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ABSTRACT Point cloud-based deep neural networks (PC-DNNs) has seen growing interest in the
construction domain due to their remarkable ability to enhance Building Information Modeling (BIM)-
related tasks. Among these tasks, Industry Foundation Classes (IFC) object classification using PC-DNNs
has become an active research topic. This focus aims to mitigate classification discrepancies that occur
during the interoperability of BIM tools for information exchange. However, existing studies have not fully
investigated the potential of the PC-DNN models for IFC object classification. This limitation is due to
the reliance on a limited number of PC-DNN models trained on small, private datasets that are not openly
accessible. To address this knowledge gap, this study evaluates diverse state-of-the-art PC-DNN models
for IFC object classification. Our study provides a comprehensive analysis of how different PC-DNN
components and loss functions affect IFC classification, utilizing two public IFC datasets: IFCNet and
BIMGEOM. Experimental results offer a detailed comparison across metrics such as accuracy, learning
progression, computation time, and model parameters.

INDEX TERMS Building information modeling (BIM), deep neural networks (DNN), industry foundation

classes (IFC), metric learning, object classification, scan-to-BIM.

I. INTRODUCTION

The digital transformation of the built asset industry has
been prompted in large part by the significant increase in
the use of Building Information Modeling (BIM) [1]. This
trend is in line with the growing interest in leveraging
digital technologies to improve efficiency, accuracy, and
collaboration in the design, construction, and maintenance
of buildings and infrastructure [2]. Professionals in various
sectors of the built asset industry use task-specific software
products to address various requirements, such as safety
planning and analysis [3], code compliance verification [4],
and energy efficiency modeling [5]. In this regard, BIM
has emerged as a crucial process for information exchange
between stakeholders involved in the project and asset
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lifecycle, specifically by leveraging Industry Foundation
Classes (IFC) as an open and international data standard [6].

The IFC schema is designed to meet a wide range of needs
within the domain of the built industry [7], [8]. However,
its detailed and comprehensive nature introduces a level of
complexity that can lead to multiple interpretations. As a
result, issues such as errors, omissions, and inaccuracies can
occur in the data exchange process [9]. These issues are often
due to the challenge of correctly mapping BIM elements to
the extensive number of IFC classes that represent various
building components and systems [9], [10]. For example,
during the exporting phase of a BIM model, a Bearing
Plate may be incorrectly mapped to IfcPlate instead of its
corresponding IFC class, IfcBeam [11]. Furthermore, the use
of massing tools or the complexity of identifying the right
correspondence between elements and their IFC equivalents
can result in the creation of generic elements for which no
specific IFC classes are assigned by the authoring tool. These
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elements, such as [FCBuildingelementProxy, often cannot be
classified under any specific predefined IFC entity due to
mismatched property sets or manual errors [9], [12], [13],
[14].

Semantic enrichment of BIM can be used to address
the issues of inconsistent classification information that
can occur during the import/export process of IFC across
BIM-supporting tools [9], [12]. Traditional strategies within
this domain are applied a series of predetermined rules to
validate or refine the type information of elements [15].
However, these rule-based methods require extensive expert
knowledge and a high number of assumptions. Recent studies
have employed machine learning (ML) and deep neural
networks (DNNs) as data-driven approaches to streamline
the subjective IFC object classification process [12], [16].
In particular, several studies employed supervised DNNs to
recognize and categorize BIM elements according to their
geometric characteristics [14], [17].

The DNN models use different uniform data representation
formats, such as projected (i.e., rendered) images and
sampled point clouds, to process parametric data formats,
including IFC, in a data-driven manner. Specifically, point
cloud-based DNN (PC-DNN) models have gained promi-
nence in 3D construction tasks within the built asset indus-
try [18], [19], [20]. This prominence is due to the extensive
pre-processing demand of multi-view image classification
models, e.g., multi-view convolutional neural network (M V-
CNN) [21], which makes them unsuitable for real-world
applications [22]. The pre-processing includes the generation
of multiple images per sample (e.g., 12 images), which
leads to a high computational overhead. In contrast, PC-
DNNs offer more manageable computational overhead since
they typically require lightweight sampled point sets (e.g.,
1K points per sample) to perform semantic enrichment
(e.g., [14]). Furthermore, PC-DNNs can be applicable in
constructing as-built or as-is BIM models from laser-scanned
point cloud data by perform classification of scanned building
components [23], [24], [25]. Given the above-mentioned
advantages, this research focuses on PC-DNNs, which are
more applicable for real-world applications that involve large
dataset.

