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ABSTRACT Despite the high performance of existing state-of-the-art deep learning models for depression
detection using electroencephalography (EEG), they incur a heavy computational burden. In this paper,
we propose an efficient model consisting of a cascade of an encoder, long short-term memory (LSTM),
and attention mechanism networks. The encoder compresses data into a lower-dimensional latent space.
The LSTM models the temporal variations in brain rhythms. The attention mechanism rectifies the problem
of compressed data in sequence-to-sequence models and efficiently leverages parallelism. Compared with
recent state-of-the-art, our proposed depression detection model shows better performance and efficiency
with a validation accuracy of 99.57% on subject-dependent experiment and a testing accuracy of 84.93% on
subject-independent experiment with a total number of 4,355 parameters. The proposed model has resulted
in 99.65% reduction in complexity compared with the state-of-the-art EEG-based depression detection
models. The results of this study indicate the effectiveness of the proposed model design and the usefulness
of the combined encoder, LSTM, and attention modules. These networks serve as mitigating factors for
the computational load, which is vital for future research on multi-tasking mental health monitoring using
AI-enabled EEG wearables.

INDEX TERMS Depression detection, EEG, LSTM, encoder, attention mechanism, EEG wearables,
efficient deep learning.

I. INTRODUCTION
Depression or major depressive disorder (MDD) affects men-
tal and cognitive capabilities and performance, social life, and
psychological and emotional stability [1], [2].

Researchers have drawn more attention and made remark-
able efforts to extract important information from neurophys-
iological signals such as the electroencephalogram (EEG)
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using advanced Deep Learning for depression diagnosis [3],
[4], [5]. Using EEG and Deep Learning has led to significant
advances in psychiatry towards objective diagnosis and tai-
lored treatment plans based on neural pathologies in the brain
detected by EEG [5].

Considerable research has been done on EEG biomarkers
for depression diagnosis to identify which EEG frequency
bands and channels are more affected in depressed subjects.
The temporal and frontal channels are significant for MDD
identification [6]. The review presented in [7] reported an
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increase in the absolute power for both theta and beta bands
in depressed people. Alpha and theta bands are useful dif-
ferentiators between depressed and healthy controls [8], [9],
providing confirmatory evidence that these bands are related
to emotional processing [5]. Another review [5] reported that
alpha and beta were related to anxiety whereas gamma, gen-
erally, was related to sensory processing and might be related
to mood swings. The consensus view of these studies is that
the theta band plays a significant diagnostic role in depres-
sion [5], [7], [8], [9]. Theta is believed to reflect activity from
the limbic system and hippocampal regions [10] which are
known to be impacted by depressive states [1].Gamma could
be a potential diagnostic biomarker [5] as well, while Beta
seemsmore related to anxiety and ruminating thinking, which
can co-exist with depression. However, it cannot provide a
differential diagnosis. Studies on the alpha band reported
conflicting and inconsistent results, but overall, alpha asym-
metry offers a prognostic biomarker [5].

A. RELATED WORK
CNN-LSTM is one of the most popular and accurate models
for depression detection using EEG signals [3]. The study
in [11] has proposed a 1D-CNN model for depression diag-
nosis. The model comprises 5 convolutional layers, 5 batch
normalization layers, 5 pooling layers, and 2 fully connected
(FC) hidden layers. The model accepts 19-channel EEG-time
series of 4-second windows as input. The objective was to
extract features from raw EEG signals, specifically spatial
information. The total number of parameters (TNP) of the
model is 363,882 with achieved accuracy of 99.37%.

In another study [12], the authors proposed a combined
1D-CNN-LSTMmodel to extract features from a 64-channel
EEG. The EEG data was windowed, and FFT was applied
to extract time-frequency information. The model consists of
1D-CNN layer, 2 LSTM layers, and 2 FC layers. The TNP is
46,658 with an accuracy of 99.10%.

Another study [13] proposed a 1D-CNN-LSTM model
with 4 CNN layers and 1 Max Pooling layer, 1 LSTM layer,
and 1 FC layer. EEG were recorded from the left (Fp1-T3)
and right (Fp2-T4) hemispheres. The developed model has a
TNP of 1,276,989 with an accuracy of 99.12%.

The work in [14] proposed CNN-GRU-Attention model
containing 2 1D-CNN layers, 1 Max Pooling, 1 GRU
layer, and 1 Attention (ATTN) layer. The signals from each
16-EEG channels were windowed into 1-second segments.
Then, power spectral density (PSD) was computed from each
segment using theWelchmethod to extract the 5 bands. It was
shown that Attention enables the accuracy to reach 99.33%.

B. RESEARCH GAPS
Within the past decade, the emergence of low-cost commer-
cial devices and wearables for monitoring mental health has
received substantial interest [15]. Currently, wearable EEG
systems with AI for depression detection are being investi-
gated for personalized screening at early curable stages [16].

In addition, they are being developed to monitor treatment
responses and enable biofeedback therapy in wearables [17].
Embedding AI and deep learning models in microcon-

trollers is challenging due to the MCU’s restricted capabil-
ities [18], [19]. These constraints appear more difficult in
multi-tasking cases such as the combination of ECG, EEG,
and electrodermal activity for stress, anxiety, and depression
identification and for examining comorbidities [15]. This is
also the case when scoring depression severity and mon-
itoring treatment progress. In real-time scenarios, multiple
signals synchronization, complex models, and large data flow
are all problematic factors in terms of the memory and energy
requirements of the targeted wearable design.

