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ABSTRACT Owing to its ability to provide more accurate and detailed battlefield situational information,
fine-grained detection research on soldier targets is of significant importance for military decision-making
and firepower threat assessment. To address the issues of low detection accuracy and inaccurate classification
in the fine-grained detection of soldier targets, we propose a fine-gain soldier target detection model
based on the improved YOLOv8 (You Only Look Once v8). First, we developed a multi-branch feature
fusion module to effectively fuse multi-scale feature information and used a dynamic deformable attention
mechanism to help the detection model focus on key areas in deep-level features. Second, we proposed
a decoupled lightweight dynamic head to extract the position and category information of soldier targets
separately, effectively solving the problem of misclassification of soldier targets’ attack actions under
different poses. Finally, we used the Inner Minimum Points Distance Intersection over Union (Inner-
MPDIoU) to further improve the convergence speed and accuracy of the network model. The proposed
improvements are evaluated through comparative experiments conducted in published twenty-six test groups,
and the effectiveness of the proposedmethod is demonstrated. Comparedwith the original model, ourmethod
achieved a detection precision of 78.9%, a 6.91% improvement; the mAP@50 (mean Average Precision at
50) was 79.6%, a 3.51% increase; and an mAP@50-95 of 63.8%, a gain of 5.28%. The proposed method
achieves high precision and recall while reducing the computational complexity of the model, thereby
enhancing its efficiency and robustness for fine-grained soldier target detection.

INDEX TERMS Fine-grained detection, soldier targets, YOLOv8, attack action, deep learning.

I. INTRODUCTION
In order to achieve an accurate search and precision strike of
targets, advanced target detection and recognition technology
that is especially capable of fine-grained detection of targets
is required in the fields of security monitoring, military
reconnaissance, and automatic weapons. Fine-grained target
detection technology can provide more accurate and detailed
information about target objects for military decision-
making, thereby improving operational efficiency and preci-
sion strike capabilities. Therefore, it is important to conduct
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research on fine-grained detection technologies for military
targets in complex environments.

As an important national defense application, military
target detection using traditional target detection methods
has been studied by scholars in many countries. However,
traditional object detection technology based on machine
learning requires human-designed features, which enable
the comprehensive, rapid, and accurate acquisition of target
information in complex battlefield environments [1], [2].
In recent years, target detection methods based on deep
learning using deep neural networks have surpassed classical
machine learning target detection methods in terms of
detection accuracy and speed, and have been widely applied
in military target detection, automatic weapons, and many
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other fields. Compared with traditional methods, deep
learning methods can autonomously extract abstract image
features that are beneficial for computer detection, have a
greater ability to express complex structures, and have higher
robustness and generalization.

At present, deep-learning target detection algorithms can
be divided into anchor-based methods [3], [4] and anchor-
free methods [5], [6]. The anchor-based target detection
method generates multiple rectangular boxes with different
sizes and proportions centered on each pixel in the image
in advance to cover the entire image as much as possible.
According to the generation stage of candidate boxes, anchor-
based detection methods can be divided into two categories:
one-stage detection and two-stage detection. The one-stage
detection approach treats detection as a regression problem,
and directly regresses the class and location of a target. The
two-stage detection approach detects a target in two stages.
In the first stage, the algorithm produces candidate regions,
refines localization, and classifies these candidate regions
in the second stage. The algorithm produces candidate
regions in the first stage, refines the positions, and classifies
the candidate regions in the second stage. Qin et al. [7]
used an improved two-stage algorithm with a multi-level
attention mechanism to perform the fine-grained detection
of ship targets. This method adds attention mechanisms
and residual connections [8] to the backbone network
to extract multi-layer features, then uses deep separable
convolutions [9] to deepen the network, and finally uses
the ReLU activation function to reduce the computation
amount of the overall network. Although this method has
achieved significant improvements in accuracy, it uses a
large number of residual connections, resulting in a large
number of parameters and a high computational complexity.
Azam et al. [10] compared the detection performance of
algorithms such as RCNN (Region-based Convolutional
Neural Networks), Fast RCNN, and Faster RCNN on aircraft
targets. Despite the high accuracy of two-stage detection
methods, their detection speed is slow and they cannot be
applied to real-time detection scenarios. Therefore, faster
single-stage algorithms are widely used in object detection
tasks. Although the two-stage detection method offers higher
precision, its slower detection speed prevents its application
in real-time monitoring. Thus, the one-stage approach with a
high detection frame rate was adopted more widely than the
two-stage approach.

Kong et al. [11] employed a one-stage deep learning algo-
rithm, YOLOv3 (You Only Look Once v3), to detect military
targets such as tanks and soldiers. They improved the feature
extraction and fusion capabilities of the network model by
introducing GhostNet (Ghost Network) [12] and coordinate
attention mechanism [13]. In addition, they redesigned the
loss function of the detection model to enhance the detection
accuracy of military targets further. Despite the effectiveness
of the method discussed for detection, a considerable com-
putational performance is required. Consequently, it is not

feasible to implement this method on embedded devices with
inferior computing capabilities. Wang et al. [14] improved
YOLOv4 (You Only Look Once v4) by using a 3X-FPN
(Three-channel Feature Pyramid Network) feature fusion
network architecture for the fast detection of infrared military
targets. They achieved data weighted balanced fusion through
adaptive network parameter optimization to improve target
detection accuracy. Infrared images can effectively avoid
the influence of factors such as lighting and camouflage
on detection performance, but they also lose rich texture
features at the same time, making it very difficult to conduct
fine-grained detection of military targets. Du et al. [15]
proposed an improved YOLOv5 (You Only Look Once
v5) detection algorithm to detect military targets such as
ships, helicopters, tanks, and soldiers. This method replaces
the focus module with a stem block and then embeds a
coordinate attention module based on MobileNetV3 (Mobile
Network V3) [16] blocks into the backbone network, which
improves the average detection accuracy of the model. This
improved approach can effectively distinguish different types
of military targets; however, it has a relatively long inference
time, which may lead to real-time performance issues for
devices with limited hardware resources. However, both the
one-stage and two-stage algorithms mentioned above require
predefined anchor boxes, which can potentially introduce
additional errors and have weak generalization capabilities.

