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ABSTRACT Fifth Generation (5G) mobile networks considers an expansive set of heterogeneous services
with stringent Quality of Service (QoS) requirements, and traffic demand with inherent spatial-temporal
distribution, which places the backhaul network deployment under potential strain. In this paper, we propose
to harness network slicing, Integrated Access and Backhaul (IAB) technology coupled with satellite
connectivity to build a dynamic wireless backhaul network that can provide additional backhaul capacity
to the base stations on demand when the wired backhaul link is temporarily out of capacity. To construct the
network design, Deep Reinforcement Learning (DRL) models are used to select, for each network slice of
the congested base station, an appropriate backhaul link from the pool of available IAB and satellite links that
meets the QoS requirements (i.e., throughput and latency) of the slice. Simulation results show that around
20 episodes are sufficient to train a Double Deep Q-Network (DDQN) agent, with one fully-connected
hidden layer and Rectified Linear Unit (ReLU) activation function, that adjusts the topology of the backhaul
network.

INDEX TERMS Integrated access and backhaul, machine learning, network slicing, resource allocation,
satellite communications.

I. INTRODUCTION
The increasing 5G traffic demand leads to significant varia-
tion in the network spatial-temporal domains [1]. Hence, from
the spectrum management perspective, it is very instrumental
to equip 5G networks with machine learning tools to identify
spectrum availability, in particular to perceive the degree
of occupancy within the deployed network for providing
alternative wireless backhaul links through exploiting inte-
grated access and backhaul (IAB) base stations and available
satellite links for offloading traffic. Figure 1 illustrates the
scenario under study. Here, the goal is to activate, deactivate,
or configure the terrestrial (orange) and satellite (blue) back-
haul links so that they can deliver the required capacity to
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specific base stations, while they do not interfere with other
services using the same bands (links that are depicted with
shadow).

IAB is considered as ameans to reduce deployment costs in
5G networks and beyond, especially in ultra-dense scenarios
such as mmWave networks [2]. The main challenges in IAB
relate to the self-configuration of the network and a traffic
path selection for every network slice in order to optimize
the network performance and guarantee the desired Quality
of Service (QoS).

Most of the existing works on IAB focus on radio resource
allocation, or backhaul path selection as can be seen in
Table 1. Deep Reinforcement Learning (DRL) techniques
have been explored for addressing these challenges. For
instance, a DRL-based radio resource management solution
for congestion avoidance was proposed in [3]. The authors
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TABLE 1. Related works.

FIGURE 1. Dynamic wireless backhaul network.

of [4] used DRL techniques for spectrum allocation with
the aim of maximizing the sum log-rate of the users. DRL
was also used in [5] for jointly addressing the spectrum
allocation and power control in IAB networks. The authors
of [6] proposed a DRL-based cross-layer approach for jointly
tackling routing and radio resource allocation in multi-hop
IAB scenarios. In [7], the authors propose a multi-agent
DRL framework to optimize user throughput in an IAB net-
work. The resource optimization deals with routing paths
and scheduling of directional transmissions along established
links, coordinating both access and backhaul transmissions to
maximize the downlink throughput observed by the UEs.

The integration of Non-Terrestrial Networks (NTN) with
mobile networks is considered since 3GPP Release 17 [8].

A potential application of NTN technologies in mobile net-
works is its integration in the IAB architecture to increase
the network capacity [9]. The works on this topic are focused
on two main technologies: Unmanned Aerial Vehicles (UAV)
and satellite communications. The main challenge of the
studies addressing UAV-assisted IAB networks relate to the
trajectory planning of UAVs acting as flying base stations
in the three-dimensional space in order to optimize different
Key Performance Indicators (KPIs). For example, the authors
of [10] used ray tracing techniques to improve coverage.
In [11], the authors jointly reduced the number of UAVs
while increasing transmission rate, and in [12], the authors
focused on maximizing the sum rate. Other works, such
as [13], focused on the path selection strategies for UAV-
assisted multi-hop wireless communications scenarios.

Satellite-terrestrial IAB networks allow increased cover-
age ranges at lower costs. The intrinsic high latencies of
satellite links make them a potential candidate for traffic
offloading in delay tolerant services [14]. In [15], the authors
addressed spectrum allocation in such networks with the
aim of maximizing the sum rate, assuming that both satel-
lite and terrestrial networks can reuse the same frequency
bands. Other approaches, such as [16], used game theory
to propose a mechanism for traffic offloading to Low Earth
Orbit (LEO) satellites, based on a Stackelberg game. The
authors in [17] elaborate on the standardization compatibility
of using NTNs in IAB architectures, showing its feasibility
and analyzing a case study using LEO satellites. The authors
in [18] propose a dynamic backhaul network reconfigura-
tion, including smart antennas, dynamic routing and load
balancing in satellite-assisted mobile networks. Their pro-
posal reduces the congestion by offloading traffic to satellite
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FIGURE 2. Interaction between the agent and the environment [21].

links when needed. The authors in [19] consider also the
exploitation of UAVs in satellite-assisted mobile networks
and formulated the problem of user association and resource
allocation as a competitive game problem. Finally, the authors
of [20] propose a distributed DRL approach for joint resource
allocation and optimal deployment of UAVs to maximize the
total sum rate of an IAB network.

