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ABSTRACT For homogeneous traffic, where all vehicles are the same type, the traffic state is characterised
by speed, flow, density, queue length, etc. In mixed traffic conditions, variations in static and kinematic
characteristics among vehicles and the resulting asymmetric interactions that arise, these state variables are
inadequate to represent class-wise behaviours. This paper proposes a novel framework for characterising
mixed traffic conditions based on vehicle class-wise speeds rather than a single value of the aggregated
stream speed. Also, it proposes an area occupancy-based approach to estimate class-wise speeds from class-
agnostic disaggregated travel-time data. The empirical validation of the proposed traffic state definitions
demonstrates their generalisability. Finally, parametric and non-parametric prediction models are also
developed for state and class-wise speed predictions. The empirical results demonstrate that the joint
prediction approach (simultaneous prediction of multiple classes using the proposed state definition) is
more accurate, computationally effective, and more efficient for practical applications than the marginal
predictions using class-wise speed predictions. Moreover, the order of the class-wise speeds is more robustly
preserved in the former than in the latter. This research can open doors for a new family of class-wise speed-
based traffic management strategies and applications for mixed traffic conditions.

INDEX TERMS Mixed traffic, speed-based state characterisation, class-wise speeds, travel-time data, traffic
state prediction.

I. INTRODUCTION
Traffic state represents the traffic conditions on the road,
generally defined using various metrics such as the num-
ber of vehicles, travel time, speed, traffic flow, density,
queue length, etc. Traffic state estimation is important for
transportation applications such as traffic control, traveller
information, vehicle rerouting, etc. The above-mentioned
state variables are generally used for homogeneous traffic
conditions with one dominant vehicle class, car. However,
mixed traffic conditions consist of a diverse range of vehicle
classes with different static and kinematic characteristics.
This inhomogeneity in the features of different vehicle classes
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would mean class-specific advantages and disadvantages
during their manoeuvres; e.g., two-wheelers can seep through
the traffic stream due to their smaller size, but bigger
vehicle drivers can see farther due to their higher seat-
ing position. Similarly, varying acceleration, deceleration,
and lateral movement are observed across vehicle classes
due to intravehicular interactions and trade-offs between
safety and efficiency under different congestion levels and
traffic compositions. These driving behaviours manifest at
the macroscopic level (e.g., class-wise dispersions along
corridors) and the microscopic level (e.g., class-wise speed
variations). As a result, different vehicle classes behave
differently in mixed traffic conditions [1], [2], [3]. Due to
the class-specific behaviours, traffic state characterisation is
challenging in mixed traffic conditions.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 106211

https://orcid.org/0000-0001-7128-5259
https://orcid.org/0000-0002-0440-5772


A. K. Ashok, B. R. Chilukuri: Framework to Characterise, Estimate, and Predict Traffic States and Speeds

II. LITERATURE REVIEW
A. MIXED TRAFFIC CHARACTERISATION
Traditionally, researchers used Passenger Car Equivalency
(PCE) to characterise the traffic state in mixed traffic
conditions (e.g., [1], [4], [5], [6]). Philosophically, PCEs
convert a mixed traffic stream into an equivalent car-only
stream and use the traditional state variables of flow and
density to characterise the mixed traffic state. However, the
challenges associated with this approach are widely reported
in the literature. The PCE values are dependent on various
factors such as speed [7], composition [8], [9], facility
type, number of lanes, and location [1], [4], [5], [6], etc.
Therefore, this approach obscures the effects of intravehicular
interactions and fails to represent class-wise behaviour.

Another approach taken by researchers to address hetero-
geneity is the concept of Area-Occupancy (AO) [10] which is
used as an alternative for traffic density. In a mixed lane-free
environment, all vehicles manoeuvre the entire road space,
not in a single lane. Hence, the entire road width is considered
while measuring the vehicle concentration in the area-
occupancy approach. Several researchers applied the concept
of area-occupancy to study mixed traffic conditions (e.g.,
[11], [12], [13], [14]). Specifically, some of these studies
showed substantial noise in the Fundamental Diagrams
(FDs), indicating asymmetric interactions across vehicles at
the same density or AO but with varying composition [14].
PCE and Area Occupancy-based characterisation homog-

enize the traffic stream, thus resulting in only one state
variable for the entire traffic stream. The major issue with
this homogenization is that the resulting state variable does
not have any physical meaning since it is neither observed nor
any vehicle class represents this. In mixed traffic conditions,
each vehicle class may travel at a different speed, and
mapping from stream to individual classes and vice versa is
challenging. Another limitation of these approaches is they
fail to capture the traffic dynamics and vehicular interactions
due to variations in the composition since they attempt to
bypass the effect of composition. However, this leads to
scatter observed in static and dynamic models, indicating that
these approaches require two independent variables. (e.g.,
PCE density/area occupancy, composition)to uniquely define
a state variable.

To address these challenges, multi-class models have been
proposed as an alternative to aggregated approaches. In this
approach, vehicle composition is retained, and class-wise
interactions are studied under different traffic levels ([15],
[16], [17], [18], [19], [20]). In multi-class models, the
density range is divided into different regimes, such as free
flow, semi-congested, congested, etc. Thus, it allows for
different vehicle classes to have different speeds and unique
relationships with other classes’ behaviours (generally,
speeds). However, most of the studies only focused on two
vehicle classes (e.g., [15], [17], [21], [22], [23]). However,
the limitation is that the approach is challenging to scale
for multiple vehicle classes. It is difficult to calibrate since
they require considerable class-specific data across a wide

range of traffic conditions. Some multiclass models represent
class-wise behaviour as a function of total density, but others
represent them as a function of both class-wise densities and
total density. While the former is relatively easier to estimate
since the fundamental diagrams are monomials or binomials,
the latter is difficult to estimate due to the polynomial nature
of the speed function. Also, it is difficult to identify the
number of regimes, regime boundaries, and the class-wise
characteristics in each regime for the case of more than two
vehicle classes, and it is not easily scalable. Therefore, there is
a need to develop a traffic state characterisation methodology
that preserves the class-wise vehicle states to characterise the
mixed traffic conditions uniquely.

Even though the PCE and AO-based metrics are simpler
than the multi-class models, they characterise traffic state
using passenger cars or proportion of road space occupied,
thus masking the effect of diverse vehicle interactions into a
simplistic homogenisation metric for traffic characterisation.
Even though multi-class models allow for interactions and
behaviours at the class level, their development becomes
complex with many vehicle classes, hindering scalability.

To overcome the limitations of the methods in the
literature, this study:

• highlights the limitations of homogenisation of mixed
traffic for traffic state characterisation.

• presents a framework to characterise mixed traffic using
class-agnostic traffic states

• proposes a methodology to estimate class-wise speeds
using class-agnostic travel time data.

• develops parametric and non-parametric models to
jointly predict class-wise speeds based on the proposed
traffic states.

Once the traffic state characterisation methodology is
developed, one could uniquely characterise the traffic state
for any traffic condition (generally called state estimation).
However, anticipating future conditions requires traffic state
prediction models, which will be discussed in the next
section.

B. MIXED TRAFFIC STATE PREDICTION
In general, prediction methods are categorized as ‘‘Para-
metric approaches’’ and ‘‘Non-parametric approaches’’ [24].
In Parametric models, the parameters have to be speci-
fied before they can be used to make predictions, while
non-parametric models do not rely on specific parameter
settings. Statistical models [25], Kalman Filter [26], [27],
[28], and regression models come under the Parametric
approaches. Examples of non-parametricmodels include sup-
port vector machines [29], [30], [31], k-nearest neighbor [25]
and deep learning methods such as Neural Networks [31].
Both parametric and non-parametric models work well with
probe and location-based data. Even though parametric mod-
els can select from comprehensive options to represent the
traffic system better, it is highly site-specific and not readily
transferable. On the other hand, non-parametric models do
not require any pre-selection of a model form. But they are
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highly data-hungry [32]. Statistical or parametric approaches
are the most commonly used prediction techniques, followed
by neural network models and Ensemble techniques [33].
For mixed traffic conditions, studies explored different

parametric and non-parametric methods for travel-time pre-
diction of one particular vehicle class using probe data [25],
[26], [28], [34]. Under mixed and less lane-disciplined
traffic conditions, Kumar et al. [26] proposed a Kalman
filtering method to predict stream travel time from bus
travel times. However, it was found that only two-wheeler
travel time was compared against bus travel time despite
the study being based on mixed traffic conditions on arterial
routes. Jairam et al. [25] evaluated the performance of bus
travel-time predictions using Kalman filter, AutoRegressive
Integrated Moving Average (ARIMA) and k-Nearest Neigh-
bour (k-NN) classifier. But to arrive at a stream-level travel-
time prediction, mapping predictions from individual vehicle
classes to the traffic stream must be carried out. Prediction
of the travel time for the concerned vehicle class through
probe data is possible. Sihag et al. [34] predicted travel time
using trajectory data using the historical average method,
regression models and decision trees. The applicability of
the aforementioned models in the context of travel-time
prediction is well-explored. The major inference from the
literature is that the studies in the literature generally dealt
with predicting speed for one or two vehicle classes for
heterogeneous traffic and one of the challenges of this
approach is to map the probe travel-time prediction to other
vehicle classes in the traffic stream. Another drawback of
these studies is that the public transit frequency is generally
much lower than the other vehicle classes, resulting in
a small sample size (compared to other vehicle classes)
for their prediction and extrapolation to the traffic stream.
Banik et al. [35] investigated a panel modelling approach,
a less data-intensivemethod to predict stream travel time. The
developed model better captures bus and stream travel time
spatiotemporal variability. However, an aggregate stream-
level travel time is inappropriate for mixed traffic with
varying vehicle dynamics.

