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ABSTRACT Precise forecasting of solar power output is crucial for integrating renewable energy into
power networks, improving efficiency and dependability. This study assesses the efficacy of several Machine
Learning (ML) algorithms in predicting solar power generation through a detailed performance comparison.
This paper analyzes six algorithms: CatBoost, Gradient Boosting Machines (GBMs), Multilayer Perceptron
(MLP) regressor, Support Vector Machines (SVMs), XGBoost, and Random Forest (RF). Using a dataset
of 4213 sets of solar power generation data, each model was trained and tested, with performance evaluated
based on R-squared (Rz) scores for the whole dataset, training set, and test set. Also, this study examined the
mean and standard deviation of test set predictions to gauge how consistent each model was. The results
showed that RF had the highest overall R? score of 0.940 and a training set score of 0.971. XGBoost
demonstrated exceptional performance on the test set, attaining a high R? score of 0.822. CatBoost and GBMs
exhibited strong performance, albeit with slightly lower R? values of 0.786 and 0.829, respectively. Although
the MLP regressor and SVMs exhibited high training scores, they encountered difficulties in generalizing
to unfamiliar data. This paper highlights the effectiveness of combining XGBoost and RF techniques in
improving the accuracy of solar power forecasts. The investigation focuses on enhancing the precision and
reliability of renewable energy projections through a comprehensive comparison of various contemporary
ML techniques.

INDEX TERMS Machine learning, predictive modeling, renewable energy forecasting, solar power
generation.

I. INTRODUCTION

Among the main and most durable forms of renewable
energy, solar power provides an abundant and long-lasting
way to produce electricity [1]. With the world facing the
problems of climate change, the need for renewable energy
to lower Greenhouse Gas (GHG) emissions is growing [2].
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Solar energy contributes to the diversification of the energy
supply and reduces reliance on unpredictable fossil fuel mar-
kets [3]. In addition, solar power plays a role in promoting
sustainable development by offering a source of clean and
renewable energy that may foster economic expansion with-
out causing harm to the environment [4]. Adopting renewable
energy sources such as solar power is crucial for attaining
worldwide energy sustainability and successfully addressing
climate change [5].
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Accurate predictions of solar power are important for
system management, energy storage, and resource planning.
In this way, we can better prepare for how unpredictable solar
power production is, which helps keep the system steady and
stops problems [6]. Artificial Neural Networks (ANNs) and
Machine Learning (ML) are being used in predicting more
and more to make solar power predictions more accurate.
These models give us a lot of useful knowledge for creating
power systems and making grid control work better [7].
These advanced planning methods can help solar power sys-
tems work better by taking into account problems that arise
because solar energy isn’t always available [8].

Accurate solar power planning is necessary for the best
energy storage and grid control. It makes sure there is a steady
flow of power even when solar production is low by making
it easier to plan and use stored resources [9]. By correctly
guessing how much solar power will be produced, energy
companies may be able to lower the costs of running energy
storage systems and depend less on Backup Power Sources
(BPS) [10]. Forecasts that are more accurate also help utilities
and grid operators make better use of their resources, which
in turn helps them make better choices about how to produce
and distribute energy [11].

Correct solar power forecasts can help cut down on wasted
energy and make systems work better. To get the most use
out of energy and lose as little as possible, utilities should
time the output of solar panels with demand predictions [12].
This alignment is beneficial for businesses, everyone in the
energy supply chain, and consumers [13]. It also helps lessen
the damage that energy creation does to the earth. Accom-
plishing a smoother change in the future with sustainable
energy sources is also possible, with accurate predictions
that help add Green Energy Sources (GES) to the power
grid [14].

Solar power output has been predicted using conventional
forecasting methods, including statistical models, to great
extent. But usually they find it difficult to explain the com-
plex and non-linear features of solar power generation [15].
The classic approaches mentioned, such as Autoregressive
Integrated Moving Average (ARIMA) and linear regression,
have limitations due to their dependence on linear assump-
tions and the requirement of a large amount of historical
data [16]. Because ML methods can handle large datasets and
non-linear patterns well, they are ideal for precise solar power
predictions [17].