Despite these contributions, most of the related works in
the literature focus exclusively on the allocation of radio
resources to a single network slice. However, in this paper,
we shift our focus to the selection of an appropriate back-
haul link – among a pool of existing wired, wireless (IAB),
or satellite links – for every network slice to make sure that
the QoS requirements of all slices are met. In this context, our
main contributions are summarized as follows:

• We design a DRL agent that selects an appropriate back-
haul link for every network slice, in contrast to existing
works, which mostly address radio resource allocation
to a single network slice.

• For every slice, we select a backhaul link from a pool of
wired, wireless (IAB) and satellite links.

• For every allocated backhaul link, our DRL agent ver-
ifies the compliance of the selected link with the QoS
requirements (i.e., throughput and latency) of the served
slice.

The remainder of this paper is organized as follows.
Section II reviews the required background on DRL and
IAB. Section III describes our system model along with
our proposed DRL-based backhaul link selection algorithm.
Section IV presents our simulation results. Finally, Section V
concludes this paper and draws some guidelines for future
work.

II. ENABLING TECHNOLOGIES
A. DEEP REINFORCEMENT LEARNING
Reinforcement Learning (RL) is a branch ofmachine learning
that learns from explorative interactions and reward collec-
tions. It consists of an environment and an agent that interacts
with that environment at discrete time steps, executing over it
a sequence of actions to maximize the discounted cumulative
reward.

At time instant t , the agent observes the state st , which is
a collection of parameters that characterize the current status
of the environment. Based on the state st , the agent selects

the action at to be executed by the environment, causing the
transition of the environment from state st to state st+1. After
executing the action at , the environment returns the agent an
instant reward rt , which is a feedback that the agent receives
evaluating numerically the quality of the action, using which
the agent can distinguish a good action from a bad one.

The RL agent selects actions based on a policyπ , that maps
states to actions, i.e., π (s, a) represents the probability of the
agent selecting action a when the environment is in state s.

As mentioned before, the goal of the agent is to maximize
the discounted cumulative reward [21]:

Rt = rt+1 + γ r t+2 + γ 2rt+3 + . . . =
∑k=∞

k=0
γ krt+k+1

(1)

where rt is the instantaneous reward and γ (0 ≤ γ ≤ 1)
is the discount rate. For that, the agent may have to esti-
mate the state-action value function, Qπ (s, a), also known
as critic function, that expresses the expected return when the
environment is in state s and the agent executes action a and
afterwards follows policy π [21].

Qπ (s, a) = Eπ {Rt | st = s, at = a}

= Eπ

{∑k=∞

k=0
γ krt+k+1 | st = s, at = a

}
(2)

The optimal value function, i.e. the Qπ (s, a) that maxi-
mizes (1), is defined as [21]

Q∗ (s, a) = max
π

Qπ (s, a) (3)

which may also be expressed by the Bellman equation [21]

Q∗ (s, a) = E
{
rt+1 + γ max

a′
Q∗

(
st+1, a′

)
| st = s, at = a

}
(4)

=

∑
s′
Pass′

[
Rass′ + γ max

a′
Q∗

(
s′, a′

)]
(5)

where Pass′ depicts the probability of transition to state s´
when the environment is in state s and the agent executes
action a on it and Rass′ is the corresponding reward that the
agent receives. The task of the RL agent is to solve the Bell-
man equation and determine the Q∗ (s, a) that maximizes the
discounted cumulative reward defined in (1). However, most
of the RLmethods do not computeQ∗ (s, a) using (5) directly.
Instead, they try to iteratively approximate the solution of the
Bellman equation (4) without requiring perfect knowledge
of the transition probabilities Pass′ of the environment (model
free RL) [23]. In addition, when the observation and/or the
action space have too many elements, it is infeasible to
represent the Q-function using a lookup table, so it has to
be represented by a function approximator, e.g. a neural
network [21], [22].

The Q-learning algorithm was one of the first model free
RL algorithms proposed in the literature [23], [24]. The idea
behind Q-learning is to iteratively approximate the critic
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function Q(s,a) to the optimum value given by Bellman
equation (4).

Q (s, a)

← Q (s, a)+ α

[
rt+1 + γ max

at+1
Q (st+1, at+1)− Q (s, a)

]
Q (s, a)

← (1− α)Q (s, a)+ α

[
rt+1 + γ max

at+1
Q (st+1, at+1)

]
(6)

Note that in (6), we have dropped the expected value opera-
tion E{.} for simplicity.

Theoretically, Q-learning converges to the optimumQ(s,a)
as the algorithm iterations approach infinity [24]. However,
in (4), when we use a neural network to model the critic
function Q(s,a), we evaluate the expected value of the critic
function Q(s,a) using weights from a previous iteration [26],
which may lead to oscillations or divergence of the Q(s,a).

A variant of Q-learning, specifically designed to approx-
imate the Q(s,a) function using neural networks was intro-
duced in [25] and improved in [26]. It is called Deep
Q-Network (DQN) and introduces the following novel-
ties [25], [26] when compared to Q-learning:
• It uses an experience replay buffer to store the experience
in each time step (st , at , rt , st+1). From this buffer
random samples are selected in each time step, thus
providing uncorrelated data to train the neural network.