Several deep learning models have focused on enhancing
the baseline accuracy through increasing model complex-
ity and TNP [20]. While this may result in high-accuracy
models, it is likely to fall short of latency, throughout, and
power targets for real-time deployment. A singular complex
model can be accommodated in tiny devices but embed-
ding several models on one single platform will exhaust
its resources may be of restricted functionality. According
to a review on efficient deep learning [20], efficiency can
be formulated using metrics or indicators for model quality
(e.g., accuracy), footprint (e.g., memory), and performance
(e.g., latency). Efficiency can be tackled through compres-
sion, sparsification, quantization, and pruning algorithms,
automation techniques (e.g., architecture search and hyperpa-
rameter optimization), and streamlined architecture design.

Efficient architecture design is achieved through bottom-up
custom design driven by the core efficiency metrics (e.g.,
TPN, number of submodels, etc.) while searching for optimal
architectures under accuracy and F-score constraints. In our
work, we follow this custom, bottom-up paradigm.

Despite the competitive performance of the existing state-
of-the-art models for depression detection using EEG, they
are computationally expensive given their large TNPs, rang-
ing from 40,000 to 1,300,000 [11], [12], [13]. CNN and
LSTM are resource-intensive networks as they require a
large memory footprint and significant power [21]. It is
very challenging to implement such complex networks
on tiny hardware like the Arduino Nano 33 BLE Sense
(SRAM: 256 KB) [22].

To address the computational cost burden of running
large-scale deep learning models, optimization and compres-
sion algorithms have been developed to reduce the TNPs
of these models using pruning and quantization [20], [21].
However, these methods could cause an imbalance in the
size of the subnetworks and thus degrade the overall model’s
accuracy if not performed properly. For instance, structured
pruning leads to an accuracy loss because of the continuous
removal of CNN filters [21].

C. THE PAPER CONTRIBUTIONS
To copewith this problem,we propose a novel efficientmodel
under constrained resources (TNP and memory require-
ments), while retaining competitive accuracy. The model
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first uses a pre-trained Encoder to compress the input into
a lower-dimensional code offering a compact summary and
latent-space representation of the input features.

The encoder is cascaded with a model consisting of two
sub-networks: LSTM and Transformer. The LSTM’s role is
to model the temporal dependencies of the extracted features
(related to brain activities) along sequential timesteps. The
Transformer’s role is to provide a self-sequence temporal
attention mechanism to leverage the output of the LSTM
compressed sequence by assigning weights to the LSTM
hidden states. The goal is to better capture the temporal
properties extracted by the LSTM.

For efficiency and performance gains, the encoder bot-
tleneck architecture and attention mechanism have been
widely adopted and proven very capable. The encoder effi-
ciently learns important features from input data to best
fit in the available minimized space of the bottleneck [23].
The attention mechanism has the potential of rectifying the
problem of compressed data in sequence-to-sequence mod-
els [20]. The LSTM is recognized as the state-of-the art
network in time-series applications (e.g., EEG for depression
classification) [24].
In summary the contributions of this paper are as follows:

1) We provide a low-complexity, low-footprint model
(TN = 4,355, memory = 126 KB in.h5 format) with
competitive validation accuracy (99.57%) and average
testing accuracy on 32 subjects (84.93%) compared
with the state-of-the-art CNN-LSTMmodels for MDD
detection.

2) The proposed model is shown to be very promising
for future research towards multi-modal, AI-enabled
mental health monitoring wearables, avoiding model
proliferation on a single resource-restricted device.

3) We design, implement, and evaluate an encoder bot-
tleneck architecture that achieves significant input
dimensionality reduction using channels selection with
no noticeable impact on EEG classification accuracy.

4) We leverage an attention mechanism to better capture
temporal information in LSTM latent states.

II. METHODOLOGY
The main focus of this research is to carry out multiple
experiments in an iterative process by gradually decreasing
complexity, targeting better allocation of model’s parameters
under optimal architecture and accuracy, and verifying the
proposed Encoder-LSTM-ATTN model’s performance and
efficiency compared to state-of-art models. First, we use a
pre- and post-processing stages for EEG denoising, feature
extraction, and channel selection. Second, we create effi-
cient state-of-the-art models, including CNN, LSTM, and
CNN-LSTM models as reference models for our experi-
ments. Third, we develop a novel model involving an Encoder
bottleneck architecture to compress the input data size, along
with an LSTM network having an Attention mechanism to
efficiently enhance accuracy.