Numerous studies have been investigated PC-DNN models
for different downstream tasks in built industry applications,
including IFC object classification [14], [26]. PointNet [27]
and PointNet ++ [28] were trained to perform IFC classi-
fication from point cloud and their results were compared
with those of MVCNN in [17] and [22], respectively.
Collins et al., presented a graph convolutional network
(GCN) and compared its IFC classification results with
those of DGCNN [10]. Emunds et al. introduced SpaRSE-
BIM, a novel classifier for IFC objects from point clouds,
and utilized DGCNN, as a PC-DNN competitor [14];
additionally, they compared SpaRSE-BIM’s performance
with multi-view and mesh-based approaches, specifically
MVCNN and MeshNet [29], across two public IFC datasets
(i.e., IFCNet [30], and BIMGEOM [31]). Similarly, DGCNN
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was used to compare its classification results with MVCNN
and MeshNet [29], in [30] for IFC classification.

Despite the aforementioned efforts in comparative assess-
ment of PC-DNNs for IFC classification, existing studies tend
to report results based on a narrow range of DNN models
and the datasets used in their experiments. Specifically,
a majority of these studies have relied solely on DGCNN
as the representative PC-DNN, comparing its performance
against that of other rivals. However, recent research in
other domains within the built asset industry, e.g., [18], [19],
conducts extensive comparative analyses between a variety
of PC-DNN. Consequently, the current body of research on
IFC object classification falls short in demonstrating the full
capabilities of PC-DNN, due to the limited scope of the model
comparison selections.

This paper aims to bridge this gap by evaluating the
performance of various PC-DNN models in the context of
IFC object classification. Specifically, this study assesses the
performance of the state-of-the-art PC-DNN models, each
with different architectures, against two publicly available
IFC datasets: IFCNet and BIMGEOM. The PC-DNNs
selected for this study incorporate a variety of neural net-
work components, including MLP, graph-based approaches,
transformers, and residual learning techniques. This selection
is intended to provide a comprehensive understanding of the
impact these components have on IFC object classification.
Additionally, this work offers a comparative analysis of
PC-DNN model training using various loss functions to illus-
trate the influence of learning strategies on PC-DNN training
for IFC object classification. The experimental results present
a wide-ranging comparison of different PC-DNNSs in terms
of classification accuracy, learning progress, computational
time, and the number of parameters.

Il. RELATED WORKS

Although the IFC serves as a standard and open-source data
exchange format, various BIM tools and platforms still rely
on their unique internal formats. Consequently, converting
data to and from IFC is an inevitable task for information
exchange between BIM platforms, a process that may
contain errors and omissions [12]. Additionally, volumetric
models generated as a result of 3D indoor scanning or
the use of massing tools for 3D modeling only contain
geometric information, and semantic properties, such as
class labels (i.e., element types) are mainly left unspecified.
In this scenario, performing semantic enrichment through
the process of object classification can update or refine the
classification type information and avoid potential issues
through the information modeling process. Specifically, the
properties of BIM objects largely depend on their class (i.e.,
element type), which makes their classification vital for
subsequent usage in various analysis tools.

In recent years, supervised DNN models have been
developed to perform classification of IFC objects in a data-
driven manner. These supervised DNN models are capable
of automatically extracting feature descriptors, also known
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as embeddings, to represent the geometric characteristics
of various IFC objects using annotated data (i.e., labeled
data). Different data representation modalities have been
employed by the DNN models to process the geometric
information of IFC objects for classification purposes. These
modalities include image projection [22], [32], point cloud
sampling [14], [17], and voxel encoding [10], [33].

Projection-based models leverage a series of rendered
images to represent 3D objects, as shown in the works of [21],
[34], and [35], among others. A DNN extracts and aggregates
features from these images, delivering the global feature
descriptor to perform the classification task. Although these
models show promising results, their pre-processing schemes
often require extensive rendering task with significant
computational overhead. In addition, the performance of
the projection-based approaches heavily relies on additional
modules for multi-view rendering and feature aggregation.