• It uses mini-batches of random samples selected from
the experience replay for efficient computation of the
gradients to update the weights of the neurons.

• It employs a second neural network, called the ‘target
critic’, so the target reward values given by Bellman
equation can be updated less frequently, with a period-
icity of a given number of time steps.

These novelties alleviate the problem of correlated data and
non-stationary distributions, smooth the learning and avoid
oscillations or divergence in neural network weights [25],
[26].

In [27], the authors proved that using the same critic in
DQN to calculate the target reward yi and to select the action
a′ leads to an overoptimistic yi. To reduce this bias, they pro-
pose to use two neural networks, one for online critic to infer
the best action and the other one for target critic to evaluate the
selected action. Algorithm 1 shows the DDQN model, which
is essentially a DQN model, where its step 3.2.5 has been
divided into two sub-steps.

Double DQN, is shown to reduce the overoptimistic yi, thus
resulting in more stable and reliable learning, which allows to
find better policies [27].

B. INTEGRATED ACCESS AND BACKHAUL (IAB)
IAB is a 5G feature that enables the base stations with wired
backhaul, called IAB-donors, to provide wireless backhaul
links to other base stations that lack wired backhaul links,
called IAB-nodes (see Fig. 3).

Algorithm 1 Double DQN (DDQN)
Define parameters:
α (learning rate), ε (initial value of the probability to select a
random action), εdecay (ε decay in each timestep), γ (discount
factor), A (discrete action space), N (size of experience replay
buffer), M (size of the mini-batch), C (number of timesteps between
updates of the target critic)

1. Create an experience replay buffer D with capacity for storing
N experiences (s, a, r, s′).

2. Initialize the on-line critic Q(s, a, φ) with random weights φ,
and initialize the target criticQtarget (s, a, φtarget ) with the same
weights, i.e., φtarget = φ.

3. For each training episode:
3.1 Get initial observation s from the environment.
3.2 For each timestep of the episode:
3.2.1 Select a random action a with probability ε; otherwise,

select the action a that maximizes the current value of
Q(s, a, φ), i.e., a = max

a∈A
Q(s, a, φ).

3.2.2 Execute action a. Observe the instant reward r and the
next state s′.

3.2.3 Store the acquired experience (s, a, r, s′) in the experi-
ence replay buffer D.

3.2.4 Sample a random minibatch of M experiences
(si, ai, ri, s′i) from the experience replay buffer D.

3.2.5 For each sample of the minibatch: if s′i is a terminal
state, set the Q-function target value yi to ri. Otherwise,
apply Double Q-learning as follows:
3.2.5.1 Use the on-line critic Q(s, a, φ) to select the

action a′:

a′ = max
a∈A

Q(s′i, a, φ)

3.2.5.2 Use the target critic Qtarget (s, a, φtarget ) to
compute the target reward yi, i.e.

yi = ri + γ · Qtarget
(
s′i, a
′, φtarget

)
3.2.6 Compute the loss function across all samples of the

minibatch:

L =
1
M

∑M

i=1
(yi − Q(si, ai, φ))2

3.2.7 Compute the gradients 1φ of the loss function with
respect to the weights of the neural network:

1φ =
1
2
∇φ(L)

3.2.8 Use stochastic gradient descent to update the neural
network weights based on the computed gradients,
so the neural network output approximates y, i.e.,

φ = φ + α ·1φ

3.2.9 Every C timesteps, update the weights of the target
critic, i.e., Qtarget = Q.

3.2.10 Set the observation s to s′.
3.2.11 Set ε = ε ·

(
1− εdecay

)
.

The development of IAB was motivated by the need for
deploying dense mmWave 5G networks at a lower cost than
using fiber. IAB is economically viable in 5G due to the
wider bandwidth of mmWave, the support of beamforming
and massiveMIMO, which allow to build a wireless backhaul
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FIGURE 3. A possible IAB topology.

FIGURE 4. IAB protocol stack (based on [28], [29]).

network with performance similar to fiber. The main use
cases envisioned for IAB are coverage extension, deployment
of outdoor small cells, and fixed wireless access (FWA) to
indoor hotspots.

Normalization of IAB started as a study item in 3GPP
Release 15 [28], although IAB is a feature of the 3GPP 5G
standard first introduced in Release 16 [29], and improved
in Release 17 and 18. The main features of IAB in Release
16 are:

• Support of multi-hop backhauling for flexible coverage
extension;

• Support for QoS differentiation and enforcement
for allowing the transmission of all the 5G QoS
classes;

• Support of network topology adaptation and redundant
connectivity (i.e. the same data is transmitted over dif-
ferent paths) for optimal and robust operation of wireless
backhaul in the presence of mmWave signal blockages;

• Support of in-band and out-of-band backhauling to
enable access and backhaul wireless links to share the
same carrier frequency or use different frequencies,
respectively. In case of in-band backhauling, the IAB
nodes cannot receive and transmit at the same time
unless high isolation exists between the receiver and the
transmitter of the IAB nodes;

• Dynamic scheduling for fast adaptation of the resources
allocated to the access and backhaul networks, in case
of in-band backhauling [30];

• Transparency to the UE, i.e., no additional features need
to be deployed in the UEs, so legacy terminals can access
the network seamlessly.