The first step is to select the dataset to train and test
the created models for depression classification. The dataset
has been acquired from the MDD Patients and Healthy
Controls EEG Data database [25]. The original dataset com-
prised 34 MDD outpatients (17 males and 17 females, mean
age = 40.3 ± 12.9) and 30 healthy controls (HC) (21 males
and 9 females, mean age = 38.3 ± 15.6). After conduct-
ing a quality examination, corrupted data, such as EEG
recordings with less than 5 minutes duration and poor signal
quality after pre-processing, were excluded. The eye-closed
resting state EEG recordings were acquired using an EEG
cap which consists of 19 electro-gel sensors based on the
standard international 10-20 system for EEG electrodes
placement. Accordingly, the EEG electrodes were distributed
on the scalp in different regions: frontal (7 electrodes),
central (3 electrodes), parietal (3 electrodes), occipital lobe
(2 electrodes) and temporal lobe (4 electrodes). The MDD
patients were diagnosed using the internationally recognized
diagnostic criteria for depression; Diagnostic and Statistical
Manual-IV (DSM-IV).

Fig. 1 displays the workflow of EEG processing and fea-
tures extraction including the pre- and post-processing steps
applied on the recorded 19-channel EEG signals and the deep
learning implementation.

FIGURE 1. EEG Features Extraction and Training.

A. EEG PREPROCESSING STEPS
EEG signals are susceptible to motion artifacts and
other noise sources. ECG (0.05 to 150 Hz) and EOG
(dc-10 Hz) bandwidths overlap with EEG signal band-
width (0.5 to 45 Hz). Also, the high frequency com-
ponents of EMG signals can interfere with the EEG
signal.

Therefore, we apply an 8th order Butterworth IIR bandpass
filter (BPF) with a low pass cutoff at 0.5 Hz and high pass
cutoff at 45 Hz. A notch filter was used to suppress the 50 Hz
power line interference.

EOG and EMG interferences remain an issue as they
still coincide with the filtered signal frequency band. There-
fore, we applied Independent Component Analysis (ICA)
to decompose the interfered EEG signal into additive sub-
components and subsequently eliminate artifactual EOG and
EMG components [26].
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B. POST-PROCESSING
Temporal windowing facilitates the detection of time-varying
brain rhythms related to emotional processing and there-
fore depression identification [27], [28], [29]. On this basis,
we partitioned the 5-min (300-second) EEG time-series x(m)
into sliding T = 30 windows in each channel with a length
of 10 seconds for each window.

Welch’s method (or averaged periodogram) was employed
for estimating the power spectrum in each window. In this
method, the window is divided into successive overlapping
segments, and the periodogram for each segment is formed
through averaging.

For each window Ki (m) , we extracted the periodogram
using the Welch’s method by dividing the window further
into smaller overlapping segments using a Hamming window
ω(m) of 1024 samples at a sampling frequency of 256 Hz.
Thus, the periodogram Ii (ω) of each temporal ith window
Ki(m) is given by:

Ii(ω) =
1
u

∣∣∣∣∑M−1

m=0
Ki (m)ω (m) e−jωm

∣∣∣∣2 (1)

u =
1
M

M−1∑
m=0

ω2(m) (2)

For each subject, we have 19 channels and T = 30 win-
dows, so overall, we have 570 windows and the obtained
periodograms Ii (ω), each is of size 513 with a frequency
range 0 to 128 (Nyquist frequency) and a frequency resolution
of 0.25 Hz.

The EEG signal can be decomposed into five frequency
bands, each band has a particular frequency range, delta D
(0.5 to 4 Hz), theta T (4 to 7 Hz), alpha A (8 to 13 Hz),
beta B (14 to 30 Hz), and gamma G (>30 Hz). We defined
these bands, using the estimated PSD, to be used for comput-
ing the absolute band power in each window for each channel
and the corresponding standard deviation.

The absolute band power (ABP) is calculated by integrat-
ing the power contribution of each identified frequency band
in each obtained periodogram using Simpson integration
rule [30]:

ABP =

∫ fb

fa
Ii (f) df =

1f
3

(Ii (fa) + 4Ii (f1) + 2Ii (f2)

+ . . . 2Ii (fn−2) + 4Ii (fn−1) + Ii (fb)) (3)

We integrate over the produced periodogram Ii of a certain
window, taking all the power values with respect to the fre-
quency limits fa and fb of a recognized frequency band f .
Another potentially effective feature is the standard devi-

ation (SD) of band power distribution in each periodogram.
It conveys information about variations in the power values
and hence changes in band-specific brain activity within a
particular window. The standard deviation is calculated using:

SD =

√∑N
j=1

(
Pj(f ) − P(F)

)2
N − 1

(4)

where Pj is the power value at a specific frequency f in a
recognized band F and P(F) is the average power in that
band.

The ABP and SD features are computed for each band in
each window and scaled by dividing each feature value Vic
of a certain band F in a particular window over the average
of that band-specific feature in all windows within the same
channel C :

Vscaled (F) =
Vic(F)

1
L

∑L−1
i=0 Vic(F)

(5)

C. DEEP LEARNING IMPLEMENTATION
EEG data of 32 subjects (16 healthy and 16 MDD subjects)
were selected for training and validating the created mod-
els. The scaled values of ABP and SD obtained from each
temporal window in each channel were generated. To allow
the model to recognize different patterns among healthy and
depressed subjects, we configured the input data of each
window as a 2D array (channels∗features) (19,10). Each
array contains the 19 channels and the corresponding ABP
values and their SD (10 features) of each of the 5 bands.
Therefore, for the 32 subjects, we have 960 independent
windows (T = 30 windows∗32 subjects). Each window was
labeled as either 0 (healthy) or 1 (depressed). This strategy
was used to increase the number of samples. We used three
different splitting schemes for training, validating, and testing
the models:

• Experiment #1: we partitioned the windows into
training and validation subsets using a conventional
80:20 split.