Antoniou et al. [36] combined a data-driven approach
with traffic flow theories. In this study, various traffic states
were identified by clustering the observations, and a Markov
process is used to estimate the transition process. Neural
Networks were used to classify the new observations into
appropriate clusters, and appropriate trafficmodels were used
to predict the traffic speed. While this study combines the
traffic flow theory and data-driven prediction models, this
framework needs much traffic flow and density data. Also,
it is valid only for homogeneous traffic conditions.

From the above literature review, the following gaps are
identified. Passenger Car-equivalency-based characterisation
homogenizes the traffic stream and fails to capture the traffic
dynamics and vehicular interactions. Estimated PCEs are
based only on the observed composition, making them static.
Dynamic PCEs capture the vehicle dynamics but remain
invariant to composition. Area occupancy overcomes the

limitations of traditional density measurement for mixed
traffic environments. But, the derived FDs represent the same
speed for all vehicle classes. Class-specific area occupancy
yields different speeds for different vehicle classes but is
similar to dynamic PCE; this also remains composition-
invariant. Composition-specific FDs result in the same speed
for all the vehicle classes. Multi-class models consider almost
two vehicle classes and assume the same speeds among
the vehicle classes. They do not consider the vehicular
interactions and differences in speeds of different vehicle
classes. The mapping of individual vehicle classes to stream
and vice versa is complex, and they do not consider
vehicular interactions. Also, aggregated travel time may not
be appropriate for a mixed traffic stream with highly varying
vehicular dynamics.

For mixed traffic characterisation, it is impossible to use
analytical methods such asmulti-class models. Because when
there are more vehicle classes, it is difficult to identify the
number of regimes, regime boundaries, and class-wise char-
acteristics in each regime. Hence, the traditional multiclass
model approach is not easily scalable in the multi-class
scenario. Most existing models assume class-specific speeds
as a function of total density. However, a few models
that proposed vehicle speeds as a function of class-specific
densities are difficult to calibrate. Generally, these models
are tedious to calibrate since they require a large amount of
class-specific data under the full range of traffic conditions.

When the traffic evolves, each vehicle class impacts the
other vehicle classes, and hence, the traffic state on the road
is not an independent phenomenon; it is a joint distribution of
individual vehicle classes’ speed. Hence, characterising the
traffic states as the joint distribution is most appropriate.

Traditional prediction methods characterise the traffic state
by stream variables, which is inappropriate for mixed traffic
conditions. Most of the existing prediction methods do not
consider the traffic state progression into account. Limited
studies have used data-driven approaches for traffic state
prediction for homogeneous traffic but none for mixed traffic.
Most data-driven modelling is based purely on data and does
not include traffic flow theories. No prediction methods exist
in the literature for class-wise behaviour-based traffic state
characterisation.

To fill these gaps, this study develops a methodology for
characterising mixed traffic conditions and models to predict
traffic state in urban arterials. The study’s objectives are: i) To
characterise the mixed traffic conditions by vehicle-class-
specific speeds incorporating the spatio-temporal data. ii) To
validate the characterisation methodology using empirical
data. and iii) To estimate class-wise speeds from class-
agnostic disaggregated travel-time data iv) To devise a
corridor-level traffic state prediction methodology for the
proposed state characterisation and benchmark it with the
state of the practice methods. Since many traffic states
are possible, a data-driven approach is chosen to study the
most commonly observed traffic states from the data. Also,
the study combines traffic flow theory and a data-driven
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approach for traffic characterisation, state estimation and
state ordering, thus making it knowledge-guided data-driven
modelling.

The contributions of this study are:

• A novel framework for mixed traffic characterisation
based on individual vehicle class speeds rather than
stream speeds.

• A flexible traffic states definition scheme based on the
vehicle class-specific speeds in mixed traffic and local
conditions.

• A framework to estimate class-wise speeds from class-
agnostic disaggregated travel-time data.

• A location agnostic knowledge-guided state ordering
methodology for mixed traffic.

• Demonstrated that the joint probability-based prediction
outperforms the marginal probability-based prediction.

The rest of the paper is organised as follows. The
‘‘Methodology’’ section presents the overall methodology
of the proposed characterisation and prediction framework.
The next section presents the characterisation of mixed
traffic conditions based on speeds. The ‘‘Class-wise speed
estimation’’ section demonstrates the vehicle-classwise speed
estimation scheme based on the proposed speed-based
characterisation. Then, based on the defined traffic state,
a state prediction methodology is proposed and demonstrated
in the ‘‘Prediction of traffic states and class-wise speeds’’
section. Finally, the major conclusions are summarised, the
significant contributions and directions for future work are
proposed in the section ‘‘Discussion and Conclusions’’.

III. METHODOLOGY
The schematic diagram of the proposed speed-based charac-
terisation and traffic state and speed prediction methodology
is illustrated in figure 1. The speed of the vehicles was
calculated from the travel time data collected through Wi-Fi
Media access control Sensors (WMS). The travel time data
of multiple vehicles collected during a five-minute period are
pre-processed to transfer them into an equivalent binary form
of speed-bin data. This binned data is used for data-driven
state identification of mixed traffic state characterisation.
Since many traffic states are theoretically possible due to
various speed combinations of vehicle classes, a data-driven
methodology is chosen to identify the most common traffic
states. Unsupervised learning approaches are used on the
dichotomous dataset (binary form of the speed bin data) to
cluster the data. The distribution-based clusteringmethod, the
Gaussian Mixture Model algorithm [37], is chosen due to the
nature of the input data. The clustering algorithm’s efficiency
and the clusters’ homogeneity are analysed through ‘Jaccard
index’ [38]. In unsupervised clustering results, the clusters
with the highest observation counts are chosen to represent
the dominant traffic states for characterisation. The observed
traffic states from the study area are validated using data
from another location (study area 2) that showed that the
proposed characterisation is transferable to other locations.

To study the distribution of traffic states across the time of
the day, each 5-minute traffic speed data is mapped to a
corresponding traffic state and studied for possible trends
in the traffic state dynamics and evolution within a day.
The temporal evolution of traffic states is analysed for each
day by grouping daily observations into distinct patterns
representing a specific traffic scenario (i.e., morning peak,
afternoon off peak, evening peak, off-peaking, etc.), using
the k-means clustering algorithm [39]. In the pattern iden-
tification phase, a logistic regression model is employed to
predict the corresponding pattern for each observation. Next,
traffic states are predicted using lagged state information
and pattern probabilities. The state predictions are then used
to estimate the class-wise speeds simultaneously. This joint
prediction capability is termed ‘‘Joint Prediction’’ in the
study. Existing approaches to class-wise speed prediction
are considered for benchmarking the proposed method.
Vehicle-class-specific prediction models are developed using
parametric and non-parametric methods (logistic regression
and neural network), using lagged speeds as input features.
Predicted speeds for all vehicle classes are combined to
represent the predicted traffic state for each observation. The
proposed joint and bench-marking marginal models were
analysed for their performance by comparing the overall
prediction and class-wise performance. Further, the speed
prediction results are analysed to preserve the order or
ranking, i.e., a rank is given to each vehicle class based on
its speed.

IV. SPEED-BASED CHARACTERISATION
The proposed state estimation methodology comprised state
definition and ordering of the defined traffic states based
on class-wise speeds. An overview of the characterisation
methodology is given in figure 2. Travel-time data are
collected and clustered using unsupervised clustering tech-
niques. Based on the cluster characterisation, the lower and
upper-speed bounds are defined for traffic states. Considering
the area occupancy, the defined traffic states are ordered
from free-flow to congested conditions. Thus, the traffic state
definition step implies the speed-based characterisation of
mixed traffic. More details of the steps involved are explained
in the following subsections.