Release 17 added the following IAB enhancements [31]:
• Inter-donor migration, that allows an IAB node to
migrate from one IAB donor to another;

• Inter-donor topological redundancy, that allows an IAB
node to connect to two different IAB-donors using dual
connectivity.

Release 18 added the following further enhancements [32]:
• Mobile IAB nodes: these are IAB-nodes mounted in
vehicles to provide 5G coverage to onboard and/or
surrounding UEs. These mobile IAB nodes do not con-
nect to other IAB nodes, only UEs. However, they can
migrate within the same IAB-donor or to a different
IAB-donor.

These features are achieved by a protocol stack as depicted
in Fig. 4. The IAB-donor is divided in CU and DU parts as
traditional gNBs, while the IAB node is divided in a mobile
termination (MT) part, which is used to communicate with
a parent node, and a DU part, used to communicate with
child IAB nodes or with normal UEs. Each IAB node has
an IP address, which is routable from the CU of the IAB-
donor. For efficient multi-hop packet forwarding between
several IAB nodes, a backhaul adaptation protocol (BAP) is
also introduced in every DU and MT modules. The objective
of this protocol stack is to create hop-by-hop RLC channel
between the IAB nodes in order to achieve faster single-hop
retransmission. However, for in-band backhauling, unless
high isolation exists between the MT and DU of the IAB
nodes, the IAB node cannot transmit and receive at the same
time.

Besides routing decisions, since the CU has an overview of
the whole backhaul path, it can also be used for other central-
ized procedures such as handover decisions, modification of
the topology of the backhaul network, bearer mapping, etc.
In our case, we are interested in changing the backhaul links
from time to time. For this, the CU of the IAB-donor will have
to change the UL and DL routing tables of the IAB node(s)
each time it needs to adapt the topology of the UL or DL
backhaul networks.
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FIGURE 5. IAB scenario under study.

III. SYSTEM MODEL
A. SCENARIO
We construct and evaluate RL models for the scenario shown
in Fig. 5. In this scenario, all seven 5G base stations (gNB)
have a wired and a satellite backhaul connecting them to the
core network, and theymay also use IAB to borrow additional
backhaul capacity from the neighbor base stations.

We assume that the congested base station, i.e., the base
station needing to use satellite backhaul or to borrow wireless
backhaul from the neighbor base stations is base station no.1
(BS1).

In this scenario, the objective is to configure the network
topology to meet the QoS requirements of the Ns slices to be
served by BS1, considering the traffic load in the remaining
base stations. We describe each of these configuration param-
eters and constraints in the next numbered paragraphs.

1) NETWORK TOPOLOGY
We configure the backhaul network to have NBS+2 nodes,
where NBS nodes (nodes 1. . .NBS ) are the 5G base stations,
and the remaining nodes (node 0 and node 99) are the core
network and the satellite, respectively. Each node is charac-
terized by a name and its geographical location. The nodes
are connected together by directional links represented by the
tuples:

Link(x, i, j, b, d)

where x ∈ {wired,wireless, satellite} represents the link type,
i ∈ {0, 1, . . . ,NBS , 99} represents the source node and j ∈
{0, 1, . . . ,NBS , 99} represents the target node, b represents
the total bandwidth of the link, and d represents the latency
of that link.

In the case of the wired links, we assume there are 2 fibers,
each one to transmit traffic in one direction (DL, UL). In the
case of wireless and satellite links, we assume that none of
them interferewith any incumbent network thatmight already
be operating in the same bands.

The characteristics of the links are presented in Table 2.
We stress the fact that the wireless connections may have

a bandwidth of 1 Gbps (DL) / 1 Gbps (UL) for backhauling
when their entire bandwidth is available to backhaul links, i.e.
they have no UE in their cells. On the contrary, when the cells
are heavily loaded, part of these bandwidths are occupied
by the access network traffic and the remaining part by the

TABLE 2. Characteristics of the links.

backhaul traffic. Moreover, the baseline delays indicated in
Table 2 may increase by the queuing delay [33].

2) SLICE PROFILES IN BS 1
Slice profiles define the variation of the traffic demand,
required in each direction (DL, UL), by each of the NS slices
during one day discretized in 15 minute intervals. They also
indicate what is the maximum delay required by each slice
in each direction during each interval. The NS traffic profiles
are stored in a timetable with the following format:

Slice_profile(t, i, sid, thdl, thul, ddl, dul)

where t is the time, which spans a 24-hour period discretized
in 15 minute intervals, i is the BS serving that slice, sid is the
slice identifier. For each time interval, thdl and thul represent
the throughput required in that time interval by slice sid in
DL and UL, respectively, and ddl and dul are the maximum
delay that the slice can tolerate in the same time interval.

3) TRAFFIC LOAD OF THE REMAINING NBS-1 BASE
STATIONS
We defined several traffic load profiles to represent base
stations in different situations, i.e., a base station periodically
congested, a base station congested in one part of the day,
and a non-congested base station. Each profile is stored in a
different timetable with the following format:

BS_load_profile(t, thdl, thul)

where t is the time, defined for a period of 24 hours dis-
cretized in 15-minute intervals. For each time interval, the
load profile defines the total throughput consumed by the
base station in DL and UL respectively to serve its attached
mobile users. For the simulation purpose, each of these pro-
files can then be assigned to any of the NBS -1 base stations
following any load assignment strategy.