• Experiment #2: we employed a training and valida-
tion strategy involving 20 subjects, with the remaining
12 subjects (6MDD and 6 HC) reserved exclusively for
testing. This approach was designed to ensure that the
test set comprised subjects completely excluded from
any training or validation procedures.

• Experiment #3: subjects were divided into three distinct
groups: a training set comprising 18 subjects, a val-
idation set with 6 subjects, and a test set consisting
of 8 entirely unseen subjects. The training process
was iteratively conducted over 4 cycles. Each cycle
involved randomly selecting a unique subset of 8 sub-
jects from the dataset for testing to assess the model’s
performance. This systematic rotation ensured that
every subject in the dataset had an equal opportunity
to be included in the testing set across the iterations.
As a result, testing accuracies were obtained for all
32 subjects, providing a comprehensive evaluation of
the model’s predictive capabilities.

These experimental designs were implemented to address
the critical requirement for independent test sets composed
of subjects entirely distinct from those used in training.
By ensuring such independence, we aimed to enhance the
reliability and validity of our model evaluations in distin-
guishing between MDD and HC.
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We applied temporal sequence processing as a prerequisite
to feeding the LSTM-based models. Each subject’s window
waswrapped by its preceding successive sequential 29 sliding
windows. This is a common strategy to allow sequential
learning, adapt to the spontaneous brain oscillatory patterns
and temporal variations from depression to healthy status
and vice versa, and prevent feature loss along windows [29].
A single window of one subject may not be sufficient to make
a convincing prediction because depression biomarkers may
be manifested in instantaneous phases of the recorded EEG.

D. CHANNELS SELECTION
The main practical problem that confronts us is the large
number of input data (EEG channels and extracted features)
that are fed into the model, which forces us to design a
network with a very large TNP. In a real-time setting, stream-
ing raw EEG signals from a high number of channels is
impractical and cumbersome EEG headsets are inconvenient
in wearables. In addition, it raises serious challenges about
memory footprint and energy consumption, given the con-
siderable computational load on the device processor. One
approach to solve this problem is to statistically select the
significant channels and eliminate the less important ones.
This will allow us to reduce the complexity of the network.
Consequently, we have investigated the input data (channels
and features) using both correlation analysis and two-way
Analysis of Variance (ANOVA) scoring.

The correlation analysis was carried out separately on the
band features (ABP and SD) and the channels to remove the
highly correlated ones. The correlation analysis had revealed
that frequency band features are not highly correlated. How-
ever, channels are highly correlated, and redundant channels
can be safely dropped to reduce network complexity.

ANOVA scoring on pairs of (channel, band feature),
showed that some pairs were having high scores, and some
have low scores. Fig. 2 shows the first 7 highest scores. The
results revealed that (Cz, theta) was the one with the highest
score. Also, gamma and theta bands were dominating in the
first most important features. These results coincide with the
literature results which reinforced the diagnostic potentials of
these two bands as they are related to emotional processing
(theta) and mood swings (gamma) [5].

FIGURE 2. Channel-feature pairs with the highest ANOVA scores.

TABLE 1. Summary of channels selection.

The selection of channels was based on the correlation
between channels and ANOVA scoring of the correlated
channels. The channels with the highest total ANOVA score
are selected. Consequently, 9 channels out of 19 channels
were selected. The summary of channel selection is shown
in TABLE 1, which demonstrates the correlated channels,
the corresponding total ANOVA score in each channel, and
the selected channels. Note here that C3 and Cz were both
selected as the Cz and Theta combination has the highest
ANOVA score.

III. REFERENCE DEEP LEARNING MODELS
We have trained and tested various Deep Learning models.
First, the reference models (CNN, LSTM, CNN-LSTM)were
designed efficiently (low TNP). Second, the proposed novel
Encoder-LSTM-ATTN model was created to overcome the
shortcomings of reference models and the enormously com-
plex state-of-the-art models.

Despite the competitive accuracy of the CNN-LSTM
model, it requires extensive local memory and exhibits exces-
sive power consumption. To improve the latter metrics, the
model is redesigned to reduce the number of parameters
compared to state-of-the-art models.

First, we tested the conventional CNN and LSTM mod-
els, each designed with one hidden layer for maximum
efficiency. Then, the CNN-LSTM model is designed and
trained. As shown in Fig. 3, a typical 1D-CNN is first con-
structed to receive the input Xt in a temporal sequence of 2D
windows with their corresponding features (timestamp, chan-
nels, features). The entire sequence of CNN layers including
the convolutional layer,Max Pooling layers, and flatten layers
is wrapped in Time-Distributed layers. Then, these layers are
stacked to the LSTM layer.

Xt = [x0, x1, x2, . . . , xT ] εRT∗m∗n (6)

The pre-extracted features of ABP and SD are further
processed by CNN to identify complex and high-level rep-
resentations and patterns about the relative band power and
variation in the brain’s activity among different bands. Refer-
ring to Fig. 3, at a given timestep, each 1D-CNN in a
Time-Distributed layer accepts the 2D spatial input features
of each window to adaptively learn meaningful spatial char-
acteristics and hierarchies. Window’s features are inputted
into a CNN and get convolved with the kernels. Then, Max
Pooling is applied to reduce the dimensionality of produced
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FIGURE 3. Typical CNN-LSTM.

features maps Pt [n]. The procedure continues in a time-
sequential manner.