Grid-based (aka voxel-based) models address the chal-
lenges of irregular 3D input analysis through voxeliza-
tion [36], [37]. Despite their computational and memory
demands, these approaches have seen improvements in recent
years by utilizing sparsity-aware representations models,
such as unbalanced octrees [38], spare convolution neural
network (CNN)-based processing [39], [40], and the use
of variational autoencoders and radial basis functions to
streamline voxelization [41]. However, the voxelization’s
quantization process of the voxel-based approach may result
in a loss of semantic information inherited in the points (e.g.,
RGB data).

Point-based approaches, on the other hand, use models
capable of directly processing the point clouds for various
3D tasks such as point cloud classification. An early example
is PointNet [27], which maps irregular input data (i.e.,
point cloud) into a fully connected DNN. PointNet++
[28] enhances PointNet by recursively implementing it
on a progressively divided input point cloud to develop
hierarchical interpretations. PointMLP [42] introduces a
residual-based MLP network that uses geometric affine
transformation to extract shape descriptors. PointConv [43]
introduces a convolution operation to group point samples
and extract local geometry information. PointNeXt [44]
augments PointNet++ with an inverted residual bottleneck
blueprint and an array of enhanced training tactics for
efficient and effective model scaling. Point Transformer [45]
employed Transformer [46] used in various vision tasks (e.g.,
[47], [48]) to explore localize contextual information using
self-attention mechanism.

In addition, several studies attempt to enhance the
point-based processing approach by incorporating contextual
information through graph-based networks and convolutions
designed in continuous Euclidean space. RS-CNN [49]
introduces relation-shape convolution to explicitly encode
the geometric relationship of points. DGCNN [50] presents
a local accumulation layer to connect a point with its
surrounding neighbors to dynamically form a local graph,
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and obtain its geometric properties. PosPool [51] makes the
local accumulation operator simpler and eliminates learnable
weights. PointASNL [52] presents adaptive sampling and
local-nonlocal modules to tackle noise and improve the incor-
poration of short- and long-term dependencies for feature
learning task, respectively. CurveNet [53] further improves
feature learning by introducing a two-staged module that
generates curves through guided walks and then aggregates
them to enhance point-wise features.RepSurf [54] expands
PointNet++ by substituting the point location with surface
representation in the stem layer. HGNet [55] learn point
cloud representations by employing Transformer structure
and geometrical aggregation modules.

These various models have recently been used to analyze
point clouds in the construction domain. The projection-
based model, multi view CNN (MV-CNN), for example,
has been adopted in several studies (e.g., [14], [17], [22],
[30]) to handle IFC object classification. In terms of point
cloud-based models (i.e., PC-DNN models), PointNet and
PointNet ++ has served as the backbone for multiple
frameworks focused on point cloud segmentation (e.g.,
[56], [57]) and classification tasks (e.g., [17], [58]). For
instance, PointNet was employed by Chen et al. [25] to
facilitate 3D scene reconstruction in computer-aided design
(CAD) format by classifying 3D point set based on building
entities. Moreover, an enhanced version of PointNet ++ with
residual connections was used in [59] to segment mechanical
objects from a large-scale point cloud. SE-PseudoGrid [18],
a modified variant of PseudoGrid [51], [60], was introduced
for the classification of piping components from point clouds.
The PseudoGrid was subsequently applied in a DNN-based
framework to improve the efficiency of segmentation tasks.
Despite the remarkable performance of PC-DNN models in
IFC object classification, existing studies typically present
restricted comparative evaluations, utilizing datasets that
are not publicly available. This has resulted in a lack of
comprehensive study on the efficacy of various PC-DNN
architectures specifically for IFC object classification.