The task of the RL agent is to decide, every 15 minutes,
if the BS1 needs to use the satellite backhaul or borrow
wireless backhaul capacity from its NBS -1 neighbor base
stations for any of the NS slices. To take this decision, the
agent will observe the state of the environment, select an
action, and receive a reward to give it a notion about how
good the selected action was. In the following, we elaborate
this further.

B. ACTION MODEL
The action that the RL agent has to take is to select, every
15minutes, theNS backhaul links (UL, DL) for each of theNS
network slices, taking into account the current traffic load of
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TABLE 3. Action format.

TABLE 4. Observation format.

the wired and satellite connections of BS1 and the traffic load
of the surrounding base stations (BS2. . .BS7). The format of
the action is shown in Table 3. As we can see from this table,
the action space is of discrete type and has size NBS+1 since
at a given time instant, the agent can select either the wired
or satellite backhaul, or one of the six wireless backhaul links
offered by BS1’s neighbor BSs.

We assume that UL and DL traffic of each slice is carried
by a different fiber of the ‘same’ backhaul link, i.e., only one
backhaul link is selected for every slice. Moreover, the RL
agent makes one decision at a time, i.e. to allocate the links
for the NS slices, it performs a sequence of NS actions.

C. OBSERVATION MODEL
Our considered observation model is a vector that contains
three different parts. In the first part, we include the through-
put and delay requirements of the slice being allocated in a
given time instant, i.e., the QoS level required by that slice.
Following this information, the second part provides the agent
with the information about the current bandwidth available in
the satellite link of BS1, the wired link of BS1, and in each of
the wireless backhaul links of the surrounding base stations
(BS2. . .BS7). Finally, the third part includes the latency that
is incurred to connect BS1 with the core network using each
of the different available paths, i.e.,
• the satellite link between BS1 and the core network;
• the wired link between BS1 and the core;
• the wireless link connecting BS1 and BSn (n = 2. . . 7)
followed by the wired link connecting BSn (n = 2. . . 7)
to the core network.

The format of the observation is illustrated in Table 4.
It represents a continuous observation space.

All of Table 4 values are normalized so they all vary in the
same interval before feeding them to the neural network.

D. REWARD MODEL
We adopted the following reward model. The agent receives
a reward of +1 when for a given slice, it selects a backhaul
link that connects BS1 to the core network meeting the QoS
requirements of the slice, so the selected link can be used
as the backhaul for the slice under consideration. Otherwise,
if the selected link is not capable of being used for the

FIGURE 6. Fully-connected Q-network used as a critic model.

backhaul of the slice under consideration, because of violat-
ing the required QoS level, the agent receives a reward 0, and
no backhaul link is allocated for this slice.

E. CRITIC MODEL
We used a Double Deep Q-Network (DDQN) [27] agent to
select the backhaul links, since it can work with continuous
observation space and discrete action spaces. This model-
free, value-based RL agent works by estimating the optimum
state-action value function Q∗(s,a), indicated by (4), using a
neural network. The optimum policy is then derived by the
agent by selecting the action that maximizes Q∗(s,a) for a
given state.

The number of elements of the input layer of the neural net-
work must be equal to the sum of the number of elements of
the observation (36 parameters, see Table 4) and the number
of elements of the action (8 parameters, see Table 3), that is
44 elements in total. We concatenate the observation with the
action and provide the concatenated vector as the input to the
neural network.

As for the hidden layers, we use fully-connected layers
with ReLU (rectified linear unit) activations.

The output is a fully-connected layer with one neuron that
estimates Q∗(s,a).

F. SIMULATOR IMPLEMENTATION
We implemented an RL agent that interacts with a
software-defined network (SDN) simulator which acts as the
environment. The agent sends commands to the environment
whenever it wants to allocate BS1 either a wired backhaul
(i.e., a wired link from BS1 to the core network) or a wireless
backhaul (i.e., a wireless link from BS1 to BSn with n =
2. . . 7, followed by a wired link from BSn to the core network,
or a wireless link from BS1 to the satellite followed by a
wireless link from the satellite to the core network). Then,
the environment reads from the SDN simulator what was the
bandwidth and latency effectively allocated for each slice,
and computes the reward and the next state to be sent to the
RL agent.
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TABLE 5. DRL hyperparameters.

TABLE 6. Required latency of the network slices.

The SDN backhaul architecture consists of a set of SDN
switches co-located along with the base stations, intercon-
nected with different connectivity options. The SDN switches
are connected to the SDN controller. An SDN application,
running on top of the SDN controller, is responsible for
reconfiguring the flow tables of the SDN switches according
to the desired forwarding path for each network slice.

The network topology (Fig. 5) is internally represented as
a directed graph, with a special node labelled as the core
network. Each edge of the graph includes the information of
the throughput and latency of the corresponding link.

The throughput measured for a given observation for a net-
work slice will be the requested value by the slice if the slice
is allocated. Otherwise, the simulator will return 0 if the slice
is not allocated due to lack of sufficient throughput capacity
or the violation of the latency requirement of the slice.