Next, an LSTM layer with a sequential length of 30 is
placed to model the temporal dependencies of information
extracted by CNN from each time window and its 29 prede-
cessor windows. The LSTM takes the entrant features maps
obtained from the pooling layer, Pt [n], for each sequential
window, adjusts the hidden state ht one at a time, and passes
the information to other LSTM cells in an ordered fashion
to model the temporal variations among the sequential time
windows. The LSTM uses a gating mechanism to regulate the
flow of incoming sequential information and keeps relevant
time-dependent information. The final hidden state carries
information about the latest 30th window to predict its state
value based on its prior time windows.

Finally, a Softmax layer is used to perform the classifica-
tion prediction based on the final hidden state. The Softmax
function is applied to the final hidden state h29 of the last
LSTM cell to obtain a vector of probabilities Pr distribution
of possible classes:

ClassPr = Softmax(h29 × wsoftmax × bsoftmax) (7)

It is then mapped to one output class (the one with the highest
probability) using the argmax function (8).

PredictedClass = argmax(ClassPr) (8)

For the traditional CNN, LSTM, and CNN-LSTM topologies,
multiple architectures were investigated with different design
parameters within each topology. The goal is to facilitate the
analysis and trace the effect of reducing the cost of CNN and
LSTM operations on the model’s performance and improve
TNP utilization (the best result for each model is shown in
TABLE 2). It is worth noting that this reduction in complexity
could result in poor generalizability on unseen data because
these restricted-design models may not be able to capture

and learn crucial spatial features. Our proposed model will
address this issue efficiently, as discussed in the next section.

IV. PROPOSED ENCODER-LSTM-ATTN MODEL
Two important factors have influenced the architecture of the
proposed model. The first is the sufficiency and effective-
ness of the extracted features (ABP and SD). The features
hold viable clues about the brain activity rhythms and their
variance. The second is the role of LSTM with its internal
structure capable of modelling the short-term and long-term
behaviors of brain activity and representing time-dependent
properties and temporal variations patterns. To develop our
proposed model, we followed the following methodology to
address the computational load problem. First, we paid par-
ticular attention to reducing the input size using an encoder
bottleneck architecture to boost efficiency, accuracy, and gen-
eralizability.

The encoder has the potential to compress the input and
alleviate the effects of noise and irrelevant bands/features [23],
[31], resulting in more efficient training. Furthermore, the
encode’s compressed output allows us to design a tiny model
without being susceptible to generalizability issues, as it
will keep only relevant features in its bottleneck structure.
Second, we fully harnessed the LSTM because of its decisive
influence on accuracy enhancement. Finally, we utilized a
transformer network with a self-sequence temporal attention
mechanism network to align with the compressed input data
and potential information loss during chronological long-
sequence processing. The general topology of the proposed
model is depicted in Fig. 4. The detailed architectural design
of the model is demonstrated in Fig. 5. CNN was removed
as it increases TNP without a significant accuracy improve-
ment. Also, CNN may not be valuable for compressed input
structure, owing to the spatial information loss caused by the
encoder.

A. ENCODER BOTTLENECK ARCHITECTURE
The encoder bottleneck architecture used in the proposed
model is shown in Fig. 5. It is adapted from an Autoencoder
(AE) network. The Encoder layer receives the input data
and adapts its weights to reconstruct and recover the data
at the output of the decoder. The goal of an autoencoder is
to regenerate the input data while providing a more suitable
internal representation. The coder or bottleneck serves as an
intermediate medium holding a compressed version of the
data into a compact latent representation.

Unlike usual AE trained in an unsupervised manner,
we trained our encoder with a Softmax layer included. We set
cross-entropy as the loss function for depression classifi-
cation instead of the decoder loss function. We found that
it is more convenient to optimize the weights assigned to
the input data according to the final target prediction. This
representation carried by the encoder encompasses the most
important characteristics needed to identify depression. Also,
removing the decoder part boosted efficiency.
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FIGURE 4. Proposed Model General Topology.

FIGURE 5. Proposed model detailed architecture.

In our model, the encoder takes each temporal window xt
feature vector and processes it to obtain the coded output.

xci = [xco, xc1, . . . ., xcT ] (9)

which will be processed by the LSTM, on the one hand, and
mapped component-wise using the nonlinear map:

Z (xci) = σ (wxi + b) (10)

At the input of the Encoder, the feature vector is of size
90, which accounts for 9 channels and their corresponding
10 bands-related features. This is followed by a hidden layer

containing 30 neurons and a bottleneck layer with 20 neurons.
The Encoder results in a compact representation of the data
using a vector of size 20, i.e., a compression ratio of 77.8%.

It is important to note that we are taking the most signifi-
cant information learnt by the coder or bottleneck. However,
the spatial information of the input window is lost.