ML models, including Support Vector Machines (SVM),
Random Forest (RF), and ANN, have demonstrated excep-
tional efficacy in capturing the complex interconnections
among diverse meteorological variables and solar power
output [18]. The ability of these models to dynamically adjust
to fluctuating weather conditions enhances the precision of
solar power forecasts, a critical factor in the administra-
tion and stability of power grids [19]. For example, the
incorporation of domain expertise into physical model-ML
algorithm integrations, such as hybrid models that combine
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deep learning and statistical methods, has further improved
prediction accuracy [20].

There are more advantages to ML in solar power forecast-
ing than just non-linearity management. It makes processing
and analysis of massive volumes of data possible as well.
Long Short-Term Memory (LSTM) and Convolutional Neu-
ral Networks (CNN) are two examples of very efficient
time-series data processing techniques that are essential
for anticipating solar power generation based on historical
weather trends [21]. Multiple studies have shown that these
approaches are more effective than standard statistical mod-
els, resulting in more accurate predictions for grid operators
and energy planners [22].

Furthermore, the use of ensemble approaches, which com-
bine numerous ML algorithms, has demonstrated substantial
improvements in forecasting precision by capitalizing on
the advantages of individual models and reducing their lim-
itations [23]. Ensemble approaches, such as bagging and
boosting, combine the predictions of many models to create
a forecast that is both more accurate and resilient [24]. This
technique enhances both the precision of solar power genera-
tion estimates and the understanding of the factors that impact
them.

ML methods offer significant improvements over tradi-
tional statistical models when it comes to predicting solar
power. ML improves the accuracy and dependability of
predictions by effectively dealing with non-linear patterns,
evaluating large datasets, and employing ensemble meth-
ods. These advancements are essential for improving grid
management, maximizing energy storage technologies, and
enabling the incorporation of renewable energy sources into
the power system [14].

The growing global demand for sustainable, environmen-
tally friendly energy sources emphasizes the importance
of solar power in the transition to renewable energy [25].
Solar power generation is, by nature, uncertain because of
its reliance on the weather and other environmental condi-
tions [26]. The predictability of this element makes it very
difficult to keep the grid stable, create energy strategies, and
maximize operational efficiency [27]. Therefore, effective
integration of solar energy into the electrical system and
maximization of its possible benefits depend on a precise
forecast of solar power output. Conventional approaches to
predicting solar power, which rely on statistical and physical
models, have drawbacks in accurately representing the intri-
cate, non-linear connections seen in solar energy data [26].
These approaches may not effectively utilize the given data
or rapidly adjust to changing conditions, resulting in less than
ideal forecasts. The development of powerful ML algorithms
has a chance to greatly improve the precision and depend-
ability of solar power projections [28]. ML models have the
ability to analyze vast datasets and detect complex patterns
that conventional models may fail to recognize. Utilizing
ML techniques can enhance the precision of forecasts, opti-
mize the distribution and storage of energy, save operational
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expenses, and improve the overall reliability of the power sys-
tem [29]. The objective of this study is to examine and assess
the effectiveness of several cutting-edge ML algorithms in
predicting solar electricity generation.

This study seeks to employ state-of-the-art ML techniques
to address the pressing need for better and more accu-
rate solar power predictions. The selected algorithms for
evaluation are CatBoost, XGBoost, Multi-Layer Perceptron
(MLP) regressor, Support Vector Machine (SVM), Gradient
Boosting Machines (GBMs), and RF. The selection of these
algorithms is based on their proven efficacy in managing intri-
cate, multi-dimensional data and their capacity to accurately
represent non-linear associations. The study’s findings will
aid not just the area of renewable energy forecasting, but
also policymakers, grid operators, and energy planners who
need direction. This paper highlights the need to use ML
algorithms to improve solar power estimations. It emphasizes
the need of use innovative ways to overcome the problems
of integrating renewable energy and establishing a stronger,
more sustainable energy system.