IlIl. RESEARCH METHODOLOGY

To tackle the knowledge gap elaborated in the previous
section and to assess the effectiveness of various PC-DNN
architectures for IFC object classification, our study inves-
tigates and evaluates multiple state-of-the-art DNN models,
each possessing distinct architectures and local feature
extractors. Specifically, PointNet++4-, Point Transformer,
CurveNet, and PointMLP models are assessed and their
detailed properties will be discussed subsequently. The
primary goal of our investigation is to determine which PC-
DNN model, with its corresponding processing approach,
can yield the most promising performance for IFC object
classification. In this regard, the PC-DNN models are
evaluated in terms of classification accuracy, computational
requirements, and learning complexity. The details of the
PC-DNN models are as follows.
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o PointNet++ [28] is one of the pioneering models
that directly process the point cloud using MLP-
based architecture. The PointNet+-+ contains hier-
archical feature extraction and query ball grouping
modules to extract and aggregate shape descriptors
in different neighboring level for the classification
task.

o Point Transformer [45] is one of the more recent
PC-DNN model, which employed encoder-decoder
architecture with self attention mechanisms [46] to
extract a global shape descriptor.

o CurveNet [53] treats the input point set as an undirected
graph and generates continues sequences of point
segments. The generated sequences are then grouped
using deterministic factors and used for geometry-aware
feature learning.

o PointMLP [42] is a state-of-the-art (SOTA) PC-DNN
model, which reported results with over 94% accuracy
on well-known ModelNet40 dataset [61]. This model
used affine transformation and residual connections to
extract aggregated shape descriptors.

In order to fully explain the methodology used in this
study, it is necessary to elaborate the mechanisms of feature
extraction and classification applied by the experimental
models (i.e., PointNet++, Point Transformer, CurveNet, and
PointMLP).

Given the input set denoted as X, the feature extraction
function of the model denoted as F maps X to a low
dimensional feature set denoted as H, which represents the
shape feature descriptor of the input point set X. It should
be noted that X can contain feature set F' = {fi}Nzl
where f; € R% along with point set P = ﬂ)i}?’: |
where p; € R?. The shape feature descriptor is then
passed through the classification module denoted as C to
obtain the predicted label denoted as y for each input
point set. The output of the DNN model can be defined
using Eq. 1.

backbone
—_——

¥ =G (FX)), ey

where C; and F; correspond to the feature extraction and
classification modules. During the training process of the
DNN models, the output of the backbone y is used to calculate
the model’s error through the loss function. The loss function,
which can be defined as £ = (3, y), calculates the error value
of the input X using its true label value denoted as y. Since
the improvements in training task have shown significant
effects on the generalization capacity of PC-DNN models,
this study examines several loss functions to assess the effect
of different convergence strategies on the learning progress
and optimization. The details of the examined loss functions
are as follows.
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FIGURE 1. The summary of the comparison approach to assess the role of
DNN models and loss functions for IFC object classification from point
cloud.

1) SOFTMAX CROSS ENTROPY

This is the typical loss function used in the context of
classification tasks where the loss is computed through
the measurement of discrepancy between the probability

distribution of y and y. The softmax cross entropy denoted
as L.(-) can be defined as Eq. 2.

K
LoG,y)=— D yilog®)), )
j=1

where y; and J; are the corresponding j-th elements of the
labeled and predicted samples respectively, and K is the total
number of label classes.

2) TRIPLET MARGIN

The triplet margin computes the loss through the estimation
of relative distance between samples to fulfill the term that an
anchor sample should be closer to positive (similar) samples
than to negative (dissimilar) samples by a certain margin. The
Triplet margin loss can be defined as Eq. 3.

L(a, p, n) = max(d(a, p) — d(a, n) + m, 0), 3)

where d(-, -) is the L, distance measure, a, p, n are anchor,
positive, and negative samples respectively, and m is a pre-
defined margin.

3) ANGULAR

Instead of distance-based computation among triplet points
in the Triplet Margin, the Angular loss, denoted as L,(-),
estimate the angles between the embedded features to
enhance the optimization convergence in high dimensional
solution space. By using the angles, the Angular loss attempts
to ease the optimization of the triplet loss scheme while
benefits from its relative similarity estimation technique. The
Angular loss function can be defined as E.q. 4.

1
E“(X/)Zﬁz log | 1+ Z exp(Sq,p,n) , @
aeX’ neX’
Yn#EYa»Yp
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where X’ is a batch of samples with N members, y,, y,, and
yp are the labels of a, p, and n samples, respectively. The
definition of s(-) is brought in Eq. 5.

Sapn = 4tan*(B)a +p) n —2(1 + tan*(B)a’ p,  (5)

where B > 0 is a predefined parameter.

