has shown that external weather con-
ditions can impact energy consumption in residentials and
buildings [27], [28]. To account for this, we gathered weather
condition data, specifically temperature and humidity as the
most significant factors affecting thermal comfort [29], dur-
ing the study period (January 9 - February 3, 2020) from a
land-based weather station located on the top of Building B5
in our study area. The observed data is shown alongside elec-
tricity usage in Fig. 14 (in theAppendix). To assess the impact
of weather conditions on electricity usage, we examined the
correlation between these variables. The results, presented in
Fig. 15 (Appendix), show a relatively low correlation, with
a correlation of 0.4789 between temperature and electricity
usage, and 0.3289 between humidity and electricity usage.
This suggests that weather conditions do not play as sig-
nificant a role as the space utilization attributes explored in
this study. Regarding room temperature and humidity, our
interviews with the engineers responsible for the faculty’s
buildings and regular users indicate that the indoor temper-
ature typically ranges from 24-27 degrees Celsius, and the
humidity ranges from 55-60%.
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IV. CONCLUSION
In conclusion, this paper presents initial exploration into
understanding the temporal correlation between space utiliza-
tion and electricity consumption within buildings, addressing
a significant gap in current research. Leveraging Wi-Fi
probe data for physical space segmentation, the study
introduces a novel approach for comprehending space uti-
lization, using Wi-Fi connectivity data from 10 academic
buildings at the Faculty of Engineering, Chiang Mai Univer-
sity, Thailand. By examining factors such as crowdedness,
mobility, and entropy inferred from the Wi-Fi data, and
correlating these with changes in electricity consumption,
the research aims to uncover strategies for optimizing
energy use in real-time, positioning itself at the forefront
of discussions on sustainable building practices and energy
management.

However, it is crucial to acknowledge several limitations
inherent in the study. Firstly, while the chosen features
provide valuable insights, there may be other potentially
influential features within the Wi-Fi data characterizing
area usage that were not explored in this research, open-
ing avenues for future investigations. Additionally, network
connection issues may have led to connecting and discon-
necting events in the logs, potentially impacting the analysis,
particularly in terms of mobility and entropy calculations.
Although these issues were deemed marginal, they warrant
consideration in future investigations.

Furthermore, the absence of ground truth confirmation for
the resulting space utilization inference raises questions about
the accurate measurement of area utilization. Approaches
and methods for sensing and assessing space utilization
are open questions that could be addressed in future work.

FIGURE 13. The r-squared values correlating electricity consumption with (a) crowdedness, (b) mobility, and (c) entropy across various time lags for
the space allocation-based cluster 4’s buildings combined.
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FIGURE 14. Weather condition data collected from a land-based weather
station during the study period: (a) temperature and (b) humidity, along
with the total electricity consumption from all buildings.

The sampling rate, constrained by the electricity data, was
set at a 15-minute interval, limiting the granularity of the
analysis. A shorter interval could offer a more detailed exam-
ination of the temporal relationship. Finally, the study was
conducted over regular days, and the temporal relationship
may be influenced by special schedules, holidays, and social
events. Other unexplored factors such as building age and
surrounding conditions present additional avenues for further
exploration. Despite these limitations, this study contributes
valuable insights into the intricate dynamics between space
utilization and electricity consumption, laying the ground-
work for future research in sustainable building practices and
energy management.

It is important to note that the coefficient of determi-
nation (r2) was used in this study to quantify the strength
of the relationship between space utilization and electric-
ity consumption. However, we acknowledge that correlation
does not imply causation. To determine causation, more
advanced methods such as Bayesian networks or Structural
CausalModels (SCMs) should be considered. Future research
could leverage these methods to further investigate the causal
relationships between space utilization and electricity con-
sumption in buildings.

APPENDIX
Here are the detailed results from the examination of
individual buildings.

FIGURE 15. Scatter plots showing relatively low correlation between
electricity usage and weather conditions: (a) temperature (r2 = 0.4789)
and (b) humidity (r2 = 0.3289).
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