A. DATA COLLECTION AND PRE-PROCESSING
The rapid advancements in computing technology have
greatly improved automated vehicle detection and vehicle
classification methods using sensors such as loop detectors,
video cameras, infrared, RAdio Detection And Ranging
(RADAR), LIght Detection And Ranging (LIDAR), Radio
Frequency Identification (RFID), etc. (see [40], [41] for more
details). The vehicle speeds used in this study were calculated
from the travel time data collected through Wi-Fi Media
access control Sensors (WMS) installed on the roadside.
These sensors are installed on the roadside to passively
capture Media Access Control (MAC) IDs, the signal
strength, and the timestamps of Wi-Fi-enabled devices in the
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FIGURE 1. Proposed methodology.

FIGURE 2. Proposed speed-based characterisation methodology.

vehicles crossing the sensor location. Travel time is obtained
by matching the MAC addresses at both ends of the corridor.
These sensors collect travel time data of the Wi-Fi-enabled
devices in the vehicles. Therefore, the collected sample

contains data from all vehicle classes. More details on the
Wi-Fi sensors used in this study can be found in [42]. The
travel time data is ‘‘class-agnostic’’, indicating that the travel
time values are not marked with the corresponding class of
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FIGURE 3. Data collection location (study area 1 and study area 2).

the vehicle from which it was collected. Several sensors,
such as Bluetooth sensors [43], Wi-fi sensors [42], RFID
sensors [44], etc., give such data. These devices reidentify
the MAC address of the mobile devices in the vehicles
or the tag id on the vehicle at different locations to extract
the travel times and speeds without identifying the vehicle
type, making the input data ‘‘class-agnostic’’. However, these
sensors are popular since they help capture large amounts of
data while capturing the variability in the speeds of various
vehicle classes in the traffic stream. Note that the proposed
speed-based characterisation methodology is sensor invariant
and can use travel time or speed data from any sensors (e.g.,
Automatic Vehicle Location (AVL), RFID, Bluetooth, Global
Positioning System (GPS), Radar sensor, Video camera, etc.)
This study collects travel time data from two urbanmid-block
locations as shown in figure 3. The study areas are located
between Madhya Kailash and Tidel Park intersections of Old
Mahabalipuram Road (OMR), Chennai, India. The collected
travel times are aggregated into five-minute periods, thus
contributing to 288 periods over 24 hours. A sample five-
minute travel time data is shown in Table 1. The database of
study area 1 [(13.00645, 80.24422) to (13.00391,80.24750)]
consists of 31 days of travel time observations on a midblock
section of 700 m length and the database of study area 2
[(12.99518,80.24950) to (12.98792,80.25142)] consists of
48 days of travel time observations on a midblock section of
800 m length.

The input data is class agnostic and does not consider the
vehicle composition. However, the smaller sample size of
public transport is accounted for in two ways for the traffic
state characterisation. First, the aggregation duration is set to
5minutes to ensure that the duration is long enough to capture
all the vehicle classes (note that the study area is a major
corridor that servesmultiple bus routes with small headways).
Second, the 5-minute data is considered for analysis only if
it has a sufficient sample size. Thus, the data from public
transport is also included in the analysis.

The raw travel time observations aggregated for
five-minute intervals are grouped into an optimal number
of clusters, each representing a specific speed group. The

optimal number of clusters is identified based on the Elbow
method [45]. The pre-processing steps to identify the suitable
speed bin are shown in table 1. First, the average travel time
for each cluster is calculated, and then the average travel-time
values are converted into cluster average speeds representing
the space-mean speed values of each vehicle class. Note
that space mean speed is commonly used in the traffic
flow theory literature to represent traffic conditions. The
traffic state definition based on Space Mean Speed (SMS)
will be robust and relevant since SMS is consistent with
the fundamental relationship of q=kv and more accurately
represents the traffic conditions than the Time Mean Speed
(TMS). According to Edie’s generalised definitions, space
mean speed can be obtained as 6 Distance

Average travel time since all
vehicles travel the whole distance between the sensors.

Since the range of speeds typically seen in urban areas
is between 5 kmph to 65 kmph, five kmph is considered
as the minimum speed (considering the pedestrian speed),
and 65 kmph is taken as the highest speed (considering the
posted speed limit). Based on the descriptive statistics of the
given data and local conditions, speeds outside this range
are considered to be outliers, thus yielding 12 bins ranging
from 5 kmph to 65 kmph with 5 kmph intervals. Therefore,
the space-mean speed values obtained are then associated
to the respective 5 kmph speed bins. The equivalent binary
form of the data from table 1 is shown as bold marked
in table 2. This binned data is used for data-driven state
identification and all further consequent steps for mixed
traffic state characterisation.

B. STATE IDENTIFICATION
Traffic state in this study is defined as the combina-
tion of specific speeds of different vehicle classes. Each
five-minute observation data has a unique combination
of speed distributions. Since there are twelve-speed bins
and in binary representation, 11111111112 is equivalent
to 409510. Hence, there are 4095 combinations possible
considering twelve-speed bins with binary data. Since there
are theoretically many possible traffic states, a data-driven
methodology is chosen to identify the most commonly occur-
ring traffic states. Therefore, unsupervised learning is used
to cluster the five-minute observation data. Since the dataset
is dichotomous, distribution-based clustering methods are
chosen. The given dataset is modelled as a mixture of
different Gaussian distributions. Thus, the Gaussian Mixture
Model (GMM) algorithm clusters the data using the Python
package ‘GaussianMixture’ [37]. The number of clusters is
decided based on the ‘Silhouette score’ [39], β, as defined in
equation 1 below.

β =
(b− a)
max(a, b)

(1)

where,
a = mean intra-cluster distance,
b = mean inter-cluster distance,
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TABLE 1. Sample pre-processing of the data for a day in 5 minute aggregation period (09:15 to 09:20 am).

TABLE 2. Binary form of the sample pre-processed data.

FIGURE 4. Data grouping using Gaussian Mixture Models
(a) Identification of optimal number of clusters using Silhouette score
plot (b) Cumulative frequency plot of top 840 clusters.

Note that the best value is 1, and the worst is −1.
Values near 0 indicate overlapping clusters. Negative values
generally indicate that a sample has been assigned to the
wrong cluster. Clusters produced by a good clusteringmethod
will have high intra-class and low inter-class similarities.

To find out the optimal value of the number of clusters
based on the Silhouette coefficient, GMM is fit by varying
n=2 to 1000. It is found that the silhouette score stabilized
with a marginal increase in the score after n=840, indicating
a large number of traffic states. Furthermore, most states had
very few instances of five-minute observation, suggesting
that many of these states may be infrequent outliers.

Without sacrificing at the quality of the states, the
cumulative frequency plot of the top 840 states is considered,
shown in figure 4. From the plot, it can be inferred that about
70% of the data points (five-minute observation) are within
the first 120 states, and the remaining 720 states account for
only 30% of the data. Therefore, the first 120 more dominant
and popular states are shortlisted for further study of the
homogeneity of the observations within the state.

For a good clustering algorithm, all the observations within
a cluster should be similar to each other. A clustering
algorithm’s efficiency and the clusters’ homogeneity are
analyzed through similarity measures. In this study, ‘Jaccard
index’ [38] is taken as the metric to evaluate the performance
of the Gaussian Mixture Models, the clustering algorithm
used for data grouping. The Jaccard index or Jaccard
similarity coefficient (J(A,B)) is defined as the ratio between
|A∩B| and |A∪B|where |A∩B| gives the number of members
shared between both sets and |A ∪ B| gives the total number
of members in both sets (shared and un-shared). The Jaccard
similarity will be 0 if the two sets don’t share any values and
1 if the two sets are identical.

In the current context, the Jaccard similarity coefficient for
the binary data can be written as follows:

J (A,B) =
C11

C11 + C01 + C10
(2)

where
C11: Number of speed bins where both A and B have the

value 1.
C01: Number of speed bins where observation A is 0 and

B is 1.
C10: Number of speed bins where observation A is 1 and

B is 0.
For example, if two members are represented as A=

{1,0,1,1,0,1,1,1,1,1,0,0} and B={1,0,1,1,1,1,1,1,1,1,0,0},
the value of C11,C01,C10 are 8,1,0 respectively giving an J
index of 0.89.

For the clustering results of the GMM, it is found that the
Jaccard index ranged between 0.81 to 1 for the 120 clusters
considered. Out of 120 clusters, 116 clusters showed Jaccard
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FIGURE 5. Evaluation of clustering efficiency using Jaccard index plot.

index greater than 0.95 (Figure 5). The remaining clusters
showed Jaccard index in the range of 0.8 to 0.95. The
Jaccard similarity scores show that the clusters have high
levels of homogeneity, and the clustering using GMM was
efficient.

The observations with continuous speed bins occupied
by at most five vehicle classes are considered. From the
unsupervised clustering results, considering the 12-speed
bins of interest and most commonly observed patterns in
the data, 50 traffic states are defined. [Figure 6]. These
defined traffic states represent the traffic conditions. But,
from one traffic state to another, it doesn’t represent the traffic
condition from congestion to free flow. Hence, there is a
need for ordering traffic states based on some traffic flow
principles.