On the other hand, the latency is calculated as the sum
of the individual latency values of the links in the path up
to the core network and also the packet delay caused by
the waiting time at each network interface. For the latter,
we have modeled all network interfaces as an M/D/1 queue
and calculated the average waiting time of each packet at each
network interface, following the same approach described
in [33].

G. SIMULATOR VALIDATION
We consider NS= 4 slices to be allocated at BS1, every
15 minutes, taking into account throughput and latency
constraints. Thus, throughout the day each slice has to be allo-
cated in 24 hours× 60 minutes / 15 minutes= 96 occasions.
From these 96 × 4 = 384 occasions we use 67 × 4 = 268
(∼70%) for training, 9×4= 36 (∼10%) for cross validation,
and 20× 4 = 80 (∼20%) for testing.

Since our reward model assigns a reward +1 when each
slice is allocated, and a reward 0 otherwise, the maxi-
mum undiscounted episode reward during an episode with
67 timesteps is 4 slices× 67 timesteps= 268. However, using

FIGURE 7. Tuning the learning rate of the DDQN agent.

FIGURE 8. Daily traffic profiles of the four network slices of BS1.

exhaustive search method, we found that in 6 timesteps, there
will be one slice that is impossible to allocate, which means
that the highest episode reward that the agent could collect is
268 – 6 = 262.
We trained the agent with different hyperparameters to

figure out the best model. For instance, Fig. 7 illustrates the
episode reward for different learning rates. At the end, the
optimum hyperparameters of the DDQN agent were the ones
in Table 5.

IV. SIMULATIONS
A. TRAFFIC PROFILES OF THE NETWORK SLICES
For simulations, we used our own constructed synthetic
datasets representing the QoS requirements (throughput and
delay) of three different types of slices prevalent in mobile
networks: 1) an enhanced mobile broadband (eMBB) or
enhanced machine type communications (eMTC) slice that
needs a high bandwidth during day hours (e.g., in the morn-
ing or afternoon) but has a relaxed network latency; and 2)
an ultra-reliable low-latency communications (uRLLC) slice
that needs constant bandwidth throughout the day but has
a stringent network latency (1 ms). Our objective was to
examine if the agent was able to learn a good strategy, i.e.,
selecting lightly loaded BSs for the eMBB or eMTC slices
and the fastest link (i.e., the wired link) for the uRLLC slices.

During a typical day, the assumed traffic profiles of the four
slices supported by BS1 are illustrated in Fig. 8. As shown,
from 04:30 to 14:30, the 1 Gbps wired connection has not
enough capacity to support all the UL traffic. The same
problem exists in DL from 13:45 to 01:00. In these periods
the RL agent has to select the satellite backhaul or one of the
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FIGURE 9. Daily traffic load of surrounding BSs (BS2-7).

FIGURE 10. Daily traffic of the three network slices in BS1 used in
simulations without satellite backhaul.

neighbor BSs to provide wirelessly the necessary backhaul
capacity for some of the slices.

The latency constraints of each slice are shown in Table 6.

B. TRAFFIC PROFILES OF THE SURROUNDING BS
The surrounding cells (cells BS2 to BS7) also have to support
their local traffic (UEs in their cells), in which case they
can only lend to BS1 their remaining capacity for back-
haul purposes. Therefore, to represent a realistic scenario,
we synthetically generated heterogeneous traffic loads for the
access network of the surrounding BSs (i.e., highly, lightly,
or periodically loaded traffic profiles). The objective was to
evaluate if the DRL agent was able to learn to select the
BSs that were lightly loaded in every instant or the BSs
that were periodically loaded during their low congestion
periods. Fig. 9 indicates the load of the surrounding base
stations, assuming base station number bwas assigned profile
p according to:

p = ((b− 1)mod3)+ 1, b = 2, . . . , 7 (7)

As a result, BS4 and BS7 have profile 1 and are heavy loaded
only for small periods of time. BS2 and BS5 have profile 2
and are lightly loaded, and BS3 and BS6 have profile 3 and
are heavy loaded mainly at noon.

When BS1 needs to borrow wireless backhaul capacity
from the neighbor stations, or from the satellite, for any of
its four slices, i.e. during the periods 04:30-14:30 and 13:45-
01:00, the RL agent has to decide:

• which slice fromBS1 is going to have its backhaul traffic
transmitted through the satellite or one of the neighbor
base stations;

TABLE 7. Observation format (No satellite).

TABLE 8. Action format (No satellite).

• which of these nodes is going to transport this backhaul
traffic.

C. RESULTS
1) THE AGENT SELECTS A LINK AMONG TERRESTRIAL LINKS
ONLY, BASED ON THROUGHPUT AND LATENCY
CONSIDERATIONS
In this situation, as we exclude the satellite link, the observa-
tion and action formats were reduced as shown in Table 7 and
Table 8, respectively.
In addition, since the satellite was not available for back-

haul purposes, we modified the traffic profiles of the network
slices in BS1 so they can be accommodated in the terrestrial
wired or wireless links. In this situation, we had only three
slices in BS1, with the traffic profiles shown in Fig. 10. The
latency requirements are as indicated previously in Table 6.