4) CIRCLE

The circle loss, denoted as L.(-), provides an additional
weighting module for calculating the loss value by estimating
the importance of the obtained error rates of the samples
according to a circular decision boundary. The aim of this
loss function is to increase the discrimination among samples,
while providing more flexibility through the optimization of
the loss calculation. We refer the reader for more information
to [62].

To investigate the effects of different feature extraction
backbones and loss functions on the classification of IFC
objects from point cloud data, this study proposes a unified
framework that performs assessments in two distinct phases.
In the first phase, the feature extraction backbone analysis,
the assessment is conducted using similar input samples with
a commonly used loss function, i.e., softmax cross-entropy.
For the second phase, one of the feature extraction backbones
is randomly selected to analyze the learning convergence and
generalization capacity. This random selection is justified by
the independence of the learning task from the backbone
architecture and aims to efficiently manage computational
resources. Fig. 1 provides a summary of the assessment
framework to evaluate different DNN models and their loss
functions in the context of IFC object classification from
point cloud.

IV. EXPERIMENT

A. EXPERIMENTAL CONFIGURATION

For the evaluation of the selected DNN models on the task
of IFC object classification, a robust experimental design is
implemented, leveraging two synthetic and publicly available
datasets, i.e., IFCNet [30] and BIMGEOM [31]. The IFCNet
dataset includes 7,930 objects across 20 diverse IFC classes,
and the BIMGEOM dataset, larger in comparison, comprised
10,146 objects containing 13 IFC classes. The IFC classes
ranged from low texture element types, such as walls and
cable carrier segments, to intricately structured objects, e.g.,
valves and furniture, offering a wide spread of classes.
Fig. 2. provides an illustration of the distribution of the
datasets’ raw samples in the 2D space embedded using
uniform manifold approximation and projection (UMAP)
technique [63]. As can be seen in Fig. 2., both datasets’
samples contain highly similar features with different class
labels, which demonstrated their challenging nature with
respect to the classification task.

Regarding the configuration of training parameters,
we followed the commonly used optimization settings and
employed the Stochastic Gradient Descent (SGD) optimizer
with the momentum and weight decay set to 0.9 and 0.0001,
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FIGURE 2. The 2D visualization of 200 random samples using UMAP of
the datasets in question; a) IFCNet dataset b) BIMGEOM dataset.

respectively. We also used a cosine annealing schedule [64]
to enhance the convergence. To maintain uniformity, all
the DNN models, i.e., PointNet++, Point Transformer,
CurveNet, and PointMLP, were trained for a consistent span
of 150 epochs, and the highest performing test epoch during
this training phase was recorded for each dataset based on
the evaluation metrics: overall accuracy (OA) and mean
average accuracy (mAcc). In addition, the computational
efficiency and the learning progress analysis of the DNN
models are assessed to provide a more comprehensive
evaluation of each models’ advantages and drawbacks. All
models were tested on a Linux operating system using two
GEFORCE 3090 RTX GPUs. It should be noted that we
adhered to the predefined train and test splits as established
in the standard configuration of the IFCNet and BIMGEOM
datasets.

B. COMPARISON RESULTS

Table. 1. tabulated the classification performance of the
DNN models on the IFCNet datasets. Based on the results,
the Point Transformer achieved superior OA performance.
In addition, the PointNet+4 and PointMLP show the
relatively similar classification results with the highest mAcc
accuracy. Conversely, the performance of CurveNet, despite
its complex local feature extraction and aggregation modules,
fell short of competitiveness.

Upon evaluation on the BIMGEOM dataset with the
results tabulated in Table. 2., PointMLP outperformed its
counterparts by a large margin, particularly in terms of mAcc.
It is worth mentioning that by comparing the performance of
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TABLE 1. The classification results of the DNN models for IFCNet dataset.

Model Points  mAcc(%) OA(%)
PointNet++ 1K 83.2 84.9
Point Transformer 1K 83.1 85.2
CurveNet 1K 75.8 78.8
PointMLP 1K 83.2 84.1

TABLE 2. The classification results of the DNN models for BIMGEOM
dataset.