The anchor-free algorithm does not require predefined
sizes and positions of anchor boxes, and can adapt to targets
with large-scale variations. Wang et al. [17] proposed a NAS-
YOLOX (Neural Architecture Search You Only LooK Once
X) algorithm with an anchor-free mechanism to detect ship
targets in synthetic aperture radar images. The method they
proposed improves the fusion performance of multi-scale
feature information in the model throug a neural architecture
search feature pyramid network and inserts an atrous
convolution feature enhancement module into the backbone
network to improve the receptive field and target information
extraction capabilities of the network. This method increases
the number of parameters and the computation complexity
of the basic method, and both the inference and training
times are longer. Shan et al. [18] introduced an UAVPNet
(Unmanned Aerial Vehicle Pose Network) algorithm to
detect UAV (Unmanned Aerial Vehicle) targets with different
attitudes. In this study, multi-scale features of the target
were extracted using the ResNet-50 (Residual Networks
50) backbone network. A BFP (Balanced Feature Pyramid)
structure was then used for feature fusion, and a VarifocalNet
(Varifocal Network) detection head was used to minimize
information loss. However, the computation of this method
reaches 139 Gflops, which is not suitable for deployment
on embedded devices, and real-time performance is poor.
Li et al. [19] addressed the problem of vehicle detection in
aerial images and introduced Bi-FPN (Bidirectional Feature
Pyramid Network) into YOLOv8s (You Only Look Once
v8 Small). By fully considering and reusing the multi-scale
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features, they improved the feature fusion capability of the
algorithm. Specifically, this method replaces part of the C2f
module in the backbone with the GhostblockV2 structure
to reduce the loss of feature information. Simultaneously,
Wise-IoU loss was used to improve the overall performance
of the detection task. In some cases, this method may
misclassify similar backgrounds as targets and overfitting
may be a problem. In addition, there are also detection
algorithms based on transformer architecture; however, such
algorithms require a much higher computing performance of
the hardware, which is not discussed here.

In the above research on various types of military
target detection, most studies focused on differentiating
between different types of military targets with distinct
appearances, functions, and large inter-class gaps, but did
not delve into the fine-grained division of the same type
of military targets with small intra-class gaps. Without
fine-grained classification, dividing ordinary vehicles and
armored vehicles into one category and military aircraft
and civilian aircraft into one category results in significant
challenges for the practical application of target detection
technology in battlefield scenarios. Because military targets
of different types and attributes have different functions
and firepower threat levels, roughly grouping these targets
together for detection will produce inaccurate results that
would affect subsequent military decisions and even lead to
misidentification and loss of strike capability. These military
targets share similar characteristics, which make difficult to
distinguish between them. For example, in medical ships,
passenger ships, military transport aircraft, civilian aircraft,
armed soldiers, and medical soldiers, these targets have
similar appearance features but a very small percentage of
distinguishing features. These similarities make it extremely
difficult to classify specific military targets. This is one of
the reasons why there is relatively little research on the
fine-grained classification of military targets.

Currently, fine-grained detection methods for military
targets face various challenges such as insufficient samples,
imbalanced data distribution, and complex background
environments. In these cases, the feature extraction and
fusion capabilities of the network model are critical for the
detection performance. To improve the practical application
of network models, issues such as efficiency and speed must
be considered to ensure that network models can efficiently
detect images. Furthermore, existing research on military
target detection mainly focuses on targets with significant
inter-class differences, such as tanks, ships, and aircraft,
whereas relatively little research has been conducted on
the fine-grained detection of targets with smaller intra-class
differences and different attributes within the same category.
Existing methods have problems, such as low detection
accuracy, high computational complexity, and overfitting to
specific parts. Owing to limited time and resources, this
study focuses on fine-grained detection and classification of
soldier-typemilitary targets. The specific contributions of this
study are as follows.

• A fine-grained dataset was created for model training
that considered soldiers’ attack actions and the types of
firearms they held.

• We introduced a dynamic deformable attention mecha-
nism at the last layer of the backbone network to further
improve the feature extraction capability of the network
model.

• To enhance the fusion ability of network models for
different weapon features, we proposed a multi-branch
feature fusion module with dynamic snake convolution
and atrous convolution to improve detection accuracy
without significantly increasing computation.

• To address the problem of classification errors in the
attack action of soldier targets under different poses,
we propose a lightweight dynamic head and verify its
effectiveness.

• By combining the Inner-IoU and MPDIoU loss func-
tions, our method accelerates the convergence rate of
network training and improves the detection perfor-
mance of small objects.

• The experimental results demonstrate that our method
has good detection efficiency and robustness when
detecting soldier targets adopting attack actions using
guns and rocket launchers in the untrained data.

The remainder of this paper is organized as follows.
Section II describes the dataset and composition of the
YOLOv8-AD (You Only Look Once v8 Attack Detection)
network. Section III presents experiments and analyses.
Finally, Section IV concludes the study.

II. DATASET AND METHOD
A. DATASET
This section introduces the production and distribution of
the experimental dataset. We created a fine-grained detection
dataset of soldier targets through data collection methods
such as photo and video frame extraction from the Internet,
war movies, and other channels, and the targets were marked
using the Lable Image tool. The spatial interaction between
soldiers and their weapons in the battlefield environment
is complex, and the weapons they hold may be severely
obstructed by the soldier’s body. Moreover, the behavior
of soldiers attacking while holding weapons is a fast and
continuous action, and the same soldier may carry multiple
different weapon payloads. In addition, static photos in the
dataset contain temporal information. These issues pose
significant difficulties for data annotation and detection.