As environmental awareness and demand for sustainable
energy alternatives have grown, solar power has emerged as a
crucial and substantial source of renewable energy [30], [31],
[32]. To mitigate the effects of climate change and reduce our
reliance on fossil fuels, we must optimize the use of solar
energy. This is because solar power systems provide clean
energy without emitting pollutants [33], [34], [35]. Neverthe-
less, a major obstacle in the field of solar energy is the precise
forecasting of the electricity generated by solar systems [36].
Precise solar power generation forecasting requires consid-
eration of several factors, such as meteorological conditions,
solar irradiation, temperature, and the physical properties of
solar panels [36], [37]. Conventional statistical approaches
frequently fail to accurately represent the intricate, non-linear
connections between these factors and power output [36].
Therefore, the requirement for sophisticated predictive mod-
eling approaches is of utmost importance. ML techniques
provide a hopeful resolution to this obstacle [38]. ML algo-
rithms can depict complicated patterns and correlations in
data, resulting in more accurate and consistent projections.
This study attempts to analyze the performance of multiple
ML algorithms in forecasting solar power generation.

This work aims to assess how well a number of ML
systems estimate solar electricity generation. This is nec-
essary to effectively include solar power into the electrical
system, optimize energy distribution and storage, reduce run-
ning expenses, and improve overall system reliability. The
study’s main objective is to assess and compare the predic-
tive performance of various algorithms, including CatBoost,
GBM, MLP regressor, Support Vector Machine (SVM),
XGBoost, and RF. This assessment will be based on metrics
such as Root Mean Squared Error (RMSE) and R-squared
(R?) scores, which will be calculated using both training
and test datasets. The research aims to determine the opti-
mal algorithm by examining the strengths and drawbacks
of each algorithm in dealing with the unpredictability and
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non-linear correlations present in solar power data. Further-
more, it investigates the significance of different variables
in predicting solar power by employing techniques such as
Lasso regression to select and prioritize the most important
features. The study aims to graphically represent and eval-
uate the prediction results by comparing the expected and
observed values for both the training and test datasets. Fur-
thermore, its objective is to illustrate the relationship between
significant factors, such as sun azimuth, and the expected
power generation. The study seeks to provide suggestions for
enhancing solar power forecasts, optimizing the integration of
solar energy into the power grid, and promoting the advance-
ment of accurate and reliable prediction models.

This research is unique because it conducts a thorough
examination and comparison of powerful ML algorithms
that are specifically designed for predicting solar energy in
sustainable energy systems. This study differs from previous
research that primarily examined individual models. Instead,
it comprehensively evaluates six cutting-edge algorithms—
CatBoost, GBMs, Multilayer Perceptron (MLP) regressor,
SVM, XGBoost, and RF—by utilizing a real-world dataset
consisting of 4213 instances of solar power generation. The
research stands out by using a multi-metric approach to eval-
uate performance. Our methodology encompasses not only
conventional R2 values, but also the mean and standard devia-
tion of predictions on the test set. This offers a more thorough
evaluation of the prediction precision and reliability of each
model. Furthermore, we utilize Lasso Regression to eval-
uate the significance of different variables, identifying key
factors that influence solar power generation and suggesting
approaches to improve our models. The research demon-
strates that ensemble approaches such as RF and XGBoost
exhibit superior generalization capabilities, rendering them
more efficacious for real-world applications. Furthermore,
our research highlights the potential of hybrid models and
emphasizes our focus on future research areas, demonstrating
the novel contributions of this work to the field of renewable
energy forecasting.