C. STATE ORDERING
To order the proposed traffic states in ascending order from
free flow to congestion, the concept of Area Occupancy
(AO) has been considered as the measure. For each of the
50 defined states, AO has been calculated. Then, traffic
states are ordered in the ascending order of AO so that
state 1 denotes the least AO (free-flow condition) and state
50 denotes a high AO (highly congested conditions).

Mallikarjuna and Rao [10] have introduced AO to account
for the width of the vehicle in the occupancy calculation.
Thus, AO is calculated based on the entire road width
irrespective of the number of lanes and AO associated with
jam density equals one. The fundamental diagram parameters
are calculated for each vehicle class considering the vehicular
dimensions and the saturation headway values from [46]
[Table 3].
Each traffic state is defined as a speed band with a lower

and an upper-speed bin. There are 12 speed bins based on
the speeds observed in the data ranging from 5-10 kmph to
60-65 kmph. The following assumptions are made to define
the traffic states from the 120 observed clusters. A triangular
fundamental diagram is used. 5 predominant vehicle classes
observed in urban areas are considered, and their vehicular

TABLE 3. Fundamental diagram parameters of different vehicle classes.

dimensions are taken from [47]. They are two-wheeler (2W)
(area 1.08 m2), three-wheeler (3W) (3.64 m2), car (CAR)
(7.14 m2), light commercial vehicle (LCV) (9.5 m2), and
heavy vehicle (HV) (25 m2). Based on the assumption
that all vehicle classes are observed during the 5-minute
observation period, the ordering of states is invariant to
vehicle composition.

It is to be noted that kcr values are in the decreasing
order while moving from 2W to HV whereas AOcr is in the
increasing order. From this, a major inference has been made
that the dynamism exhibited by all these five vehicle classes
is in the order of 2W,3W, CAR, LCV and HV. This order
is reversed while considering kcr and contradicts the order
reported in literature [11]. The reason is that smaller vehicles
will occupy less area with more vehicles. For example,
let AOcr of 12.5 % represent x number of two-wheelers.
A similar number of heavy vehicles associated with AOcr of
12.5% be y. Due to the smaller vehicular area of 2W over HV,
x is much larger than y. Therefore, based on table 3, it is clear
that bigger vehicles have a smaller critical density, but higher
AOcr compared to that of the smaller vehicles. Moreover, it is
observed that the AOcr of 2Ws is much lower than that of
the HVs. Therefore, 2W responds faster than other vehicle
classes to any change in traffic conditions.

The present study uses the class-wise speeds correspond-
ing to total Area Occupancy from the class-wise fundamental
diagrams. This approach is taken since the composition
information is not available from theWi-Fi data and adequate
composition-specific fundamental diagrams are not available
in the literature.

Using the definition of AO, AO associated with jam density
(AOj) and critical density (AOcr ) are calculated [14]. From
the relationship between flow (Q), density (k), and AO, the
vehicle class-wise v vs AO have been estimated. Using the
same, the AO values of all 12 speed bins of interest are
calculated.

Each traffic state has been defined in such a way that,
within the traffic state, each vehicle class belongs to a
particular speed bin. For each traffic state, an area occupancy
value is chosen so that it’s the smallest possible AO that
satisfies all the vehicle classes. Thus, each state has been
assigned an AO value. Then, states were ordered in ascending
order of AO so that state 1 has the lowest AO, which denotes
the free-flow condition, and state 50 has the highest AO,
which denotes the congested state. Figure 6 (c) shows the
state-wise AO values. Due to the uniform slope for the line
between state three and state 45, it is inferred that the states
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are uniformly distributed. And beyond this range, the states
are farther apart.

Figure 6 (d) shows the 50 defined states in the order of
1 being the free flow to 50 being the congested state based
on AO. While comparing figure 6 (a) and 6 (d), it is observed
that traffic states ordered based on AO clearly represent the
traffic conditions in the order of free-flow to congestion.

As noted in [14], the wi-fi sensor has a bias in the data
captured;it captures more slower vehicles than faster ones.
Hence, to address this sensor bias, if observations have more
than five continuous speed bins occupied, truncation is done
on the lower speeds to account for the sensor bias. Thus, at the
end of this step, the observations become labelled data with
the state numbers as labels. This labelled data will be used in
subsequent steps.

From figure 7 (a) and 8 (a), it is observed that all
the defined traffic states are observed in the section of
interest. Further, the traffic states are grouped based on
their dispersion of speed bins. The states in which all the
five vehicle classes have the same speed are considered in
speed bin dispersion=1. Likewise, a dispersion plot is being
tried to visualise the observed trend in the data [Figure 7
(b) and 8 (b)]. It is inferred that the section of interest
had a reasonable number of observations in almost all
possible types of dispersion, especially where the dispersion
is >= 4. This justifies the need for vehicle-class-specific
speed prediction. Because, in mixed traffic conditions,
stream-level traffic prediction or average speed value for all
the vehicle classes observed does not hold good.

The proposed state characterization defines traffic states
based on multiple speed bins representing the variations
of speeds across vehicle classes, unlike the traditional
approaches that characterize traffic state using a single value
of speed. Hence, the proposed state characterization is ‘‘class-
agnostic’’ as it does not tag the vehicle class with each of
the multiple speeds corresponding to a proposed traffic state.
However, in section V of the paper, we relax this using area
occupancy approach to map individual vehicle classes to each
of the speed bins.

D. VALIDATION OF PROPOSED TRAFFIC STATES
To validate the characterised traffic states proposed in section
3.4, data from study area 2 is used. Figure 8 (a) shows the
frequency plot of the predefined traffic states based on study
area 1 against the data from study area 2. It can be inferred that
most traffic states defined in section 3.4 are directly observed
in study area 2.

Also, study area 2 had observations in all possible types of
dispersion, indicating that the proposed speed-based traffic
states may be suitable for other urban areas in mixed traffic
conditions (Figure 7 (b)). However, the upper bin ranges may
be extended to include new traffic states in addition to the
proposed 50 states at higher speed locations.

Congested traffic states are observed more in both study
area 1 and 2. The analysis also reveals that both the sections
have a substantial number of observations across almost all

possible types of dispersion. This significant presence of
varied dispersion levels shows the necessity for vehicle-class-
specific speed prediction models. In mixed traffic conditions,
relying solely on stream-level traffic predictions or using
an average speed for all vehicle classes proves inadequate.
Each vehicle class may exhibit distinct speed patterns
due to factors such as size, maneuverability, and driving
behavior.

In this study, data from study area 1 is used for the traffic
state definition of the characterisation framework and to
validate the traffic states derived from the proposed speed-
based characterisation, data from study area 2 is used. The
validation using data from another location showed that the
defined traffic states are reliable and transferable to similar
heterogeneous traffic conditions.

V. CLASS-WISE SPEED ESTIMATION
This section elaborates on the framework to arrive at the
class-wise speeds from estimated traffic states. Section III
shows that each defined traffic state has a specific range of
speed bins occupied.

The present state definition allows for five different
combinations as follows:

• All vehicle classes in the same speed-bin.
• There are Four vehicle classes in a speed bin and only
one in the lower speed bin.

• Three vehicle classes in a speed bin, one in its immediate
lower speed bin, and the other in one more lower speed
bin.

• Two vehicle classes in a higher speed-bin and all the
other three occupying the subsequent lower speed-bins.

• All the five vehicle classes occupy different continuous
speed bins.

Figure 6 (b) shows the relationship between speed and AO
for all the five classes considered. Until the critical AO, all
vehicle classes remain at free-flow speed. After the critical
AO, its speed starts reducing and reaches to zero at AOjam.
Hence, the ordering is influenced by the critical AO of vehicle
classes. Based on the speed vs AO plot (see figure 6 (b)),
it is inferred that the speed dynamism exhibited by different
vehicle classes is in the order of 2W, 3W, CAR, LCV, and HV.
Therefore, vehicle classes in the above-mentioned categories
are allotted based on this exhibited speed dynamism. Figure 9
(a) shows the vehicle class-wise speeds for all the fifty
predefined traffic states.

Each defined traffic state has a band of AO values. Defined
traffic state one represents the free-flow scenario where all
the vehicle classes travel at their free-flow speed. This traffic
state corresponds to an AO value from zero to the AOcr value
of the 2W. The class-wise speeds for the first ten defined
traffic states are detailed in figure 9 (b). The traffic state
two represents the condition in which, except 2W, all other
vehicle classes continue to be in their free-flow speed. 2W,
being more dynamic than the other vehicle classes, slows
down from 65 kmph to 60 kmph speed in traffic state two.
But it is also to be noted that the traffic states with all the
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FIGURE 6. Traffic State Definition (a) Defined traffic states (b) Vehicle class-wise speed vs Area occupancy (c) State-wise Area Occupancy
(d) Defined traffic states ordered based on Area Occupancy.