Based on the types of weapons held by the soldier targets,
soldiers’ current posture, and the global information of the
entire image, we divide the soldier targets into five categories:
S represents ordinary soldiers who do not hold weapons,
G represents soldiers who hold guns but do not exhibit
obvious attacking behavior, R represents soldiers who hold a
rocket launcher but do not exhibit obvious attacking behavior,
RP represents soldiers who hold rocket launchers and exhibit
obvious attacking action, and GP represents soldiers who

VOLUME 12, 2024 107447



Y. You et al.: Fine-Grained Detection Network Model for Soldier Targets Adopting Attack Action

FIGURE 1. Examples for all categories of soldiers in the dataset; (a) an example of ordinary soldiers; (b) an example of soldiers
with guns but no apparent attack action; (c) an example of soldiers who hold rocket launchers but do not exhibit obvious
aggressive behavior; (d) an example of soldiers shooting with a gun; (e) an example of soldiers firing with rocket launchers.

FIGURE 2. Visualization and distribution of the dataset. The top right is
the visualization of bounding box. The top left is the number of
annotations per class. The bottom left is statistical distribution of the
center point of bounding box. The bottom right is statistical distribution
of the bounding box sizes.

hold guns and exhibit obvious attacking action. Figure 1
shows actual examples for each category of soldiers.

Specifically, whether soldiers engage in shoulder fire
shooting movements, whether their hands engage in
pre-pulling the trigger, and whether they engage in aiming
movements are used to determine soldiers’ attack behavior.
In addition, when there is severe obstruction between the
soldier and the weapon they hold, making it impossible to
determine whether they hold the weapon, priority should
be given to categorizing them as non-weapon types. When
soldiers with multiple firearms appear, priority should be
given to classifying them based on the types of weapons in
their hands. Finally, the dataset we created contains 13,329
images; the distribution of each category, label box, center
point, and pixel size in the dataset is shown in Figure 2.
During training, the built dataset was divided in a ratio of
8:1:1.

B. THE PROPOSED METHOD
In this study, a network model YOLOv8-AD using YOLOv8
as a framework was established for the fine-grained detection
of soldier targets adopting an attack action. The multi-
branch C3DSA (Concentrated-Comprehensive Convolution
block with a Dynamic Snake and Atrous convolution) module
with snake convolution [20] and atrous convolution [21]
is proposed to improve the feature expression capability
of the network for soldiers’ weapon holdings, and a
deformable multi-head attention mechanism [22] is inserted
into the backbone network. A lightweight dynamic head that
combines a dynamic head [23] and ghost conv is proposed
to enhance the accuracy of network models for detecting and
classifying soldier attack actions, and the Inner-MPDIoU is
used to further improve the convergence speed of the network.
The YOLOv8-AD network structure diagram is shown in
Figure 3, where the red border represents the improved
modules in the YOLOv8 network. The specific details of
each improvement module can be found in the corresponding
sections.

1) MULTI-BRANCH FEATURE FUSION MODULE
One of the biggest differences between YOLOv8 and
YOLOv5 is that the C3 module was replaced with the
C2f module by comparing the network structures. The
structures of C3 and C2f are shown in Figure 4. The
C3 module combines the idea of CSPNet and residual
connection, which has the advantage of fewer parameters
and fewer computations, but has the problem of limited
expressive ability. To overcome the shortcomings of the
C3 module, YOLOv6 (You Only Look Once v6) [24]
proposes to improve the C3module with a reparameterization
module RepVGG (Reparameterization Visual Geometry
Group) block to obtain a more efficient backbone network,
whereas YOLOv7 (YouOnly LookOnce v7) [25] uses ELAN
(Effective Layer Aggregation Network) block instead of a
bottleneck to obtain more gradient flow information. The
C2f module used in YOLOv8 [26] adds a split operation
to the C3 module and uses a more flexible structure with
rich gradient flow information, but higher computational
complexity.
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FIGURE 3. The structure of proposed YOLOv8-AD network.

FIGURE 4. The comparison of structure between C3 module and C2f
module.

To enhance the feature extraction and fusion capability
without significantly increasing the number of parameters,
we optimized the C3 module and proposed an improved
multi-branch feature fusion module named C3DSA, as illus-
trated in Figure 5. We replace one branch bottleneck on
the basis of the C3 structure, and add different types of
bottlenecks on the other branch to further enrich the gradient
information. One of the branches introduces Dynamic Snake
Convolution (DS Conv) to improve its ability to express the
tubular structural features of the weapons. DS Conv uses
an iterative strategy to straighten the standard convolution
kernel on the x-axis and y-axis for convolution operations,
and selects the following positions to be observed for each
target to be processed, thereby ensuring the continuity of
observation. Taking a convolution kernel of size 7 as an
example, in the x-axis direction, the specific position of each

FIGURE 5. The structure of proposed C3DSA module, the left branch
combines dynamic snake convolution and the right branch integrates
multiple scales atrous convolutions.

grid in K is expressed as: Ki±p = (xi±p, yi±p), where p =
{0, 1, 2, 3} represents the horizontal distance from the center
grid. Starting from the center position Ki, each grid position
Ki±p in the convolution kernel K depends on the position of
the previous grid: compared with Ki, Ki+1 incremented by
the offset 1 = {δ|δ ∈ [−1, 1]}. In a word, DS Conv can
adaptively adjust the shape and size of the convolution kernels
to better capture the characteristics of the target’s weapon at
different scales and poses. Meanwhile, atrous convolutions
of different sizes are added to the other branch, allowing it
to expand its information receptive field while adapting to
targets of different scales. The calculation process of C3DSA
is shown in Algorithm 1.

The C3DSA module further enriches the gradient flow
information based on the C3 module, with more efficient
feature representation capabilities, which can improve the
detection accuracy of network models for soldiers holding
different weapons in different poses. The expressive ability
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FIGURE 6. The processing flow of DMHA.