Incorporating renewable energy sources into the current
power grid is crucial for attaining sustainable energy systems.
Photovoltaic (PV) solar energy has the capacity to greatly
decrease GHG emissions and reduce reliance on fossil fuels.
Accurate prediction of solar power generation is essential
for optimizing the efficiency and dependability of power
grids. The integration of solar energy into the grid has been
made easier by recent developments in inverter technology.
One example is the advancement of transformer-less grid-tied
inverters, which has played a crucial role in enhancing the
efficiency and safety of PV systems. An important technolog-
ical development is the five-level switched-capacitor-based
inverter, which has demonstrated considerable potential in
lowering leakage currents, thus improving the safety and
efficiency of the solar power integration process. In a similar
vein, the six-level transformer-less inverter has been created
to reduce leakage currents and enhance the overall perfor-
mance of the system, hence increasing the durability and
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dependability of PV systems. In addition, advancements such
as the implementation of single-source multilevel inverters
that rely on flyback DC-DC converters have improved the
efficiency and expandability of PV systems. This technology
enables enhanced power conversion and enhanced voltage
regulation, which are crucial for the reliable integration of
solar energy into the grid. The significance of precise solar
power prediction models in maximizing the utilization of
renewable energy sources is highlighted by these techno-
logical breakthroughs. Enhancing the predictability of solar
power output allows grid operators to more effectively con-
trol energy distribution and storage, resulting in improved
dependability and efficiency of the power network. This
work expands upon this existing knowledge by evaluating
the effectiveness of various sophisticated ML algorithms in
forecasting solar power generation. By conducting meticu-
lous analyses of performance indicators, our objective is to
provide vital insights that facilitate the seamless integration
of renewable energy into current power systems.

Although hybrid models were not created in this work, the
results establish a strong basis for future research in this field.
The thorough examination of individual algorithms yields
useful insights that can guide the creation of hybrid models.
Further investigation could be conducted to integrate algo-
rithms such as RF and XGBoost in order to capitalize on their
individual strengths, thus enhancing overall prediction accu-
racy and robustness. Hybrid models, which merge the strong
resilience and precise predictions of RF with the effectiveness
and regularization features of XGBoost, have the potential
to outperform other models in solar power prediction tasks.
In addition, the development of adaptive models that can
dynamically adapt to changing environmental conditions has
the potential to greatly improve their utility and reliability.
These models will guarantee strong and constant perfor-
mance in several conditions, including the natural oscillations
in the output of solar electricity. Using ensemble approaches,
choosing pertinent features, and applying adaptive learn-
ing strategies could be one possible approach to generating
these hybrid models. Combining RF and XGBoost mod-
els, coupled with a feature selection technique using Lasso
Regression helps to create a strong and flexible prediction
system. By choosing the most important components, this
mix would guarantee stability and consistency in projections,
as well as increase their accuracy. As a result, this would
lead to more accurate and dependable solar power forecasts.
Therefore, the foundation of the work sets the stage for future
progress in creating hybrid models with the goal of improving
the precision, durability, and dependability of solar power
forecast models.

II. LITERATURE REVIEW

Solar power generation is a crucial component of the renew-
able energy industry. The process entails harnessing solar
energy with the use of PV cells in order to produce elec-
tricity [18]. The use of this power generation method is
very sustainable and has been widely accepted owing to its
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minimal impact on the environment and the abundant avail-
ability of solar energy [39]. Precise solar power generation
prediction is necessary to maximize the integration of solar
energy into the system, provide a steady energy supply, and
maintain grid stability [40]. Higher network efficiency in
the energy distribution and reduced operational costs result
from more effective strategic planning and management of
energy resources made feasible by forecasting [22]. Still,
there are other challenges that make solar power forecasts
less accurate. The unpredictable nature of the weather is a
major challenge as it may cause sharp variations in solar irra-
diance, which affects electricity generation. Data quality is a
serious issue, as errors in earlier data and differences in data
collection techniques may jeopardize the trustworthiness of
projections [41]. In order to address these issues, it is imper-
ative to utilize sophisticated modeling techniques and robust
ML algorithms to enhance the precision of solar power fore-
casts. Ultimately, this will contribute to the development of a
more robust and effective energy infrastructure [42]. Through
several studies, the above described issues are further exam-
ined and contrasted, as Table 1 succinctly summarizes. The
table offers an extensive comparison of many ML meth-
ods used for solar power forecasting. It emphasizes their
advantages, drawbacks, and particular problems they tackle.
Through the analysis of this data, we may learn important
information about the efficacy of different approaches and
pinpoint the best approaches to raise the precision of solar
power estimates.

lIl. METHODOLOGY

A. DATA PRESENTATION

Table 1 gives an overview of the main descriptive statistics
of the dataset and provides a detailed look at the important
aspects evaluated in the research on solar power production.
Including 4213 sets, this dataset provides a strong foundation
for analysis and predictive modeling.