FIGURE 7. (a) Frequency Distribution of Traffic States and (b) Speed Bin
Dispersion.

five vehicle classes occupying different speed bins represent a
more congested scenario and are assigned to the state number
eight and not five. Hence, it is inferred that the class-wise
speeds are not monotonously decreasing and have notable
differences in the order of states when all the five vehicle
classes occupy different speed bins. Similarly, the defined
fifty traffic states’ last ten traffic states are represented
in figure 9 (c). State fifty represents the most congested

FIGURE 8. Validation using data from Study area 2: (a) Traffic
State Frequency and (b) Speed Bin Dispersion.

scenario, with all five vehicle classes traveling at 5 kmph
speed. State 49 represents the traffic condition where all the
other four vehicle classes travel at 10 kmph speed except 2W,
whose speed is 5 kmph. Thus, the speed dynamism exhibited
by figure 6 (b) is followed throughout the state definition
and state ordering. Through figure 9 (b) and 9 (c), it is also
inferred that traffic state 8 and 43 are the examples for traffic
conditions where all the five vehicle classes are in different
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FIGURE 9. Details of Class-wise speeds; (a) 50 defined states (b) First 10 states (c) Last 10 states.

speed bins. Comparing the same with figure 7 and 8, it is
evident that both the locations had significant number of
observations in these traffic states where all the five vehicle
classes are in different speed bins.

To estimate the class-wise speeds for class-agnostic
observations, the observations are first mapped with the
appropriate traffic states defined. Then, using figure 9, class-
wise speeds can be estimated. Thus, this framework facilitates
a framework to estimate class-wise speeds for class-agnostic
disaggregated travel-time data.

VI. PREDICTION OF TRAFFIC STATES AND CLASS-WISE
SPEEDS
In this study, the traffic state-based prediction methodology
is proposed as a joint model and benchmarked with

the existing speed-based prediction approaches, which are
marginal models. The proposed methodology predicts the
traffic state using lagged state information as input features
in the prediction models. By using state-speed mapping,
the vehicle class-wise traffic speeds are inferred. Thus,
both state and speed prediction are possible using the
proposed method. The labelled traffic states are mapped to
the corresponding class-specific speeds to benchmark the
proposed methodology. And vehicle-class wise prediction
models are developed in which the lagged speeds are the
input features. Once we predict the class-wise speeds, the
predicted speeds of all vehicle classes are combined to
represent the predicted traffic state for each observation.
Figure 10 represents the proposed traffic state prediction
methodology.
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FIGURE 10. Proposed state prediction methodology.

As can be seen from figure 10, the pattern definition block
of the pre-processing stage deals with pattern analysis of
the historical data to identify their patterns. Initially, the
temporal evolution of traffic states is analysed for each day
by grouping daily observations into distinct patterns using the
k-means clustering algorithm where each pattern represents a
specific traffic scenario such as morning peak, afternoon off-
peak, etc. Subsequently, a linear regression model is applied
to observations within each pattern, with time period as
the independent variable and traffic state as the dependent
variable to obtain the intercepts and slopes for each day. These
are then clustered using k-means clustering to define patterns
based on specific ranges of intercept and slope values.

Once that data is available for all the historic days,
the pattern analysis block of the real-time prediction stage
deals with identifying the most appropriate group (3/4/5/6/7
patterns) for the current day (and time) based on analysis
of historical data that captures the hourly, daily, weekly and
monthly patterns, for state prediction.

In the pattern identification phase, a logistic regression
model is employed to predict the corresponding pattern for
each observation. Since patterns are categorical, multinomial
logistic regression is chosen, with intercept and slope as input
features and pattern as the target variable.

This study employs both parametric (Logistic Regression)
and non-parametric (Neural Network) models since the
former provides theoretical insights and interpretability,
while the latter enhances prediction accuracy, particularly for
class-specific characteristics. In both models, lagged traffic

states and pattern probabilities are used as input features for
predicting the next traffic state.

The methodology allows for jointly predicting both traffic
states and speeds by utilizing lagged state information and
state-speed mapping. Thus, this prediction methodology
is termed as ‘‘Joint Prediction’’ in the rest of the study.
To benchmark the proposed joint prediction model, existing
approaches for class-wise speed prediction are considered
and referred to as ‘Marginal prediction’ in the paper. For
each vehicle class separate prediction models are developed
(one parametric and one non-parametric model), using lagged
speeds as input features. Thus, we predict each class-wise
speed from separate class-wise models to evaluate the
performance of the joint prediction model. More detailed
explanations of the proposed method and benchmarking
approach are provided in sections VI-C and VI-D.

A. PATTERN DEFINITION
To study the distribution of traffic states across the time of
the day, each 5-minute traffic speed data is mapped to a
corresponding traffic state using the proposed methodology
and visualized as scatter plots as shown in figure 11 (a).
These visualizations show possible trends in the traffic
state dynamics and evolution within a day. Each day’s
observations are grouped into m clusters using the k-means
clustering algorithm; thus each pattern defines a particular
traffic scenario. For instance, in the sample day shown in
figure 11 (b), there are three patterns: pattern 1 represents
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FIGURE 11. (a)Trends in the traffic state dynamics within a sample day
(b) Visualization of temporal patterns of the defined traffic states for a
sample day.

the morning peaking, pattern 2 represents the afternoon peak
period, and pattern 3 represents the evening off-peaking. The
grouping analysis was done for 31 days of data to observe the
trends and characteristics of state evolution. It may be noted
that different days may have different numbers of patterns
representing different traffic scenarios, such as 3 patterns
(morning peaking, peak period, and evening off-peaking);
5 patterns (morning peaking, morning off-peaking, afternoon
off-peak, evening peaking, and evening off-peaking); or
even 7 patterns (morning peaking, morning peak period,
morning off-peaking, afternoon off-peak, evening peaking,
evening peak period, and evening off-peaking). However,
the study area is a major corridor and exhibited a trend
of three patterns in almost all of the 31 days of data used
in this study. But other locations may exhibit five, six,
seven, or more patterns. It should be noted that different
days and locations may have different numbers of patterns
representing the various traffic scenarios. Therefore, the
application of this framework will require location-specific
calibration of the parameters and pattern analysis prior to
implementation.

FIGURE 12. Definition of state evolution patterns based on temporal
dynamism modelled using linear regression.

Each pattern has a specific state evolution; thus, different
models are required for each pattern. One could employ
various ways to model the patterns uniquely, but linear
regression is a simple approach that characterises using
only two variables. Hence, linear regression is performed on
observation within each pattern of a day with time period as
the explanatory variable and traffic state as the target variable;
thus, intercepts and slopes are calculated. Figure 12 shows
distinct and non-overlapping ranges of slope and intercept to
define the pattern’s characteristics uniquely.

The proposed method analyzes the temporal evolution of
traffic states and models the relationship between the time
of day and traffic states using historical data to better define
traffic patterns. Therefore, for each day, a separate linear
regression model is developed, and intercept and slope values
are identified for each of the patterns within that day. The
slope and intercept values for a pattern are aggregated from
multiple days to characterize the pattern.

B. PATTERN IDENTIFICATION
Since the pattern prediction problem is categorical, ‘Logistic
regression’ is chosen as the prediction model. The pos-
sible categories of logistic regression models are binary,
multinomial, and ordered logistic regression. In our present
prediction problem, since the patterns are nominal and
discrete, the multinomial logistic regression model is chosen.
It was found that the logistic regression can predict the
patterns and the traffic states with good accuracy, possi-
bly because the relationship between time-lagged features
(State/Speed) and the target variable is simple and relatively
less complex. Intercept and slope are the input features, and
the pattern is the target variable. The model formulation is
given below:

Utility equation is given by equation 3. The number
of patterns for a given day was identified based on the
traffic trend from the study location. The intercepts and
slopes from the linear regression model were taken as
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the input features. The probability function is given by
equation 4. The probability of being in each pattern is
calculated from the exponential function of the utility of each
pattern. The developed multinomial logistic regression model
exhibited very good predictions for the patterns with the best
accuracy.