Algorithm 1 Pseudocode for C3DSA Module
Input: x Input feature map
Output: y Output feature map after processing
Input channel c1, output channel c2, number of repetitions
of the bottleneck block n, shortcut , e
1.Calculating hide channels: c_ = c2 · e

2.Define CBS processing layer:
y_cv1 = CBS(x, c1, c_)
y_cv2 = CBS(x, c1, c_)

3.Define DS Conv sequence processing bottleneck:
for 1ton do

y1← Bottleneck1(y_cv1, c_, c_, shortcut)
end
4.Define Atrous Conv sequence processing bottleneck:
for 1ton do

y2← Bottleneck2(y_cv2, c_, c_, e)
end
5.Calculate the output result:
y_cat = Concatenate(y1, y2, axis = 1)
y = CBS(y_cat, 2 · c_, c2)
return y

of C3DSA modules for deep and shallow features was
investigated by adding C3DSAmodules to different locations
in the YOLOv8 network; the results are presented in Table 3.

2) DEFORMABLE MULTI-HEAD ATTENTION
When processing high-resolution target images, the semantic
information of low-level and mid-level features may not be
sufficient to provide accurate classification and localization
information for soldier attack actions, which could reduce
the detection precision in complex scenarios. During the
process of detecting soldier attack actions, it is crucial to
consider multiple local details, including the head, hands,
and shoulders, as well as global information related to the
soldier’s body posture and the surrounding environment.
Over-focusing on either the local or global context may
be affected by irrelevant parts outside the area of interest,
thereby affecting the inference speed of the network model.
Deformable Multi-Head Attention (DMHA) is inserted into
the backbone network to dynamically learn the key regions
of the target to address these issues. The processing flow

of DMHA is shown in Figure 6. Dynamic sampling points
were adopted in the DMHA, enabling the model to focus
more intently on the information that is most important for
the current task.

In particular, the DMHA first generates reference points
and a query map based on the feature map and then
inputs the query into the offset network to produce offsets.
Multiple sets of deformation sampling points were obtained,
based on the reference points and offsets, and the key and
value were calculated through bilinear interpolation and the
projection matrix. Finally, the focus area was determined by
concatenating the query, key, value, and relative position bias
offsets using a multi-head attention module. The output can
be expressed by the following formula:

z = Concat
(
z(1), . . . , z(m)

)
Wo,m = 1, . . . ,M (1)

z(m) = σ

(
q(m)k̃ (m)T
√
d
+ φ(B̂;R)

)
υ̃(m) (2)

where z(m) denotes the embedding output from the m-th
attention head, and Wo ∈ RC×C are the projection matrices.
σ (·) denotes the softmax function and d = C/M is
the dimension of each head. q(m), k̃ (m), υ̃(m)

∈ RN×d

denote the query, key, and value embedding, respectively.
φ(·; ·) is the sampling function set obtained using bilinear
interpolation. B̂ denotes the relative position bias table, and
R denotes the relative displacement. In Table 4, we compare
the contributions and effects of the six different attention
mechanisms on model performance.

3) LIGHTWEIGHT DYNAMIC HEAD
The final output of a deep neural network depends on the
detection head. Thus, the classification and localization capa-
bilities of the detection head are crucial to the performance
of the network model. To improve the perceptual ability of
the network model in different dimensions, we introduced
a dynamic head block into the original YOLOv8n detection
head framework. The re-scaled feature pyramid is treated as
a 3-dimensional tensor x ∈ RN

∗S∗C , where the N represents
the number of levels in the pyramid andC and S represent the
number of channels and feature size respectively. The feature
size can be calculated using height and width as S = H ×W .
The cascade attention operation of tensor x is performed
separately for each of the three dimensions in the dynamic
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FIGURE 7. The dynamic head block.

head block, as represented by the following formula:

F(x) = πC

(
πS

(
πN (x) · x

)
· x

)
· x (3)

In this equation, π (·) is an attention function, and the
attention functions for different dimensions are designed
according to the characteristics of each dimension. In the
scale-aware dimension, a dynamic fusion approach was
adopted to perceive information through 1 × 1 convolution,
followed by average pooling, activation with ReLU and Hard
Sigmoid, and splicing with the initial input to produce the
output result. Spatial-aware attention can be decomposed into
two steps: first, making the attention learning sparse by using
deformable convolution and then aggregating features across
levels at the same spatial locations. Meanwhile, task-aware
attention favors different tasks by dynamically switching
the channels of the features ON and OFF. The details of
the attention mechanism in different dimensions within the
dynamic head block are shown in Figure 7, which was
implemented in a cascade manner from scale-aware πN ,
spatial-aware πS , and task-aware πC .
In YOLOv8, the parameter count of the original decoupled

detection head was relatively large, accounting for approxi-
mately 28% of the parameters of the entire network. Within
the dynamic head, a multi-dimensional attention mechanism
was implemented in a cascading manner. Simply combining
the two modules would result in a significant increase in
the number of parameters and computational complexity and
potentially slow down the network’s training convergence
rate. To address this issue, we propose a lightweight dynamic
head, as shown in Figure 8. We introduced Ghost Conv on
the decoupled branches of the detection head to significantly
reduce its computation and speed up model inference while
improving the detection accuracy. Table 5 presents the results
of several ablation experiments conducted to verify the
effectiveness of the method.