B. LSTM
LSTM can model the transient non-periodic brain activities
and states and grasp interactions and temporal dynamics
among the sequential temporal windows. The generated
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sequential temporal windows xci obtained from the coder Z
are passed through the LSTM layer with a sequential length
of 30-timesteps.

Each window (to perform a prediction on) is packed with
its preceding 29 windows as we did in the CNN-LSTM
model. The LSTM takes each window in the sequence, passes
it through an LSTM cell, and outputs the hidden state ht at a
given timestep. The same LSTM operation we articulated in
the CNN-LSTM model section is accomplished.

To persist in having an efficient model, we fixed the LSTM
hidden units to only 4. Consequently, the temporal charac-
teristics extracted and stored in the hidden units are very
concise. Accordingly, it is expected to lose information along
the sequential LSTM cells.

C. TEMPORAL ATTENTION MECHANISM
Each hidden state produced by an LSTM cell feeds the con-
secutive one with condensed information in a compressed
hidden units of 4 hence, we might lose sequential contex-
tual information. The main challenge here is the connection
between hidden states feeding each other about previous
timesteps sequences.

Through a long sequence of 30 windows (thus 30 hidden
states with very small hidden units), a gradient vanishing
problem is encountered because the data is compressed by the
Encoder and then further compacted in a very small number
of hidden units.

To rectify this problem, we applied temporal sequential
self-attention mechanism to selectively focus on important
input sequences. That is to guarantee that the model will
not underfit due to insufficient, lost, and noisy information
because of compression [32].

The attention mechanism layer is intended to assign tem-
poral Attention weight to each hidden state hj in the current
time. At any given timestep, sequence self-attention takes
all existing sequential hidden states (with their embedding
information in the hidden units) and compare them with each
other considering the context for each timestamp.

It searches for the input sequence of highest significance,
assigns weight aij to the current and all previous hidden states
according to their relevancy and impact on each other based
on the context of the current position/time. Then, it adds these
weights to the output sequence to generate a Context Vector

Ci =

T∑
j

aijhj (11)

as illustrated in Fig. 5. The output sequence positions are
modified according to these new assigned weights and are
stored in a context vector Ci of the same size obtained by the
LSTM layer.

The utilization of this network permits the model to pay
more attention to the most relevant tokens of information in
the sequence and thus create a more meaningful representa-
tion. This helps in obtaining the influential temporal features
to improve the prediction accuracy of the model without

increasing TNP massively. The new sequence produced by
the attention layer is then passed into a flattened layer and
finally through a Softmax layer to perform the classification,
as shown in Fig. 5.

V. RESULTS
A. EXPERIMENT 1: SUBJECT-DEPENDENT (80:20
WINDOWS SPLIT)
In this section, we will illustrate some of experimental results
generated from the tests we implemented on the state-of-the-
art efficient CNN, LSTM, and CNN-LSTM models and the
proposed Encoder-LSTM-ATTN model. TABLE 2 summa-
rizes these results into three parts.

As shown in the first part of TABLE 2, we carried out
planned comparisons between the reference models trained
on the 9 selected channels and the corresponding 10 features.
The approach was to decrease the number of parameters,
mainly the number of CNN filters and LSTM units to reduce
complexity. The best performance results by the models are
presented in TABLE 2. First, we tested the CNN model
with 64 filters (TNP = 3,394), it achieved 95.89% validation
accuracy, which is less than the accuracy of current state-
of-the-art (99.37%) [11]. This result is generally accepted
based on accuracy-cost trade-off concept. We reduced the
filter size significantly compared to other studies [11], [13],
[14] which used a high number of filters e.g., 128 and 256.
The standalone LSTM with 32 hidden units led to better
validation accuracy (96.92%) but higher TNP (15,810). Then,
we reduced the network size further to TNP =5,554 using
the CNN-LSTM model, which yielded the same validation
accuracy of CNN (95.89%).

Looking at the second part of TABLE 2 which outlines
the models’ performance when trained on the compressed
input by the encoder bottleneck. At first glance, it is explicitly
observed that the same reference models (CNN and CNN-
LSTM) delivered better results with the encoder. A general
trend was identified in the reference models (combined with
encoder) tests outcomes, that is a better generalizability in
the learning curves and reduced complexity. This reinforces
our primary premise that encoder boosts efficiency and per-
formance by filtering the input from noise and irrelevant data
and providing a compressed refined representation.

On the other hand, LSTM with the encoder (95.00%)
showed a noticeable performance contrast compared to
LSTM alone (96.92%). Presumably, this is a result of com-
pressed information in 4 hidden units, and it can be rectified
by the attention module. Evidently, Encoder-CNN-LSTM
showed superior performance (98.88%) with the attention
module. Nevertheless, it required 7,731 TNP.

The last row of TABLE 2 presents the results of the pro-
posed Encoder-LSTM-ATTN model. As clearly shown, the
Encoder-LSTM model’s accuracy was 95.00% without the
Attention network, but in the proposed model, it reached
the highest validation accuracy of 99.57% with the Attention
module. The accuracy curves are shown in Fig. 6 and Fig. 7.
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The proposed model (99.57%) outperformed the Encoder-
CNN-LSTM-ATTN model (98.88%) and reduced TNP to
half (4,355) of that in the reference Encoder-CNN-LSTM-
ATTN model (7,731).