Model Points  mAcc(%) OA(%)
PointNet++ 1K 86.7 91.2
Point Transformer 1K 88.1 91.8
CurveNet 1K 87.4 91.5
PointMLP 1K 90.1 93.1

CurveNet on the IFCNet and BIMGEOM datasets, it can be
observed a notable improvement on the BIMGEOM, which
contain more training samples compared to the IFCNet.
Therefore, it can be inferred that CurveNet is more sensitive
to the size of the training set compared to its rivals when
the labeled data is more available. Regarding the learning
progress analysis, Fig. 3. illustrates the OA results of test sets
for the DNN models after training in each epoch.

As depicted in Fig. 3., all DNN models display perfor-
mance progress over the duration of training on BIMGEOM,
with PointMLP distinctly outperforming its rivals. The
PointMLP’s superior performance can be traced back to
its impressive model’s capacity, demonstrated by its over
13 million parameters (as shown in Table. 3.). It indicates
that PointMLP can learn more effectively when it is trained
on a larger dataset (i.e., BIMGEOM). According to the
results from IFCNet, all models demonstrate limited learning
progress, particularly after the 120th epoch. The results
indicate that the DNN models exhibit moderate accuracy
performance.

C. PERFORMANCE ANALYSIS

To study the impact of complex metric learning on improv-
ing the DNN learning for the IFC object classification,
we selected Point Transformer due to its reasonable clas-
sification accuracy on both the IFCNet and BIMGEOM
datasets according to Tables. 1- 2. The Point Transformer
is trained using the selected loss functions, namely softmax
cross entropy, triplet margin, Angular loss, and Circle loss.
In order to represent how different optimization strategies
navigate the loss landscape, we employed a loss landscape
visualization [65]. As shown in Figs. 4 - 5., the conventional
softmax function resulted in a smoother loss landscape,
thereby facilitating more effective learning. Furthermore,
an evaluation of the test loss (i.e., error rate) results for
the test sets of the IFCNet and BIMGEOM datasets shown
in Fig. 6. demonstrated that the softmax function yielded
superior performance for both datasets.
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FIGURE 3. The learning progress comparison of the DNN models; a)
IFCNet dataset b) BIMGEOM dataset.

In the context of computational cost, PointNet++ exhib-
ited the highest efficiency, with shorter training time and
faster test speed compared to the other models, as shown
in Table. 3. In contrast, the CurveNet displayed high
computational demand with the longest training time and
slowest testing speed. It should be noted that despite
its significant number of parameters, PointMLP exhibited
moderate computational demand, which can be attributed to
its use of residual connections to maintain the computational
requirements alongside the high-level processing capacity.

V. DISCUSSION

The experimental results reveal several significant obser-
vations regarding the utilization of advanced DNN models
for the task of IFC object classification. From a practical
perspective, this study emphasizes that the cutting edge DNN
models do not always surpass their simpler alternatives when
data availability is moderate or limited.

According to the experimental results, the similar per-
formance between SOTA PointMLP and PointNet++ on
IFCNet dataset highlight the fact that extra performance
capacity and high computational overhead cannot guarantee
high classification performance. The observation of similar
performance from DNNs with varying models’ capacity
may be attributed to the under-training phenomenon that
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FIGURE 5. The loss landscape visualization for BIMGEOM dataset; a) Softmax cross entropy, b) Triplet margin c) Angular, and d) Circle.

TABLE 3. Comparison of Training Time (in hours), Test Speed (sample per second), and Number of Parameter (million) for Various DNN Models on IFCNet

and BIMGEOM Datasets.

IFCNet BIMGEOM
Model Param (m) Train Time (h)  Test Speed (S/s)  Train Time (h)  Test Speed (S/s)
PointNet++ 147 04 152 04 389
Point Transformer 2.87 0.6 139 0.6 339
CurveNet 24 6.2 20 35 59
PointMLP 13.2 1.8 108 2.6 186

occurs when there is insufficient labeled data. The notable
outperformance of PointMLP on the BIMGEOM dataset,
which has relatively more labeled samples, further validates
this observation. Consequently, it can be concluded that the
use of elaborate DNN models for IFC object classification
needs to be considered in conjunction with the curation of
more comprehensive datasets. The dataset curation can be
addressed using various methods, such as data collection,
generative adversarial networks, and data augmentation
methods.