4) INNER-MPDIOU LOSS
An advanced decoupled head improves the convergence
speed but also causes misalignment issues between the clas-
sification and regression tasks. To solve this misalignment,
YOLOv8 employed a task alignment learning technique [27]

FIGURE 8. The structure of proposed lightweight dynamic detection head
that combines dynamic head and ghost convolution.

to enhances the alignment consistency between the classifica-
tion and regression tasks. Specifically, for classification loss,
YOLOv8 employs simple BCE (Binary Cross-Entropy) and
SiLU [28] activation function to calculate the probabilities for
each class. For regression loss, the DFL (Distribution Focal
Loss) [29] is combined with the CIoU [30] loss to calculate
the regression loss between the predicted and ground truth
bounding boxes. Although CIoU considers factors such as
IoU, center distance, and aspect ratio between the ground
truth and predicted bounding boxes, the computation of
CIoU is complex and does not consider the mismatching
directions between predicted the and ground-truth bounding
boxes. This results in the predicted bounding boxes not being
able to continuously regress during training, particularly
affecting small targets. To tackle this challenge, our network
introduces MPDIoU [31] to enhance regression efficiency
and precision and incorporates Inner-IoU [32] to further
improve its detection performance on small target samples.
The formulas for the MPDIoU and loss are as follows:

LMPDIoU = 1−MPDIoU (4)

MPDIoU = IoU −
d21 + d

2
2

w2 + h2
(5)

d21 + d
2
2 = (xprd1 − x

gt
1 )2 + (yprd1 − y

gt
1 )

2

+ (xprd2 − x
gt
2 )2 + (yprd2 − y

gt
2 )

2 (6)

where w and h are the width and height of the input image,
(xprd1 , xprd2 , yprd1 , yprd2 ) are the coordinates of the prediction
bounding box; and (xgt1 , xgt2 , ygt1 , ygt2 ) are the coordinates of
the ground truth bounding box. As shown in Equation (5),
MPDIoU extends IoU by incorporating a distance term
between the top-left and bottom-right corner points of
the bounding box. This enables MPDIoU to capture the
disparities between the predicted and ground-truth bounding
boxes more accurately, particularly when distinguishing
between boxes with the same aspect ratio but different
sizes or positions. However, the effect of MPDIoU on
small target samples requires further improvement. Inner-
IoU based on auxiliary bounding boxes demonstrates that
using larger auxiliary bounding boxes to calculate the loss
has a significant effect on the regression of low IoU
samples, while high IoU samples have the opposite effect.
The Inner-MPDIoU loss was proposed to improve the
performance of the original MPDIoU on small target samples
by incorporating Inner-IoU. The Inner-MPDIoU loss function
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TABLE 1. Experimental platform environment configurations.

is calculated as follows:

xgt1 = xgtc −
wgt ∗ ratio

2
, xgt2 = xgtc +

wgt ∗ ratio
2

(7)

ygt1 = ygtc −
hgt ∗ ratio

2
, ygt2 = ygtc +

hgt ∗ ratio
2

(8)

xpre1 = xprec −
wpre ∗ ratio

2
, xpre2 = xprec +

wpre ∗ ratio
2

(9)

ypre1 = yprec −
hpre ∗ ratio

2
, ypre2 = yprec +

hpre ∗ ratio
2

(10)

inter = (min(xgt1 , xpre1 )− max(xgt2 , xpre2 ))

∗ (min(ygt2 , ypre2 )− max(ygt1 , ypre1 )) (11)

union = wgt ∗ hgt ∗ ratio2 + wpre ∗ hpre ∗ ratio2 − inter

(12)

IoUinner =
inter
union

(13)

Linner−MPDIoU = LMPDIoU + IoU − IoUinner (14)

In Equations (7)-(10), (xprec , yprec ), (xgtc , ygtc ) are the center
points of the predicted and ground-truth bounding boxes,
respectively. In subsequent experiments, the inner ratio was
set at 1.05. Table 6 reports the results of several ablation
experiments to validate the effectiveness of the method.

III. EXPERIMENT AND ANALYSIS
Our network was based on the PyTorch framework, and an
NVIDIA Titan V was used for model training on the Ubuntu
22.04 system. The remaining configurations are listed in
Table 1.
The specific hyperparameter settings used for trainingwere

as follows: the input image size was 640, IoU threshold was
0.5, optimizer was SGD, batch size was set to 32, initial
learning rate was 0.01, final learning rate was 0.0001, training
was conducted for 300 epochs, and the momentum decay
and weight decay parameters were set to 0.937 and 0.0005,
respectively. The Precision-Recall curve of YOLOv8-AD
training is shown in the Figure 9.

A. ABLATION EXPERIMENTS
1) EXPERIMENTS WITH C3DSA AT DIFFERENT POSITIONS
The positions and numbers of layers of the C2f module in
the YOLOv8n network are listed in Table 2. An improved
network that replaces only a single C2fmodulewith a C3DSA
module at the corresponding position was tested on the
self-made soldier target fine-grained detection dataset. The
experimental results are presented in Table 3.

FIGURE 9. The Precision-Recall curve of YOLOv8-AD.

TABLE 2. The position of C2f module in the original YOLOv8n Network.

TABLE 3. Performance comparison of C3DSA modules at different
positions in the YOLOv8n network.

The same hyperparameters were used to ensure fairness.
The effects of adding C3DSA modules at different positions
on the model parameters and computation can be ignored.
However, the impact on accuracy is significant: replacing any
C2fmodulewith a C3DSAmodule improves the performance
of the network model on the dataset to different degrees.
Moreover, replacing the shallow layers in the backbone and
neck networkswith C3DSA seems to yield better results, such
as at layers 2, 4, 12, and 15. This is likely due to information
loss occurring when the C3DSA module processes deep
features. Compared to used for feature extraction in the
backbone network, C3DSA demonstrates a more powerful
feature fusion capability in the neck network. The best result
was achieved by replacing the C2f module at layer 15 in the
neck, which improved the mAP50 by 2.6% and mAP50-95
by 1.98% compared to the original detection model.
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TABLE 4. Performance comparison of different attention modules.

FIGURE 10. The performance of different attention mechanism on
YOLOv8n.

2) EXPERIMENTS WITH DIFFERENT ATTENTION
MECHANISMS
In Table 4, we test the performance of the YOLOv8n
detector built with six different attention mechanisms on our
self-made soldier target fine-grained detection dataset. The
methods tested were MHSA [33], SimAM [34], MLCA [35],
MSCA [36], CPCA [37] and DMHA.
The results demonstrate that although the different

attention modules increase a small number of parameters
and computations, there is a significant improvement in
the accuracy and inference speed. Among them, DMHA
achieved the best performance, with an increase of 1.95% in
mAP50 and 1.98% in mAP50-95 compared to the detection
model without the attention mechanism, and an increase of
3.16% and 17.6% in the F1 score and processing speed,
respectively. Figure 10 shows the performance of adding each
attention module to YOLOv8n, where the horizontal axis
represents the F1 score, the vertical axis represents mAP50-
95, and the circle size represents the number of normalized
networkmodel parameters. Figure 11 shows a heatmap before
and after DMHA. After the DMHA, the attention of the
network is increasingly focused on the target.