B. EXPERIMENT 2: SUBJECT-INDEPENDENT (TESTING
ON 12 UNSEEN SUBJECTS)
Initially, our proposed model achieved a high validation
accuracy of approximately 99.57%, which raised concerns
about potential overfitting and data leakage. To address
this, we conducted a rigorous subject-independent exper-
iment where the test set comprised entirely new subjects
not included in the training/validation phase. This approach
aimed to prevent biases that might arise if the model learned
to classify subjects based solely on subject identities rather
than generalizable features distinguishing MDD from HC.
Consequently, our refined approach involved training with
20 subjects and testing exclusively on 12 unseen subjects
(6 MDD and 6 HC).

Results from this experiment showed a testing accuracy of
89.72%, revealing a significant drop from the initial valida-
tion accuracy of the proposed model. This decline suggests
potential information leakage in the earlier validation phase
and emphasizes the necessity for robust validation protocols
to ensure model generalization. This revised methodology
provides a more reliable assessment of the model’s perfor-
mance, affirming its effectiveness in predicting MDD across
new subjects while maintaining superior accuracy and lower
complexity compared to baseline models.

C. EXPERIMENT 3: SUBJECT-INDEPENDENT (TESTING ON
ALL 32 UNSEEN SUBJECTS)
In Experiment 3, we adopted an iterative approach to thor-
oughly validate the model across all 32 subjects. Each
iteration involved testing on a distinct subset of 8 subjects
(4 HC and 4 MDD) to ensure comprehensive evaluation.

Looking at TABLE 2Average TestingAccuracy on 32 Sub-
jects), a consistent trend is noted, where integrating the
encoder module enhances accuracy across all models com-
pared to their baseline configurations. For instance, the
CNN model with an encoder (Encoder-CNN) improved from
65.41% to 75.98%, demonstrating a substantial enhancement
in predictive capability. Similarly, the LSTM model com-
bined with an encoder (Encoder-LSTM) showed an increase
in accuracy from 72.85% to 76.92%.

Fig. 8 shows the results of all models with sensitivity and
specificity alongside average accuracy as evaluation metrics.
The proposed Encoder-LSTM-ATTN architecture emerged
as the top performer, achieving an average testing accuracy of
84.93%, sensitivity (Sen) of 88.89%, and specificity (Spec) of
80.98%, surpassing all other models while maintaining lower
complexity.

Fig. 9 presents the classification results obtained from the
proposed model’s predictions on each tested subject, catego-
rized by their respective diagnoses: MDD and HC. Analysis
of individual subject accuracies revealed variability among

FIGURE 6. The accuracy curve for the encoder-LSTM model.

FIGURE 7. The accuracy curve for the proposed encoder-LSTM-ATTN
model.

both MDD and HC groups, ranging from 54.44% to 100%
for MDD and 61.11% to 96.67%% for HC. The variability
among subjects’ accuracies may stem from factors such as
individual variations in EEG patterns and overlapping fea-
tures between HC and MDD.

In summary, while the initial high validation accuracy may
have been misleading due to data leakage, the subsequent
experiment’s results provide a more reliable assessment of
themodel’s performance, showcasing its effectiveness in gen-
eralizing to new subjects for MDD detection. Despite this
reduction in accuracy, it is important to note that the proposed
model maintained its superiority, exhibiting the best accuracy
while simultaneously showing low complexity compared to
baseline models.

VI. DISCUSSION
The outcomes of the proposed model were reaped from the
combination of Encoder, LSTM, and Attention modules. The
Encoder assisted in minimizing the input size along with
channels selection and provided a better representation of the
input data and reduced the overall TNP or complexity.

The LSTM provided a great powerfulness in the extraction
of temporal properties of brain’s activity variations among the
sequential windows. The Attention mechanism extends the
model capabilities of achieving a high performance by flex-
ibly focusing on important information in the long sequence
and clarifying unclear data resulted due to compression by
the Encoder and the LSTM small hidden units.
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TABLE 2. Experimental results of state-of-the-art efficient CNN, LSTM, and CNN-LSTM and the proposed encoder-LSTM-ATTN Model.

FIGURE 8. Experiment 3 (testing on 32 subjects): models results.

The results lend strong support to the argument that it is
possible to create a high-performing efficient model con-
sidering the success pillars: a solid EEG signal processing,
proper channels selection, extraction of impactful features,
and employment of on-purpose networks with a flexible
design.

One concern about the findings is the presence of noise
and redundant information in the input, as revealed by the
testing outcomes without the encoder. This implies that some
EEG bands are not necessarily important. Thus, the results
drawn must be replicated on only impactful EEG bands for
this classification problem. Researchers are encouraged to
find affirmative and consistent evidence about EEG biomark-
ers for depression. This may improve aspects of the model’

generalizability. Besides, it will enhance efficiency by reduc-
ing the overall model complexity and real-time processing
energy and memory.

TABLE 3 introduces a comparison between the pro-
posed Encoder-LSTM-ATTN model and recent state-of-the-
art results. Apparently, our proposed model showed superior
performance, compared to models developed in [11], [12],
[13], and [14], with a validation accuracy of 99.57%. In addi-
tion, it required the lowest TNP.