The dataset includes the lowest and highest values for each
variable, which cover the whole range of meteorological cir-
cumstances and power output levels that have been recorded.
The temperature varies between —5.35 °C and 34.9 °C, while
the relative humidity ranges from 7% to 100%. The mean
values represent the average measurement of each variable,
with an average temperature of 15.068 °C and a mean relative
humidity of 51.361%. These mean values provide a refer-
ence point for comprehending the usual circumstances seen
throughout the time of data collection.

The standard deviation numbers show how different the
values of each variable are from each other. For instance, the
standard variation of temperature is 8.854 °C, which means
that there is a modest amount of change around the mean.
Additionally, the produced power fluctuates significantly,
with a standard variation of 937.957 kW. This is due to the
diverse applications of solar power in various scenarios. This
wide range in produced power shows how different external
factors can affect solar power output.
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TABLE 1. Comparative analysis of solar power forecasting studies.

Study Year Algorithms Used Dataset Characteristics Pegf::::;z:“ Key Findings Limitations
L RMSE, Mean -
43] 03 GBM., RF, k-NN, SVM. 1.2 MW grid-integrated Absolute Error QBM and RF .showed Accuracy Vafrl_ed 'by PV
solar PV, 3 years data. MAE high accuracy; SVM system type; limited
( ) outperformed k-NN. algorithm comparison.
. . . Bayesian stacking .
LASSO, RF, MLP, SVR, Real-time series data Prediction . Complexity of ensemble
[44] 2023 XGB. from AIT, Thailand. accuracy. ensemble achieved best methods.
accuracy.
(45] 2023 RF, Decision Tree. Historical PV system Prediction RF outperformed Depender_lcy on historical
data. accuracy. L. data quality.
Decision Tree.
performance may vary
[22] Ensemble ML models. Weat_her data, solar Accuracy, Hybrid model with different datasets and
2022 irradiance. placement cost. T .
outperformed individual locations.
ML models.
RNN, SVM, ARX, Prediction R SVM. Non-linear models
[46] 2022 PV solar cells data. outperformed linear .
FFNN-gdx, LASSO. accuracy. complexity.
models.
MLR, PCC, XGBoost, .
PCA, Ridge Regression, Real-world data frqm . RMSE, MAE, XGBOOSF Wl.th feature High complexity of
[47] 2022 solar power plant sites in 2 engineering improved . .
Autoencoder, LSTM, R%. feature engineering.
Germany (100-8500 accuracy.
ARIMA
kW).
18] 2022 ANN, RF, DT, XGB, NREL data, Cocoa, REASE, MAE, ANN prpduced best Limited tp specific
LSTM. : R forecasting results. geographic data.
Florida.
[48] 2021  WTP, GAN, DA. Datasets from two MAPE, RMSE Xgég‘g}\]hhﬁ;‘iarg(’del i}:rlaggi:r“’;‘;p(}zgty of solar
regions (100-8500 kW). £ v :
Sdo Paulo SVM produced lowest Location-specific
[49] 2021 SVM, ANN, ELM. meteorological data, RMSE RMSE, ELM had fastest parameters affect model
1933-2014 training rate performance.
38] 2020 SVM. LR, NNM, RF. Aguascalientes, Mexico, MSE, MAE. RF showed best Limited to six months of

6 months data.

prediction accuracy.

data.

Also, things like wind speed and direction at different
heights, cloud cover at different layers, and angles of impact
and zenith all have large ranges and changes. For instance, the
wind speed 10 meters above ground runs from 0 to 61.18 m/s,
with a mean of 16.229 m/s. This means that there are times
when the wind is very strong, which could affect how well
solar panels work. The screens can receive any amount
of sun energy based on the angle of incidence, which is
between 3.755 degrees and 121.636 degrees, with a mean of
50.837 degrees.

Table 2 is a complete statistical overview to fully under-
stand how the dataset’s main traits spread out and change over
time. These new ideas will assist with later steps of analysis
and predictive modeling, allowing for a more complete look
at the factors that affect solar power output. We can build
and test forecasting models using the 4213 observations,
enhancing the accuracy of solar power output predictions.