3) EXPERIMENTS WITH DIFFERENT HEAD AND LOSS
FUNCTIONS
Additionally, we conducted comparative tests on different
loss functions and detection heads to examine how the
mAP and inference time are influenced by the CIoU and
Inner-MPDIoU loss functions, as well as the Original Head

(OH) and Lightweight Dynamic Head (LDH) detection
heads. The experimental results for the dataset are listed in
Table 5. Using Inner-MPDIoU and LDH increasedmAP50 by
1.27% compared with using CIoU and LDH, and it increased
mAP50-95 by 2.74% compared with using Inner-MPDIoU
and the OH.

4) COMPARISON OF VARIOUS IMPROVED COMBINATIONS
To visually evaluate the effectiveness of each improvement,
we validated the effectiveness of the adopted methods by
using YOLOv8n as the baseline. The results of the ablation
experiments are listed in Table 6.

In Table 6, the original model is denoted as Group 0.
Groups 1, 2, and 3 represent themodels constructed by adding
different modules to the original model. Groups 4, 5, and
6 tested the combinations of more than two components
simulaneously to evaluate the performance differences.
According to Group 1, the addition of the C3DSA module
significantly improved the precision, mAP50, andmAP50-95
of the model without significantly increasing the parameter
and computational load, but the recall rate slightly decreased.
Group 2 showed that the model with DMHA had the similar
recall rate as the original YOLOv8n, while improving in
precision, mAP50, mAP50-95, F1, and FPS (Frame Per
Second). Among the three added improvements, the LDH
with the Inner-MPDIoU loss function offered the most
significant enhancement to the original YOLOv8n, achieving
a balance between precision and recall of the model, but the
FPS has decreased. In Group 5, the model that incorporates
C3DSA and LDHwith Inner-MPDIoU loss function achieved
the highest accuracy of 81.0%. Finally, compared to the
original model, the YOLOv8-AD model in Group 7 achieved
the bestmAP50 andmAP50-95, with improvements of 3.51%
and 5.28% respectively. YOLOv8-AD also improved the
performance in other indicators: the precision increased by
6.9%, the recall rate increased by 1.81%, and the F1 score
increased by 4.26%. Despite the relatively low processing
speed of the network model, it remains within an acceptable
range for applications.

5) COMPARISON BETWEEN MODELS
Finally, we compared the YOLOv8-AD model with other
YOLO series models on the self-built dataset, as presented
in Table 7. Figure 12 shows a radar chart of the fine-grained
detection performance of soldier target for each model.
YOLOv8-AD achieved the best mAPs and F1 scores with a
small increase in the parameters and computation.

To study the scope of application and effectiveness of the
YOLOv8-AD model, we further conducted a comparison on
public dataset Pascal VOC 2012. The results presented in
Table 8 show that YOLOv8-AD still performs better than
the original YOLOv8n on the Pascal VOC 2012 dataset.
Although the training time of YOLOv8-AD has increased,
the accuracy and recall of all categories in the Pascal VOC
2012 dataset have been improved.
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FIGURE 11. The heatmap of three different pictures before and after DMHA.

TABLE 5. The effect of CIoU/Inner-MPDIoU and OH/LDH on the detector.

TABLE 6. Ablation study of three tools: block, attention mechanism, and head with loss functions.

TABLE 7. The results of five detection models.

FIGURE 12. YOLO series model detection performance radar charts.
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FIGURE 13. The prediction results of YOLOv8n and proposed YOLOv8-AD.
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TABLE 8. The Comparison on public dataset Pascal VOC 2012.

TABLE 9. Test results for five categories of soldiers.

B. SOLDIER TARGET FINE-GRAINED DETECTION RESULTS
Table 9 presents the detection results of testing 1,333
randomly selected soldier target images that were not
previously trained using the YOLOv8-AD model. The
precision and recall rates were 75.7% and 74%, respectively,
and the average detection time per image was 11.2ms.
Prediction results of eighteen images containing five types
of targets using YOLOv8n and YOLOv8-AD are illustrated
in Figure 13. According to the test results, both YOLOv8n
and YOLOv8 AD have missed and false detections, as shown
in image (9). Both YOLOv8n and YOLOv8 AD incorrectly
identify the irregularly shaped hole in the upper right corner
as a soldier. However, it is evident that the false detection
rate and miss detection rate of YOLOv8-AD are lower
than YOLOv8n. In addition, missed and false detections
mostly occur in situations involving small targets, occlusion,
blurring, uneven lighting, and similar features. In image (6),
the small target of the soldier on the left is obscured by many
small branches and YOLOv8n mistakenly identifies it as a
soldier with a gun. This may be due to some similarities in
appearance and shape between tree branches and firearms,
and YOLOv8-AD’s ability to accurately classify targets in
this case can be attributed to the contribution of the C3DSA
module. In images (2), (11), (12), and (14), YOLOv8n
experienced classification errors due to poor image quality
and unclear firearm features. In particular, when soldiers
are shooting with weapons, YOLOv8n is more prone to
classification errors, and its ability to capture interactions
between soldiers and firearms is significantly weaker than
that of YOLOv8-AD.

Moreover, in most cases, the confidence of detection
results from YOLOv8-AD is higher than YOLOv8n. In short,
YOLOv8-AD can more accurately locate the soldier target
and effectively distinguish whether the type of weapon held
by the soldier is a gun or a rocket launcher and whether they
are taking attack action.