As stated before, the traffic profile of each slice has 96 sam-
ples, from which, we used 67 samples for training, 9 samples
for cross validation, and 20 samples for testing. Thus, for the
3 considered slices in this simulation, every training episode
has 3 slices × 67 samples = 201 samples. The cross valida-
tion uses 3 slices × 9 samples = 27 samples, and the testing
is performed over 3 slices × 20 samples = 60 samples.
Since our reward model assigns a reward +1 when each

slice is allocated, and a reward 0 otherwise, and we confirmed
by exhaustive search that all slices can always be allocated,
the maximum undiscounted accumulative reward during a
training episode is 201, while the maximum undiscounted
reward that can be collected during cross validation and
testing phases are 27 and 60, respectively.

We trained our DDQN agent for several episodes. The
training was stopped when the moving average reward of the
episodes, considering a window size of 10 episodes, reached
97.5% of the optimum value, i.e., 0.975 × 201 = 195.975.

We repeated the simulations using a neural network with 1,
3 and 5 fully-connected hidden layers, ReLU activations, and
16, 24, 32, 40 and 48 neurons per hidden layer. The number of
episodes necessary to achieve the target episode reward (i.e.
97.5% of the optimum) is given by Table 9.

We observe from Table 9 that three of the simulations
(highlightedwith bold) achieved the highest value (26) during
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the cross validation, and all these three achieved the opti-
mum result (60) during testing. In these simulations, the
cross validation failed in one time step (t = 18:00, slice
eMBB), because the wired link achieved exactly the maxi-
mum throughput (1 Gbps) and the latency became infinity
according to our assumed M/D/1 queuing model [33], violat-
ing the latency constraint of the slice.

As shown in Table 9, the simulations with the best cross
validation were obtained using critics with 3 or 5 hidden lay-
ers, with 40 or 48 neurons per layer. To select the best of these
three simulations, several strategies could be followed: 1)
choosing themodel with least number of parameters to ensure
the generalization of the model to new data; 2) choosing the
model with the fastest convergence time; or 3) choosing a
model with best trade-off between complexity and conver-
gence time. We opted for the third strategy, i.e. among the
configurations with the best cross validation results, we select
the configurations with the best testing results and from these
we choose a configuration with a low number of neurons and
training episodes. So, the best results were achieved by the
DDQNagent with a critic with 3 hidden layers and 40 neurons
per layer, which needs 50 episodes to be trained. This is
indeed the simplest model of the three, too, ensuring the
generalizability of the model as well.

Fig. 11 illustrates the training episode reward obtained by
the DDQN agent when the critic function is composed of
3 fully connected hidden layers with 40 neurons per hidden
layer. The figure contrasts the result against 1) the optimum
strategy (i.e., reward of 201) obtained by the exhaustive
search method; and 2) the random strategy that randomly
selects a backhaul link for every slice. We observe that after
50 training episodes, the performance of the DDQN agent
approaches the optimum value, while the random approach
attains an episode reward much lower than the optimum
value.

2) AGENT SELECTS A LINK AMONG TERRESTRIAL AND
SATELLITE LINKS, BASED ON THROUGHPUT AND DELAY
CONSTRAINTS
In these simulations, we use the action and observation format
described previously in Table 3 and Table 4, respectively.

To justify the need for satellite backhaul, we now use four
slices (instead of three in the previous simulation), with the
traffic profiles depicted in Fig. 8. As shown in that figure,
in these simulations, we divided the dataset as previously
indicated, with a subset geared for training, cross validation
and testing. As we now consider 4 slices, the optimum reward
value during training should be 4 slices × 67 samples =
268, the optimum reward during cross validation should be
4 slices × 9 samples = 36, and during testing should be
4 slices× 20 samples= 80. However, using exhaustive search
methods, we discovered that, even using satellite, due to the
latency constraints, it was impossible to allocate one of the
slices in 6 time steps during training, 3 time steps during
cross validation, and 5 time steps during testing. Therefore,
the best rewards that the DDQN agent could reach were

TABLE 9. Results (Throughput and delay; No satellite).

FIGURE 11. Evolution of the episode reward during training for the critic
with 3 hidden layers and 40 neurons per layer, compared with the
exhaustive search and the random selection methods.

268-6 = 262 during training, 36-3 = 33 during cross vali-
dation, and 80-5 = 75 during testing.
The simulations ran until a sufficient number of episodes

were simulated that allowed to obtain an average episode
reward of 97.0% of the best training value (262), considering
an averaging window with size equal to 10 episodes.

We conducted several experiments with 1, 3 and 5 fully
connected hidden layers, ReLU activations, and 8, 16, 24, 32,
40, 48, 56, 64, 80, 128 and 256 neurons per hidden layer. The
number of episodes necessary to achieve the target episode
reward (i.e. 97.0% of the best training reward) is given by
Table 10.

We can see from Table 10 that several simulations (high-
lighted with bold) achieved the maximum cross validation
reward (33). To select the best of these simulations, we choose
once again, from the configurations achieving the best cross
validation, the configurations with the best testing results,
and from these we choose the configuration with the best
trade-off between complexity and convergence time. So, the
best results were achieved by the DDQN agent with a critic
networkwith one hidden layer and 80 neurons per layer which
needs 21 episodes to be trained, and achieves a good result
(70) during testing. From themodels in bold, thismodel is just
slightly more complex than the simplest model in the table
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TABLE 10. Results (Throughput and delay; With satellite).