Ui = β1,ix1,i + β2,ix2,i (3)

Pi =
eUi∑
eUi

(4)

where,
Ui: Utility of pattern i (i = 1,2,. . . n for ‘n’ patterns)
β1,i: Regression coefficient of input feature 1 for pattern i
x1,i: Input feature 1 (Intercept from linear regression

model)
x2,i:Input feature 2 (Slope from linear regression model)
Pi:Observation’s prediction probability for pattern i

C. JOINT PREDICTION
This study considers a parametric model (Logistic Regres-
sion) to gain theoretical insights and interpretability and a
non-parametric model (Neural Network) for better prediction
accuracy of the future traffic states based on vehicle-class-
specific characterisation. The logistic regression is trained
using the multinomial option within the LogisticRegression
function of the sci-kit library [48], employing the multiclass
function to handle nominal patterns. The lagged traffic states
and pattern probabilities are input features to predict the next
traffic state. The model formulation of the logistic regression
model is given as:

xt = f (xt−1, . . . xt−n, p(g1(t−1)), p(g
2
(t−1)),

. . . p(g1(t−n)), p(g
2
(t−n))) (5)

where,
xi: Traffic state at time i,
p(gj(t−k)): Probability of traffic state at time t − k being in

pattern j,
j:1,2,. . .p and k=1,2,. . .n,
p: total number of patterns in a day,
n: optimal number of lagged states considered for the

model.
It can be noted from equation 5 that the traffic state at

time t is a function of traffic states at previous n traffic states
and their respective probability values for the corresponding
patterns for the day. One pattern can be taken as the reference
pattern, thus resulting in probability values of previous traffic
states for the rest of the patterns.

Utility equation is given by equation 6. The input features
are the probability values obtained from the multinomial
logistic regression model from the previous step. Probability
functions are given by equation 7. The probability of being in
each traffic state is calculated from the exponential function
of the utility of each traffic state.

Ui = β11x1,i + β2,ix2,i + . . . . . . + βn,ixn,i (6)

Pi =
eUi∑
eUi

(7)

where,
Ui: Utility of traffic state i (i= 1,2,,. . . 50)
β: Regression coefficients
xk,i: Input feature k (Previous traffic state)
Pi:Observation’s prediction probability for traffic state i
The Variance Inflation Factor (VIF) is used to identify

the correlation between the independent variables. VIF
value less than four is desirable and VIF greater than
5 represents a critical level of multicollinearity. Since the
input features exhibit a correlation with VIF greater than 5,
‘z standardization’ was adopted, and VIF was brought to less
than 2.

Logistic regression does not have an equivalent statistic to
R2. However, several pseudoR2’s have been developed [49] to
evaluate the goodness-of-fit of logistic models. Even though
pseudo R2’s cannot be interpreted independently or compared
across datasets, they are valid and useful when evaluating
multiple models predicting the same outcome.‘Efron’s R2’,
‘McFadden’s R2’, ‘Nagelkerke R2’ and ‘Cox and Snell’s
R2’ are the most commonly used pseudo R2 indices for the
logistic regression models. Among this,‘McFadden’s R2’ is
direct and analogous to R squared in ordinary least square
(OLS) estimation of linear regression. McFadden’s adjusted
R2 mirrors the adjusted R-squared in OLS by penalizing
a model for including too many predictors. Based on the
McFadden’s adjusted R2 scores for n values varying from 1 to
6 for study area 1, considering elbow characteristics, the
five lagged traffic states and their corresponding pattern
probabilities are chosen as the potential optimal input
features.

After careful consideration of Accuracy, F1 score, and
Precision of the training data, n = 5 is chosen for modeling.
It was observed that even in the testing data, n = 5 showed
a superior performance for all three metrics. Ablation study
is conducted on the input features to get insights into the
relative importance of the individual features. Based on this
study results, all the input features are retained since they
all exhibited moderate importance. Based on the trend of
training and testing loss, the optimal n is chosen as n = 5 to
mitigate the overfitting issue. Note that the optimal number
of lagged states for prediction should be calibrated based the
location-specific traffic characteristics to capture daily and
weekly patterns.

In this study, the hyperparameter optimisation is done
using ‘‘RandamizedSearchCV’’ [50] with five-fold cross-
validation. Also, the activation function is maintained same
across all layers to simplify the model’s architecture,
to make it easier to debug and understand, also to reduce
the complexity of hyper parameter tuning. The study
uses ‘‘StratifiedShuffleSplit’’ [51] to split the dataset into
training and testing datasets. Stratification based on ‘state’
ensures the training dataset contains samples from all the
traffic states. Based on literature [52], [53], we chose
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FIGURE 13. State prediction results of logistic regression model of the
joint prediction based on state-based approach.

0.8-0.2 split up for training and testing in this study.
However, other proportions could also be used for these
tasks. Note that the hyperparameters for the models need
to be carefully selected to prevent overfitting and/or
reduce the complexity of the model (e.g., fewer neurons,
fewer layers) to improve generalization, for different case
studies.

If previous lagged input features are unavailable, suitable
prediction techniques can be used to impute the missing
data. These imputed lagged features can be used in the
present framework as the input feature to predict the traffic
states/speeds. However, note that the quality of the imputed
data will influence the prediction’s quality.

Figure 13 shows the state prediction results of the
Logistic Regression (LR) model of the proposed state-based
prediction approach. From figure 13, it is inferred that n=5
predicts about 70 per cent of the states with ± 3 states of the
actual state. The deviation between actual and predicted states
are plotted in figure 13. The skewness value of the deviation
is 0.16. Lower variance for n=5 indicates better prediction
results and lower positive skewness indicates higher sym-
metry in the prediction results. The model with five lagged
states performed well, with about 32% of observations with
zero deviation. Predictions of free-flow and congested traffic
states are good. Only a few intermediate states have some
dispersion.

After the state prediction, the predicted traffic states
are mapped to the corresponding speed bands using the
framework to estimate class-wise speeds. Figure 14 compares
estimated and predicted class-wise speeds.

It can be observed from figure 14 that n=5 predict
about 75 per cent of the speeds with + 5 kmph of the
actual speed. The skewness values of the deviation are
0.24,−0.04,−0.19,−0.17 and-0.22 for n=5 for classes 1-5
respectively. Lower variance for n=5 than n=3 indicates
better speed prediction results for all vehicle classes.
By analysing the signs of the skewness, it is inferred that
four of the five vehicle classes in n=5 had negative signs for
skewness of deviation, indicating overprediction of the speed.
Since all the reported skewness values are between −0.5 and
0.5, the deviation plot is approximately symmetric for all the
five vehicle classes of both n=3 and n=5 models.

In this section, a neural network model has been developed
using Multi-Layer Perceptron (MLP) Classifier, a simple and
popular feed-forward neural network algorithm. Similar to
the LR model, the input features are lagged traffic states
and the corresponding pattern probabilities and the target
variable is the traffic state. Solver (sgd,adam), learning rate
(constant,invscaling, adaptive), hidden layer sizes ((100,),
(256,100), (512,256,128)), batch size (8,16,32,64), alpha
([0.0001,0.05]), and activation (tanh,relu,logistic) are the
hyperparameters used in this model and their parame-
ter space are given in the parentheses. Hyper-parameter
optimization is done by cross-validation using ‘Random-
izeddSearchCV’ to avoid ‘underfitting’ or ‘overfitting’
of the model. Based on the cross-validation results, the
optimized hyper-parameters used for the MLP Classifier
are: solver (sgd), learning rate (constant), hidden layer sizes
(512,256,128), batch size (32), alpha (0.0001) and activation
(relu).

MLP models do not have the ‘null model’ as LR models,
so pseudo R2 can’t be used to determine the optimal number
of input features. Hence, the optimal n is determined as n=5
using ‘F1 score’, indicating the five lagged traffic states and
their corresponding pattern probabilities as the potential input
features.

Figure 15 shows the state prediction results ofMLPmodels
of the state-based prediction approach. From figure 15,
it is inferred that the MLP model outperforms the logistic
regression model, with the former showing less dispersion
than the latter. The results show that the MLP model
predicts both the free-flow and congested traffic states very
well; only a few intermediate states appear to have some
dispersion.

Then, the predicted traffic states are mapped to the
corresponding speed bands to identify the class-wise speeds.
The results are depicted in figure 16. The skewness
values of the deviation of actual and predicted speeds are
0.09,0.04,−0.04,−0.06,0.24 for the neural network model.
From these values, it can be inferred that the deviation
distribution is almost symmetrical. Also, almost 60% of the
observations’ actual and predicted speeds are the same for all
the vehicle classes. And more than 90% of the observations’
predicted speeds coincide with the actual speeds with
± 5 kmph speed difference. Thus, the proposed MLP model
performs well at free-flow and congested conditions and
reasonably well at intermediate traffic states. The potential
reason behind this is the underlying assumption of steady-
state conditions. In mixed traffic conditions, the intermediate
traffic states exhibit non-equilibrium conditions with few
vehicle classes in steady state and a few in non-steady-state
conditions.

The proposed methodology predicts the traffic state using
lagged state information as input features in the prediction
models. Then, the vehicle class-wise traffic speeds are
inferred by using state-speed mapping. It should be noted
that, in the proposed joint prediction model, the input features
are the time-lagged traffic states, and the target variable is
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FIGURE 14. Speed prediction results of logistic regression model of the joint prediction based on state-based approach.
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FIGURE 15. State prediction results of MLP model of the Joint prediction
based on state-based approach.