IV. CONCLUSION
In this paper, we propose a soldier target fine-grained
detection method based on the YOLOv8-AD network
model to address the low detection accuracy and inaccurate
classification in the detection process of soldier targets
taking attack action with different firearms. This method
accurately locates and classifies soldiers that hold different
weapons, such as guns and rocket launchers, taking attack
action through a dynamic deformable attention mechanism,
multi-branch modules with dynamic snake convolution and
atrous convolution, lightweight dynamic detection head
with multi-dimensional attention, and a network based on
the Inner-MPDIoU loss function. Comparative experimental
results show that YOLOv8-AD achieves an mAP50 of 79.6%
on the soldier target fine-grained dataset. The precision and
recall rates of soldier target detection using this method on
randomly selected 1,333 untrained images were 75.7% and
74% respectively, with an average detection time of 11.2ms
per image. The proposedmethod for fine-grained detection of
soldier targets can quickly and accurately identify and locate
the type of weapon held by soldiers and whether they are
taking attack action, providing a new solution for fine-grained
detection of soldier targets in the fields of security monitoring
and automatic weapons.

However, attack action is a complex and continuous behav-
ior. This study relies solely on single-frame images to detect
the attack action of the soldier target, lacking contextual
temporal information, which brings great difficulties to both
annotation and detection. Moreover, there is a problem of
an imbalanced sample distribution and low data quality in
the created dataset. Although we used data augmentation
during the training process, beneficial effects were limited.
In future research, we will reduce the difficulty of training by
adding temporal data and balancing the sample distribution,
and improve the real-time performance and efficiency of
detection.

REFERENCES
[1] S. Kim, ‘‘Target attribute-based false alarm rejection in small

infrared target detection,’’ Proc. SPIE, vol. 8537, pp. 115–126,
Nov. 2012.

[2] B. N. Nelson, ‘‘Automatic vehicle detection in infrared imagery using a
fuzzy inference-based classification system,’’ IEEE Trans. Fuzzy Syst.,
vol. 9, no. 1, pp. 53–61, Jan. 2001.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature
hierarchies for accurate object detection and semantic segmentation,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 580–587.

[5] Z. Tian, C. Shen, H. Chen, and T. He, ‘‘FCOS: Fully convolutional one-
stage object detection,’’ inProc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 9626–9635.

[6] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, ‘‘YOLOX: Exceeding YOLO
series in 2021,’’ 2021, arXiv:2107.08430.

[7] P. Qin, Y. Cai, J. Liu, P. Fan, and M. Sun, ‘‘Multilayer feature extraction
network for military ship detection from high-resolution optical remote
sensing images,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 14, pp. 11058–11069, 2021.

107456 VOLUME 12, 2024



Y. You et al.: Fine-Grained Detection Network Model for Soldier Targets Adopting Attack Action

[8] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[9] L. Sifre and S. Mallat, ‘‘Rigid-motion scattering for texture classification,’’
2014, arXiv:1403.1687.

[10] B. Azam, M. J. Khan, F. A. Bhatti, A. R. M. Maud, S. F. Hussain,
A. J. Hashmi, and K. Khurshid, ‘‘Aircraft detection in satellite imagery
using deep learning-based object detectors,’’ Microprocessors Microsys-
tems, vol. 94, Oct. 2022, Art. no. 104630.

[11] L. Kong, J. Wang, and P. Zhao, ‘‘YOLO-G: A lightweight network model
for improving the performance of military targets detection,’’ IEEE Access,
vol. 10, pp. 55546–55564, 2022.

[12] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, ‘‘GhostNet:
More features from cheap operations,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 1577–1586.

[13] Q. Hou, D. Zhou, and J. Feng, ‘‘Coordinate attention for efficient mobile
network design,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 13708–13717.

[14] S. Wang, Y. Du, S. Zhao, and L. Gan, ‘‘Multi-scale infrared military target
detection based on 3X-FPN feature fusion network,’’ IEEE Access, vol. 11,
pp. 141585–141597, 2023.

[15] X. Du, L. Song, Y. Lv, and S. Qiu, ‘‘A lightweight military target detection
algorithm based on improved YOLOv5,’’ Electronics, vol. 11, no. 20,
p. 3263, Oct. 2022.

[16] B. Koonce, ‘‘MobileNetV3,’’ inConvolutional Neural NetworksWith Swift
for Tensorflow: Image Recognition and Dataset Categorization. Berkeley,
CA, USA: Apress, 2021, pp. 125–144, doi: 10.1007/978-1-4842-6168-
2_11.

[17] H. Wang, D. Han, M. Cui, and C. Chen, ‘‘NAS-YOLOX: A
SAR ship detection using neural architecture search and multi-
scale attention,’’ Connection Sci., vol. 35, no. 1, pp. 1–32,
Dec. 2023.

[18] P. Shan, R. Yang, H. Xiao, L. Zhang, Y. Liu, Q. Fu, and Y. Zhao,
‘‘UAVPNet: A balanced and enhanced UAV object detection and
pose recognition network,’’ Measurement, vol. 222, Nov. 2023,
Art. no. 113654.

[19] Y. Li, Q. Fan, H. Huang, Z. Han, and Q. Gu, ‘‘A modified YOLOv8
detection network for UAV aerial image recognition,’’Drones, vol. 7, no. 5,
p. 304, May 2023.

[20] Y. Qi, Y. He, X. Qi, Y. Zhang, and G. Yang, ‘‘Dynamic snake convolution
based on topological geometric constraints for tubular structure segmen-
tation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2023,
pp. 6070–6079.

[21] F. Yu and V. Koltun, ‘‘Multi-scale context aggregation by dilated
convolutions,’’ 2015, arXiv:1511.07122.

[22] Z. Xia, X. Pan, S. Song, L. E. Li, and G. Huang, ‘‘Vision transformer
with deformable attention,’’ in Proc. IEEE/CVFConf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2022, pp. 4784–4793.

[23] X. Dai, Y. Chen, B. Xiao, D. Chen, M. Liu, L. Yuan, and L. Zhang,
‘‘Dynamic head: Unifying object detection heads with attentions,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 7369–7378.