FIGURE 12. Evolution of the episode reward during training for the critic
with one hidden layer and 80 neurons, compared with the exhaustive
search and the random selection methods.

(i.e., with one hidden layer and 64 neurons per hidden layer),
minimizing the risk of overfitting.

Fig. 12 presents the training episode reward obtained by the
DDQN agent when its critic function is composed of one fully
connected hidden layer with 80 neurons. The figure contrasts
the result against 1) the optimum strategy (i.e., reward of 262)
obtained by the exhaustive search method, and 2) the random
method that selects the backhaul link for each slice randomly.
As can be seen, after 21 training episodes, the performance
of the DDQN agent approaches the optimum value, while the
random strategy attains an episode reward much lower than
the optimum value.

Using the same critic (one hidden layer with 80 neurons),
we obtained the training results of the agent as shown in
Fig. 13, considering the traffic of all slices both in UL andDL.
The figure shows the attained backhaul throughput and the
failures of the agent due to the violation of QoS requirements
of the slices (delay and throughput) over different training
episodes.

Analyzing Fig. 13, we see that the DDQN agent learns
rapidly in just five episodes, remaining almost stable in the
following episodes. This means that the agent learned suc-
cessfully that:

FIGURE 13. Training results achieved by DDQN agent using a critic with
one hidden layer and 80 neurons. These results consider the aggregation
of the traffic of all four slices in both UL and DL.

• Slice no. 1 (eMBB) could not be allocated to the satellite
backhaul because it requires a latency below 100ms (see
Table 6 ) while the satellite backhaul imposes latencies
of 200 ms (see Fig. 5).

• Slice no. 3 (uRLLC) had to be allocated to the wired
backhaul because it requires a latency below 1 ms (see
Table 6) and the wired backhaul is the only option which
imposes lower latencies, i.e. 0.1 ms (see Fig. 5).

However, Fig. 13 also shows that the DDQN agent was
unable to accommodate the entire traffic demand in any
episode because of failing to allocate some slice in some time
steps. This was due to the facts that 1) during six time steps,
the network is unable to meet the QoS requirements of one of
the slices, and 2) the agent failed to allocate all the slices in
at least four of the remaining time steps where the allocation
was possible. Moreover, we observe that, except in episodes
2 to 4, the agent failures are mostly caused by the failing in
the throughput goals.

D. DISCUSSION OF RESULTS
Our work studied the problem of selecting a backhaul link
to provide additional backhaul capacity in three different
scenarios.

The first scenario, i.e., the problem of selecting a wire-
less backhaul link from a group of terrestrial IAB links,
considering only the throughput constraints of the slices,
was studied in our previous work [34]. This problem seems
to be simple since even a neural network with one hidden
layer was able to achieve a quite good result. The best critic
configuration, selected among those achieving the best cross
validation result and considering the best trade-off between
critic complexity and convergence time, was a critic with one
hidden layer and 32 neurons, which needs 21 episodes to train
(using learning rate 10−4) [34].

In the second scenario, we verified that the problem of
selecting a backhaul link from a group of terrestrial links,
satisfying both the throughput and delay constraints imposed
by the network slices, was more complex than the previous
scenario where we considered only the throughput require-
ment. As a result, in this problem, as shown in Table 9.,
the best critic configuration is more complex and requires
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3 hidden layers and 40 neurons per hidden layer, which trains
in 50 episodes (with a learning rate of 10−4).
In the third scenario, we added the possibility to borrow

backhaul capacity also from a satellite link. We concluded
that the problem of selecting a backhaul link, from a group
of terrestrial links and a satellite link, that satisfies both the
throughput and latency constraints imposed by the network
slices can be solved by the DDQN agent using a critic with
one hidden layer and 80 neurons that is trained in 21 episodes
(using a learning rate of 10−3).

It is worth noting that given the proposed design of the
state and action vectors, our DRL algorithm does not support
multi-hop backhaul links. To enable such feature, a multi-
agent DRL framework might be incorporated, where each
base station is represented by one DRL agent.

V. CONCLUSION
In this paper, we proposed to build a dynamic wireless
backhaul network, comprising IAB and satellite links, that
are capable to provide additional backhaul capacity to offload
traffic where the wired backhaul capacity becomes momen-
tarily saturated. To achieve this goal, we used machine
learning and DRL to construct a DDQN agent that at each
time instant and for each slice of the congested base station,
selects the additional backhaul link from the pool of available
IAB and satellite links. In particular, the studied use cases
assumed the use of both wireless IAB and satellite links for
backhauling. As for the critic, we conducted experiments with
a fully-connected neural network with different sizes to find
the critic model with the best trade-off between complex-
ity and convergence time that was able to select the most
appropriate backhaul links. From the results, summarized in
Tables 9 and 10, we conclude that around 20-50 episodes are
sufficient to train a DDQN agent to select the best backhaul
links meeting the throughput and latency requirements of all
served slices.

For future work, we intend to extend the work to 1) the
practical implementation of the proposed scheme in real
testbeds; and 2) multi-agent DRL to reduce the communica-
tion and computation overheads in large networks.
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