TABLE 4. Class-wise speed prediction performance of the proposed Joint
model based on state-based prediction approach.

the traffic state. Once the traffic states are predicted using the
proposed model, the class-wise speeds are inferred from the
predicted states by using state-speed mapping and reported
in figure 16. Thus, the proposed MLP model does not give a
multi-output prediction.

While comparing the model performance across the
vehicle classes, the model exhibited very good performance
for CAR, LCV and HV (bigger vehicles) than 2W and 3W
(smaller vehicles). The potential reason behind this is that
the speed changes from one traffic state to the next state
are more dynamic for smaller vehicle classes than for bigger
vehicle classes. Due to the seepage behaviour, two-wheelers
move within the gap of the larger vehicles. Hence, the smaller
vehicles exhibit more dynamism than the bigger vehicles.

Since the prediction problem is formulated as categorical,
Precision, Recall and F1 scores from the classification report
are considered to evaluate different models.

From table 4, it is inferred that NN outperformed LR
in almost all the cases. The prediction performance is very
good for CAR, LCV and HV (bigger vehicles) than 2W
and 3W (smaller vehicles). The logistic regression model
with the three lagged traffic states as input features showed
some dispersion in the predicted speeds, but the level of
dispersion is reduced with the five lagged traffic states as

input. However, the MLP model outperformed the logistic
regression model with lesser dispersion. The optimal number
of input features for the neural network models is also less
than that of the logistic regression model for comparable
performance.

D. MARGINAL PREDICTION
In this section, the proposed state prediction methodology
is benchmarked with the existing practice of class-wise
speed prediction approaches. For this, vehicle-class-wise
prediction models are developed using popular parametric
and non-parametric models (logistic regression and neural
network approach) to perform speed predictions in which
the lagged speeds are used as the input features. Since the
VIF was found to be greater than 5, indicating the input
features exhibit a correlation, ‘z standardization’ was adopted
to reduce VIF to less than 2.

Similar to the proposed prediction method, the optimal
number of lagged speeds to be considered as the input
features for the benchmarking model was evaluated. It was
found that n=7 is optimum for all five vehicle classes for the
LR model.

The model coefficients are given in table 7 in the appendix.
Similarly, n=5 is the optimal value for the MLP model.

Like the proposed method, hyper-parameter optimization
is done by cross-validation using ‘RandomizedSearchCV’
[50] for the benchmarking model to avoid ‘underfitting’ or
‘overfitting’ of the model. The optimized parameter values
of all the five vehicle class-wise models of the Speed-based
prediction approach is shown in table 5.

The unique patterns observed in the predictions of the
benchmarking model where all the five vehicle classes’ pre-
dicted speeds differ from their actual are given by figure17.
Figure 17 (a) and 17 (c) represent the consistent under
and over-prediction of the speeds. Figure 17 (b) and 17 (d)
are the case examples of over predictions for some
vehicle classes and under predictions for some vehicle
classes.

Proposed joint model and bench-marking marginal model
were analysed for their performance. In figure 18,‘0’
corresponds to the percentage of observations where the
predicted speeds coincide with the actual for all five vehicle
classes. From figure 18, it is inferred that 42.20 % of the
observations from the test data set coincided with the actual
for the marginal model. The corresponding value for the joint
model was 50.00 %.

For the percentage of observations where actual and
predicted speeds differ, a detailed analysis has been carried
out by examining the percentage of under-predictions and
over-predictions vehicle class-wise (see figure 19).
Figure 19 represents the assessment of the proposed joint

model and benchmarked marginal model for its class-wise
performance. For 2W and 3W, the marginal model captured
around 78% of the predictions matching the actual speeds.
For CAR, and LCV, the marginal model showed around 70%
of the observed predicted speeds match the actual speeds.
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FIGURE 16. Speed prediction results of MLP model of the Joint prediction based on state-based approach.
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TABLE 5. Optimized Hyper parameter values of the marginal model based on speed-based prediction approach.

FIGURE 17. Analysis of observed prediction patterns.

The corresponding percentage for HV is 66%. For each
vehicle class, the proportion of observation for which the
predicted speeds do not match actual speeds is categorized
as under-predicted and over-predicted (see figure 19). The
proportion of under-prediction (on an average of 17%) is
larger than that of over-prediction (on an average of 10%)
for each of the five vehicle classes. In the joint model, the
actual and predicted speeds match for about 67% of the
time on average across all five vehicle classes. The joint
model’s performance was assessed as either under or over-
predicting, similar to the marginal model. From figure 19 (b),

it is evident that the proportion of under-prediction (average
17%) and over-predictions (average 16%) are almost equal
for the proposed joint model. Hence, it is evident that the
individual speed predictions are the strengths of the marginal
models over joint models. However, the marginal model
could not capture the combined effect or overall traffic state
prediction. Even though, at the vehicle class level marginal
model showed superior performance than the joint model (see
figure 19 (a), from figure 18, it is evident that at the overall
performance, the joint model outperformed the marginal
model.
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FIGURE 18. Performance evaluation of joint and marginal prediction
models.

Further, the speed prediction results are analyzed for order
or ranking. That is, each vehicle class of the observations of
the test dataset was given a rank based on its speed value. The
fastest vehicle class will receive the rank of 1, and the slowest
vehicle class will be ranked 5. The results of the ranking
analysis are shown in figure 20.

In figure 20 (a), ‘0’ denotes all the vehicle classes’
predicted order are as same as the actual. It is inferred from
the figure that 46 % of the observations could receive the
same order in the prediction for the marginal model and the
respective value for the joint model is 58 %. The remaining
% of observations were classified based on the number of
vehicle classes that couldn’t replicate the same order as in the
actual. For the benchmarked marginal model the values are
16%,13%,10% and 16%, respectively, for two, three, four,
and all five vehicle classes not replicated in actual order.
The corresponding values for the proposed joint model are
12%,2%,27% and 3% respectively.

Furthermore, the ranking analysis was also done as vehicle
classwise and the same is reported in figure 20 (b).
From classwise ranking analysis, it is evident that the joint

model outperformed the marginal for all the five vehicle
classes in terms of the percentage of observations for which
the predicted model could capture the original order. Overall,
the joint model showed around 11 % improvement over the
marginal model. Further, vehicle class-wise, the joint model
showed around 19% improvement over the marginal model
for vehicle class 2W and CAR.

Speed-based prediction approach based onmarginal model
fails to capture the joint effects of multiple vehicle classes and
performs poorly for speed prediction.

VII. DISCUSSION AND CONCLUSION
This research suggests a novel framework for mixed traffic
characterisation based on vehicle class-specific speed and a
real-time one-step ahead traffic state prediction mechanism.
This study proposes a speed-based characterisation method-
ology to estimate class-wise speeds from class-agnostic
disaggregated travel-time data. The travel time values are
not marked with the corresponding class of the vehicle from

which it is collected. However, the data inherently captures
the kinematic variations by allowing them to occupy different
speed bins. Travel-time data are collected and clustered
using unsupervised clustering techniques. We ensured that
all the periods used for state definition had at least five
observations. Based on the cluster characterisation, the
lower and upper-speed bounds are defined for traffic states.
Considering the area occupancy, the defined traffic states
are ordered from free-flow to congested conditions. Thus,
the traffic state definition step implies the speed-based
characterisation of mixed traffic. Also, while the traditional
approaches characterise traffic states using a single value
of speed, the proposed state characterisation defines traffic
states based on a spectrum of speeds. Further, this study
proposes the traffic state-based prediction methodology
as a joint model and benchmarks it with the existing
speed-based prediction approaches, which are marginal
models.

In the proposed methodology, the traffic state is predicted
by using lagged state information as input features in the
prediction models. By using state-speed mapping, the vehicle
class-wise traffic speeds are inferred. Thus, both state and
speed prediction are possible using the proposed method.
The labelled traffic states are mapped to the corresponding
class-specific speeds to benchmark the proposed methodol-
ogy. And vehicle-class wise prediction models are developed
in which the lagged speeds are the input features. This paper’s
proposed characterisation framework is deployed over a
Logistic regression model and an MLP model based on the
literature [54], [55], [56]. However, it is possible to use other
statistical and machine learning methods such as Long Short
Term Memory (LSTM) and ensemble methods like Random
Forest further to improve the performance in state and speed
prediction [57], [58], [59], [60].

Since the described traffic conditions cover all poten-
tial traffic states of 12-speed bin ranges, the suggested
characterisation methodology is applicable to any corridor.
Even without considering vehicle composition, the technique
performs well. Additionally, as the proposed methodology
just needs information on travel time or spatial speed, it is
sensor-independent. A data-driven strategy is adopted to
examine the most frequently seen traffic states from the
data due to the numerous possibilities for traffic states.
To further make the model knowledge-guided, vehicle-class-
specific area occupancy is added to organise the traffic
states. This method is novel based on the approach since the
prediction methodology depends on state progression rather
than time. For mixed traffic conditions, speed predictions
are typically made at the stream level; however, the current
study investigates the possibility of making speed predictions
for particular vehicle classes. The suggested approach is
more effective than bench-marking because it only requires
one model to forecast traffic conditions. In contrast, the
bench-marking approach requires a different model for each
vehicle class to forecast speed. Compared to the bench-
marking approach, the proposed prediction approach is more
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FIGURE 19. Class-wise analysis of Joint and Marginal models.