Furthermore, this study highlights that the performance
of the graph-based model, i.e., CurveNet, did not yield
competitive results for IFC object classification, especially
on the IFCNet dataset. From the theoretical view, this
outcome can be attributed to factors such as the sensitivity of
graph-based models to a limited number of training samples,
as seen in the case of the DGCNN model in IFC object

VOLUME 12, 2024

classification [66] and the characteristics of synthetic IFC
samples, which may not provide sufficient local geometric
details for CurveNet’s feature extraction task. However, from
the practical view, despite these observations, the potential
of CurveNet should not be dismissed outright due to its
demonstrated robustness on real and noisy datasets, such as
ScanObjcetNN [67], as reported by [53]. Since applications
such as BIModeling from point cloud are mostly dealing with
high level of noise and occlusion, the utilization of CurveNet
for IFC object classification from noisy point cloud should be
addressed in future research.

Finally, the exploration of different loss functions revealed
that the straightforward application of advanced loss func-
tions may not always yield improved learning outcomes.
As evidenced by the results from the loss landscapes,
conventional loss functions, such as softmax cross-entropy,
tend to result in smoother and flatter landscapes, thus
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FIGURE 6. The comparison of the convergence speed of the loss functions
in questions for the datasets; a) IFCNet dataset b) BIMGEOM dataset.

facilitating the training process. Future work intending to
leverage advanced cost functions for IFC object classification
may examine hybrid combination of loss function or novel
approach to harness the discrimination strength of advance
loss function through the training paradigm while avoid any
unnecessary learning implications affecting the convergence
rate and learning progress.

VI. CONCLUSION

Semantic enrichment of BIM has the potential to resolve
inconsistencies in classification information that may arise
during the import and export processes of IFC among various
BIM authoring tools. Traditional methods for element type
classification in this field depend on rigid rules that require
expert knowledge and multiple assumptions. In contrast, the
adoption of DNNs for IFC object classification has increased
efficiency by enabling a data-driven approach that reduces
the need for such constraints and assumptions. DNN models
utilize various standardized data formats, such as rendered
images and point clouds, to manage parametric data, e.g.,
IFC. Of the models designed for these formats, PC-DNNs
(i.e., point cloud-based DNNs) have become particularly
notable for 3D tasks in the built asset industry. This is due
to the fact that image-based models, such as MV-CNN, often
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require heavy pre-processing, which limits their practical use
in large-scale datasets.

A handful of studies have been employed PC-DNN models
for IFC object classification and assessed their performance
against various rivals. However, these research often presents
findings from a limited selection of PC-DNN models and
datasets. Most notably, several studies have exclusively
used DGCNN as the standard PC-DNN to measure its
effectiveness in comparison to competing DNN models.
In contrast, research in other built industry applications has
performed extensive comparisons across different PC-DNN
models. This suggests that IFC classification research may
not be fully exploring PC-DNN capabilities due to restricted
model comparisons.

In this study, we aimed to bridge this knowledge gap
by conducting an extensive comparison of various DNN
model architectures and learning modules using public
datasets with diverse properties. Experimental results demon-
strated the performance of different feature extraction and
processing architectures for IFC object classification from
point clouds across metrics such as accuracy, learning
progression, computation time, and model parameters. The
results highlighted the existing challenges. In particular, our
analysis revealed that employing elaborate DNN models for
classifying publicly available IFC dataset samples does not
necessarily ensure superior performance and may lead to
computational resource wastage.

Our study is primarily focused on the adoption of
PC-DNNs for IFC object classification. We provide an
extensive comparative assessment of PC-DNNs according to
several performance metrics, the learning progression, and
the models’ architecture. Our experimental findings suggest
new research directions, including the hybrid application of
complex loss functions and the utilization of PC-DNNs with
graph-based models for noisy point cloud data. However, this
study has not explored cutting-edge DNN models from other
approaches, such as multi-view and voxel-based, as well as
ensemble DNNSs that combine multiple models. Future stud-
ies will be needed to assess the performance of state-of-the-
art DNN models using various data processing approaches
to provide a more comprehensive understanding of DNN
performance in IFC object classification. Furthermore, the
issue of limited training labels needs to be explored in
more detail. Conducting sensitivity analysis to assess how
DNN model performance scales with the size of the training
samples within the datasets is recommended.
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