The histogram in Figure 1 displays the frequency dis-
tribution of the ambient temperature measured at a vertical
distance of two meters. The dataset has 4213 observations,
which is a sufficiently large sample size for doing statistical
analysis. The temperature data is normally distributed, with
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a conspicuous peak at the mean and a roughly symmetrical
dispersion. This pattern indicates that the majority of temper-
ature measurements exhibit a concentration around the mean
value, with only a limited number of instances recording
exceptionally high or low temperatures.

Figure 1 provides valuable insights into the potential influ-
ence of temperature as a variable on solar power systems’
output and efficiency. It provides details regarding the typical
temperature conditions encountered during the process of
gathering data on solar power generation.

Figure 2 depicts the frequency distribution of relative
humidity at a height of two meters above the ground. Sim-
ilar to the presentation of temperature, Figure 2 displays
the relative humidity data for a total of 4213 observations.
The distribution has a minor skewness, indicating a higher
occurrence of lower relative humidity values, followed by
a progressive decrease as humidity levels rise. This skew-
ness indicates that the data was taken in a location that
typically experiences dry weather more often than not. This
distribution provides a framework for understanding the envi-
ronmental factors that influence solar power production.
Relative humidity may affect the performance of solar panels
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TABLE 2. Descriptive statistics of key variables in the solar power
generation dataset.

Variable Min Max Mean SD
Temp 2m Above Ground -5.35 349 15.068 8.854

(o}

;E)Zm Above Ground (%) | 7 100 51.361 23.526
MSL Pressure (hPa) 997.5 1046.8 1019.34 | 7.023
Total Precipitation (mm) 0 32 0.032 0.17
Snowfall (mm) 0 1.68 0.003 0.038
Total Cloud Cover (%) 0 100 34.057 42.844
High Cloud Cover (%) 0 100 14.459 30.712
Medium Cloud Cover (%) 0 100 20.023 36.388
Low Cloud Cover (%) 0 100 21.373 38.014
Shortwave Radiation 0 952.3 387.759 | 278.459
(W/m?)

Wind Speed 10m (m/s) 0 61.18 16.229 9.877
Wind Dir 10m (°) 0.54 360 195.078 | 106.627
Wind Speed 80m (m/s) 0 66.88 18.978 12
Wind Dir 80m (°) 1.12 360 191.167 | 108.76
Wind Speed 900mb (m/s) 0 61.11 16.363 9.885
‘Wind Dir 900mb (°) 1.12 360 192.448 | 106.516
Wind Gust 10m (m/s) 0.72 84.96 20.583 12.649

Histogram of Temperature (2m above ground)
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FIGURE 1. Histogram of ambient temperature at two meters above
ground level.

and the total energy output by influencing the quantity of solar
radiation that reaches the panels.

Figure 3 illustrates the dispersion of solar power produc-
tion, quantified in kilowatts. Higher power outputs are less
common, and the majority of the produced power values
are focused in the lower range, as the histogram shows.
Unequal distribution of solar power output is a blatant
sign of significant irregularity, possibly caused by seasonal
changes, weather patterns, and other environmental variables.
Understanding this distribution is crucial for assessing the
efficiency and dependability of solar power systems, as it
highlights the difficulties in attaining steady power produc-
tion. Furthermore, the fluctuation emphasizes the need for
reliable prediction models to precisely estimate solar power
output under different circumstances.

The scatter plot shown in Figure 4 demonstrates the
correlation between ambient temperature and solar power
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Histogram of Relative Humidity (2m above ground)
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FIGURE 2. Frequency distribution of relative humidity at two meters
above ground.

generation. Every data point in the dataset corresponds
to each observation, and the plot demonstrates a positive
correlation between temperature and power output. This indi-
cates that increased temperatures are often associated with
increased solar power output. This animation highlights the
influence of temperature on the efficiency of solar electricity,
offering first-hand insights into possible predictors for ML
algorithms. The positive association suggests that tempera-
ture plays a crucial role in predicting solar power output.
Incorporating temperature into the models may improve their
accuracy and dependability.