FIGURE 20. Prediction order Performance of benchmarking model
(a) Overall (b) Class-wise.

straightforward and computationally effective. Furthermore,
for both logistic regression and neural network models, the
benchmarking model’s optimal number of input features is
greater than that of the suggested approach. The benchmark-
ing approach has the following drawbacks: It needs more
class-specific historical data, which is practically difficult,
and a different mapping technique is required to translate
class-specific speeds to traffic. The proposed methodology

TABLE 6. Sample results of traffic states Mapping based on the
developed state mapping algorithm.

characterises the traffic states as joint distribution which is
most appropriate for mixed traffic conditions.

Concerning computational load, the proposed state-based
prediction approach is more efficient than the Speed-based
prediction approach since one model is enough to predict the
traffic state in the State-based prediction approach. However,
the speed-based prediction approach needs separate models
for each vehicle class. The state prediction of this approach
is complex since it involves mapping from speeds to states.
Therefore, the limitation of the speed-based approach is
that it needs more historical and class-wise data, which
is practically difficult. A separate mapping algorithm is
needed to convert the class-specific speeds to the traffic state.
Hence, due to the requirement of class-specific prediction
models and mapping algorithms, the computational load of
the speed-based approach is higher than that of the state-
based approach. One important insight is that since the
prediction based on joint probabilities is better than the
prediction based on marginal probabilities, it is evident that
the class-wise speeds do not evolve independently and are
interdependent. Therefore, it is better to predict states based
on joint probabilities. The broader application areas of the
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TABLE 7. Model coefficients of logistic regression model of the marginal prediction based on speed-based prediction approach with n=5.

proposed framework can be road network characterisation
based on link speeds, state estimation of intersections and
general prediction problems, including Natural Language
Processing.

Following are the limitations and future directions for
the study: The study presumed that all vehicle classes with
sufficient sample size were present during the observation
period since the study used data from Wi-Fi sensors that
provide class-agnostic data. However, this assumption could
be relaxed by using data from sensors such as cameras,
radar, loop detectors, etc., that provide classification data to
ensure sufficient samples for all vehicle classes to enhance
the reliability of the speed-based characterisation. Also, since
the data lacks vehicle composition, its impacts are not directly
captured in the present framework but only through the area
occupancy approach to obtain class-wise behaviour. While
this approach may be acceptable without composition data
and composition-specific fundamental diagrams, using the
latter may better capture the vehicle interactions, resulting
in improved estimation of class-wise speeds. Moreover, the
prediction of traffic states and class-wise speeds used LR
andMLP methods based on their superior performance in the
previous studies from the literature.With new non-parametric
methods such as LSTM, Random Forest, etc., gaining
popularity [57], [58], [59], [60], one could use these methods
for further improvement in the prediction accuracies. The
proposed framework focuses on characterising the state of

a roadway section based on a combination of class-wise
speeds on that specific section. However, to characterise city-
level states, the proposed framework needs to be extended to
define states based on a combination of link-wise conditions
such as speed, density, etc. Thus, while the speed-based
characterisation proposed in this study is transferable for state
characterisation on-road sections with variable speed bounds
and geometric conditions, the proposed framework must be
extended for city-scale characterisation.

One of the features of this method is that the states
are composition agnostic. Under different compositions,
different states arise, but all the predominant observable states
are captured in the state definitions. However, the evolution
of the traffic states is influenced by the composition and
considering it as an explicit input variable will improve
the performance of the prediction models. Furthermore, the
standard deviation of speeds within and across clusters,
cluster size and composition can also be used for more precise
mapping.

In our study, we acknowledge the potential impact of rare
events, such as extreme traffic jams, on our logistic regression
model’s learning effect and predictive accuracy. While these
events may be infrequent in our traffic flow data, they
can introduce data imbalance problems, leading to skewed
class distributions and compromised model performance.
Hence, we recognise the importance of future research
endeavours aimed at collecting additional data on rare events,
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exploring advancedmodelling techniques, and addressing the
underlying causes of extreme traffic conditions to enhance
the reliability and applicability of our findings. In this
paper, the proposed characterisation framework is deployed
over a Logistic regression and MLP models. However,
it is possible to use other statistical and machine-learning
methods as well. Some of such methods include Long
Short Term Memory (LSTM) and ensemble methods like
Random Forest. Recent advancements in traffic prediction
techniques, such as Graph Neural Networks (GNNs) and
Long Short-Term Memory (LSTM) networks, are gaining
popularity towards improved forecasts with higher accuracy.
Some of the state-of-the-art prediction techniques integrate
machine learning algorithms, deep learning architectures, and
domain knowledge to capture the complex dynamics of traffic
systems and provide timely and accurate forecasts for traffic
management and planning purposes [57], [58], [59], [60].

The proposed speed-based characterisation framework
relies on the speed bounds and number of vehicle classes to
propose class-agnostic traffic states and state characterisation
methodology. As validated in section IV-D of the manuscript,
the proposed states and characterisation could be easily
transferred to locations with similar characteristics. However,
one could use the proposed framework to develop a
location-specific set of traffic states for locations with a
different set of characteristics. The class-based characteri-
sation can help propose and evaluate various class-specific
policy interventions such as vehicle segregation or class
prohibition on specific links, bus rapid transit routes, class-
specific rerouting, development of class-based advanced
traveler information systems, etc., for improved equity, effi-
ciency, safety, and sustainability on the roadway networks.
Additionally, the proposed system can also be used to develop
class-specific real-time traffic management strategies for
effective utilization of transportation infrastructure. Based
on the class-wise behavior (such as two wheelers, three
wheelers, cars, trucks) and their respective speed profiles,
traffic managers can design interventions that specifically
target the needs and behaviors of each class such as dedicated
lanes or scheduled restrictions during peak hours, to alleviate
congestion caused by heavy vehicles.

APPENDIX
A. REAL-TIME IMPLEMENTATION
To implement the above method in real-time, the data
requirement is the continuous travel time on a mid-block
section. The travel time data will be converted to binary speed
data (data pre-processing). The speed data will be labelled
with appropriate state numbers (state mapping). Then, this
labelled data will be used in a linear regression model to
find the slope and intercept. Then, the slope and intercept
values will be fed as input to an MNL model, and the group
probabilities will be identified.

Based on historical data, the typical group (3/4/5/6/7
patterns) exhibited in a location can be predetermined. Once

that data is available for all the historic days, one could
identify the most appropriate group for the current day
(and time) based on analysis of historical data that captures
the hourly, daily, weekly and monthly patterns, for state
prediction. After performing this pattern analysis, one could
determine the probability of the pattern to which the current
data point belongs for further analysis. Previous time steps’
traffic state and the corresponding pattern probabilities are
the inputs for the state prediction model (Logistic regression
/ Neural network). This model identifies the probabilities of
all the defined traffic states. An inverse transform sampling
will be done to identify which probabilities have to be chosen.
Thus, the traffic states will be predicted. Once the traffic
state is predicted, it will be mapped to the corresponding
speed bands. Each traffic state has a defined speed for all five
vehicle classes considered. Thus, the proposed methodology
will predict vehicle class-specific speeds in real-time.

B. MAPPING OF OBSERVED TRAFFIC STATES TO DEFINED
TRAFFIC STATES:
There are 4096 (212) traffic states possible with the 12-speed
bins considered. To translate the predicted speeds of Method
1 to the most appropriate traffic state out of the predefined
50 traffic states, a separate mapping algorithm with three sets
of rules was formulated and given below:

State Mapping Algorithm
1 String Manipulation
2 Manipulate String for each observation
3 Calculate String length (L) and count the number of zeros (C) in the string
4 Rule definitions
5 Rule 1: Chosen Pattern = Observed pattern
6 Rule 2: Chosen Pattern = Maximum consecutive 1’s
7 Rule 3: Chosen Pattern = Max or 2nd Max consecutive 1 depending on the

position
8 Rule Selection
9 if L ≤ 5
10

∣∣ if C ≤ 1
11

∣∣ Apply Rule 1
12 else
13

∣∣ Apply Rule 2
14 if L > 5
15

∣∣ if C = 0
16

∣∣ Apply Rule 1
17 else
18

∣∣ Apply Rule 3

Thus, at the end of this step, we have the labelled database
in which all the observations are given a state number. Table 6
shows some sample observations and the traffic states to
which it was mapped along with the rule applied.
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