Our model was efficient to a greater extent by 99.65%
decrease in TNP compared to the significantly complex
model introduced by [13] which required 1,276,898. They
used raw EEG signals of only (FP1-T3 channel and FP2-T4
channel) as input to their model.
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FIGURE 9. Proposed model classification accuracy per subject.

In [14], a powerful model is proposed with 2 CNNs,
1 GRU, and an Attention module. They used 16 channels
(selected out of 128) and extracted PSD of the 5 bands. The
TNP of this model was not mentioned. However, the model
was constructed with 128 and 256 filters and 256 hidden
units for GRU. Therefore, it is sufficient to say that their
model requires much higher TNP in contrary to our proposed
model.

Other studies developed CNN models without LSTM.
For example, the model proposed by [11] includes 5 CNNs
and 2 FC layers which take windowed EEG signals. This
model required 363,882 TNP. It must be pointed out that
complex designs were needful in cases where raw EEG in
inputted to the models.

Other machine learning models demonstrated lower clas-
sification accuracy. For example, the work in [33] proposed
support vector machine (SVM), and it showed 81.8% accu-
racy using EEG features and 92.7% using combined fNIRS
and EEG features. Another SVM model was developed
by [34], using only 2-channel frontal EEGs. The model
yielded 90% accuracy.

From the short review above, key findings emerge: the
usage of raw EEG signals and large input force a complex
model design with greater number of filters, hidden units,
and neurons. Also, despite the utilization of reduced number
of channels in [13] and [14], the models are still complex
due to the size of input and the selection of large design
parameters. Less complex models such as SVM [33], [34]
showed decreased performance compared to CNN, LSTM,
and CNN-LSTM models. Based on the comparisons pre-
sented in TABLE 3, it turns out that our proposed model
is optimal as it achieved a trade-off between efficiency and
performance.

Addressing the identified leakage issue, we conducted
another comparison with state-of-the-art models to ensure
fairness, see TABLE 4. Our study employed an Encoder-
LSTM-ATTN architecture and tested it on all 32 subjects in
an iterative manner, achieving an average testing accuracy
of 84.93%. This approach allowed us to evaluate the model’s
performance on completely unseen data, mitigating overfit-
ting or data leakage concerns.

In comparison, previous studies by [35] and [36] uti-
lized different methodologies. For example, [35] employed a
multi-head self-attention mechanism and parallel two-branch
CNN with leave-one-subject-out cross-validation, achiev-
ing a testing accuracy of 91.06%. Whereas [36] utilized
the Inception Time model with 10-fold cross-validation at
the subject level, achieving a testing accuracy of 91.67%
(19 channels) and 87.50% (10 channels). Our model’s
testing accuracy demonstrates competitive performance com-
pared to these state-of-the-art approaches, with the added
advantage of reduced model complexity, indicated by fewer
parameters (4,355).

The proposed model (saved in.h5 format) requires
only 126 KB. The EEG processing Python script has a mem-
ory footprint of 14 KB and takes 8.20 seconds to execute on
a 1.60 GHz CPU. The algorithm applies the pre and post pro-
cessing operations, discussed earlier, on each subjec’s EEG
recording of 300 seconds (30 windows). Our cost-effective
model and algorithm have fewer hardware necessities and
high compatibility with the microcontroller, hence, can adap-
tively and easily fit on it compared to other computationally
expensive models.

It might be argued that the processing operations done to
extract the spectral features also contribute to the overall com-
plexity of the system. However, in the case of multi-tasking
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TABLE 3. Comparison of the proposed encoder-LSTM-ATTN with existing state-of-the-art models.

TABLE 4. Comparison with state-of-the-art (mitigating leakage in model
evaluation).

mental health monitoring using EEG wearables, the PSD of
the five bands are common features and spectral analysis is
inevitable for the detection of other disorders such as anxi-
ety and stress. On the other hand, relying on pre-processed
signals as input to each disorder-specific model will result
in explosion of models. Thus, designing an efficient model
from scratch based on important PSD features will reduce the
overall complexity and provide better interpretability.

One limitation of this study is its small sample size,
which restricts the generalizability of findings. Scaling up
to a larger number of subjects would inevitably increase
the complexity of the model to accommodate more diverse
patterns.

Future studies aiming for low-complexity models should
investigate the stability of the proposed model when trained
on larger datasets. The current model, with only 4 LSTM
units, may struggle to capture complex patterns adequately.
While suitable for small datasets, it could potentially under-
fit more complex datasets. Larger datasets may necessi-
tate increasing the number of LSTM units to effectively

capture the variability and complex patterns inherent in the
data.

Also, the feasibility of designing a single model for the
detection of multiple disorders can be studied in the future
to achieve better overall efficiency.

VII. CONCLUSION
The findings of this study provide conclusive support for the
effectiveness of the proposedmodel design and the usefulness
of the combined encoder, LSTM, and attention mechanism
modules. These modules served as mitigating factors to
the computational encumbrance and complexity of currently
available models for depression detection. Our study under-
lines the importance of considering the expected obstacles
of deploying computationally expensive EEG-based depres-
sion detection models in tiny devices. Also, we provided
actionable insights on how to reduce mode’s complexity and
thereby speed up inference without a sacrifice in accuracy,
to be applicable in embedded wearable tiny devices for future
attempts.
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