[24] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,
W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei,
and X. Wei, ‘‘YOLOv6: A single-stage object detection framework for
industrial applications,’’ 2022, arXiv:2209.02976.

[25] C.-Y. Wang, A. Bochkovskiy, and H.-Y.-M. Liao, ‘‘YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 7464–7475.

[26] G. Jocher, A. Chaurasia, and J. Qiu. (Jan. 2023). YOLO by Ultralytics.
[Online]. Available: https://github.com/ultralytics/ultralytics

[27] C. Feng, Y. Zhong, Y. Gao, M. R. Scott, and W. Huang, ‘‘TOOD: Task-
aligned one-stage object detection,’’ inProc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2021, pp. 3490–3499.

[28] S. Elfwing, E. Uchibe, and K. Doya, ‘‘Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning,’’Neural
Netw., vol. 107, pp. 3–11, Nov. 2018.

[29] X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li, J. Tang, and J. Yang,
‘‘Generalized focal loss: Learning qualified and distributed bounding
boxes for dense object detection,’’ inProc. Annu. Conf. Neural Inf. Process.
Syst. (NIPS), Dec. 2020, pp. 21002–21012.

[30] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, ‘‘Distance-IoU loss:
Faster and better learning for bounding box regression,’’ Proc. AAAI Conf.
Artif. Intell., Apr. 2020, vol. 34, no. 7, pp. 12993–13000.

[31] S. Ma and Y. Xu, ‘‘MPDIoU: A loss for efficient and accurate bounding
box regression,’’ 2023, arXiv:2307.07662.

[32] H. Zhang, C. Xu, and S. Zhang, ‘‘Inner-IoU: More effective intersection
over union loss with auxiliary bounding box,’’ 2023, arXiv:2311.02877.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaisr, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 30, I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., Curran Associates, 2017, pp. 5998–6008. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547
dee91fbd053c1c4a845aa-Paper.pdf

[34] L. Yang, R. Zhang, L. Li, and X. Xie, ‘‘SimAM: A simple, parameter-
free attention module for convolutional neural networks,’’ in Proc. 38th
Int. Conf. Mach. Learn., vol. 139, 2021, pp. 11863–11874.

[35] D. Wan, R. Lu, S. Shen, T. Xu, X. Lang, and Z. Ren, ‘‘Mixed local
channel attention for object detection,’’ Eng. Appl. Artif. Intell., vol. 123,
Aug. 2023, Art. no. 106442.

[36] M.-H. Guo, C.-Z. Lu, Q. Hou, Z. Liu, M.-M. Cheng, and S.-M. Hu,
‘‘SegNeXt: Rethinking convolutional attention design for semantic
segmentation,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022,
pp. 1140–1156.

[37] H. Huang, Z. Chen, Y. Zou, M. Lu, and C. Chen, ‘‘Channel
prior convolutional attention for medical image segmentation,’’ 2023,
arXiv:2306.05196.

YU YOU received the B.E. and M.E. degrees in
mechatronical engineering from Beijing Institute
of Technology, Beijing, China, in 2018 and
2021, respectively, where he is currently pursuing
the Ph.D. degree. His research interests include
mechanical structure designs, deep learning, target
detection, and tracking.

JIANZHONG WANG received the B.E., M.E.,
and Ph.D. degrees from Nanjing University
of Science and Technology, Nanjing, China.
From 1990 to 2002, he was with Wuhan Univer-
sity of Technology, Wuhan, China, where he is
currently a Professor of mechanical and electrical
engineering. Since 2002, he has been with Beijing
Institute of Technology, Beijing, China, where
he is currently a Professor with the School of
Mechatronical Engineering and the State Key

Laboratory of Explosion Science and Technology. His current research
interests include intelligent systems, unmanned ground vehicles, and
multi-robot cooperative technology.

ZIBO YU was born in 1998. He received the B.E.
degree in mechatronical engineering from Beijing
Institute of Technology, in 2020, where he is
currently pursuing the Ph.D. degree in mechanical
engineering. His research interests include target
detection and tracking.

VOLUME 12, 2024 107457

http://dx.doi.org/10.1007/978-1-4842-6168-2_11
http://dx.doi.org/10.1007/978-1-4842-6168-2_11


Y. You et al.: Fine-Grained Detection Network Model for Soldier Targets Adopting Attack Action

YONG SUN received the B.E. degree fromBeijing
Institute of Technology, Beijing, China, in 2017,
where he is currently pursuing the Ph.D. degree.
His research interests include computer vision and
deep learning.

YIGUO PENG received the B.E. degree from
Beijing Institute of Technology, Beijing, China,
in 2021, where he is currently pursuing the M.E.
degree. His research interests include camou-
flage object detection, computer vision, and deep
learning.

SHENG ZHANG received the B.E. degree in
mechatronical engineering from Beijing Institute
of Technology, Beijing, China, in 2018, where he
is currently pursuing the Ph.D. degree. His cur-
rent research interests include unmanned ground
vehicles (UGV), deep reinforcement learning, and
simulation technology.

SHAOBO BIAN received the B.E. degree in
mechatronic engineering from Beijing Institute
of Technology, China, in 2022, where he is
currently pursuing the Ph.D. degree. His research
interests include human pose estimation and object
recognition.

ENDI WANG received the B.E. degree in elec-
tronic information engineering from the Ocean
University of China, Qingdao, Shandong, in 2021.
He is currently pursuing the M.E. degree with
Beijing Institute of Technology. His research
interests include image segmentation and deep
reinforcement learning.

WEICHAO WU received the B.E.,M.E., and Ph.D.
degrees from Northwestern Polytechnical Univer-
sity, Xi’an, China. From 2014 to 2016, he was
with Northwestern Polytechnical University. Since
2016, he has been with Beijing Institute of
Technology, Beijing, China. His current research
interests include intelligent unmanned systems and
smart munitions.

107458 VOLUME 12, 2024