The heatmap in Figure 5 depicts the correlation coef-
ficients between various variables related to solar power
generation. The findings of this comprehensive analysis
reveal significant correlations between power generation,
temperature, relative humidity, and total cloud cover. There
is a strong negative relationship between cloud cover and
power generation, as well as a positive relationship between
temperature and power generation. By utilizing a heatmap,
we can identify the key variables that exert the most sig-
nificant influence on our predictive models for solar power
generation. In order to optimize the generation of solar power,
researchers must improve the accuracy of their models by
gaining a deeper understanding of the correlations between
different features.

B. ML ALGORITHMS

This section provides a concise summary of the ML algo-
rithms utilized in our study for the purpose of forecasting
solar power generation. We chose six different algorithms
based on their demonstrated effectiveness in managing intri-
cate datasets and their diverse methods of handling features
and interpreting models. The algorithms listed are CatBoost,
GBM, MLP regressor, Support Vector Machine (SVM),
XGBoost, and RF. Each algorithm was extensively assessed
to determine its efficacy and suitability for the assigned task.
The selection of these algorithms is designed to utilize their
unique benefits and address the various characteristics of
our dataset, which includes a variety of environmental and
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FIGURE 3. Distribution of generated solar power output in kilowatts.

Scatter Plot of Generated Power vs. Temperature
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FIGURE 4. Correlation between ambient temperature and solar power
output.

meteorological variables. The classification, computational
complexity, feature handling capabilities, and interpretability
of these algorithms are thoroughly examined in Table 3. This
analysis attempts to provide a brief synopsis of their particular
advantages and disadvantages.

Figure 6 depicts the step-by-step process employed in
our methodology for forecasting solar power generation. The
process begins with data preparation, where the raw data is
loaded and undergoes preprocessing. This entails oversee-
ing the handling of missing values and performing feature
engineering to enhance the dataset’s quality. Subsequently,
the data is partitioned into distinct training and testing sets.
Afterwards, the characteristics and desired outcomes are
standardized in order to ensure uniformity and improve the
effectiveness of the model.

During the training and prediction phase, we develop the
ML model and then proceed to train it using the prepared
training data. The trained model is subsequently assessed on
both the training and test datasets to evaluate its performance
and ability to generalize.

The evaluation and visualization phase entails the com-
putation of essential metrics to quantify the performance of
the model, which is then followed by the creation of vari-
ous visual representations. Some of these methods include
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FIGURE 5. Heatmap of correlation coefficients among solar power
generation variables.

creating graphs to compare predicted values with actual data,
analyzing predictions in relation to the sun’s azimuth, and
creating a heatmap to illustrate the interconnectedness of
different traits. To determine the relative importance of each
attribute and the factors with the greatest influence, Lasso
regression is employed.

Eventually, the comprehensive results are merged and
saved to a CSV file during the result export stage. Subse-
quently, this file can be utilized for further examination or
documentation. This systematic evaluation of ML models and
their prediction capabilities provides valuable insights into
the factors that influence solar power generation.

C. EVALUATION METRICS

This section provides a detailed explanation of the evaluation
criteria used to determine the efficiency of ML models used
to forecast solar power output. These metrics offer a compre-
hensive understanding of the models’ accuracy and reliability.
The main metrics used are the R? scores of each data frame,
training set, and test set. Furthermore, it encompasses the
average, deviation, and relative deviation of the forecasts
generated on the test dataset.

The R? score measures the extent to which the independent
variables can account for the variability in the dependent
variable [50], [51]. The R? scores were calculated for the
entire data frame using (1), for the training set using (2),
and for the test set using (3).

To understand the central tendency of the predicted values,
the mean of the test set predictions is calculated [52], [53],
as demonstrated in (4). The dispersion of the predicted values
around this mean is measured by the standard deviation [54],
as shown in (5). The Relative Standard Deviation (RSD)
[55], depicted in (6), provides a normalized measure of the
variability relative to the mean. Collectively, these metrics
offer a thorough understanding of the model’s performance,
demonstrating its precision and resilience in forecasting solar
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TABLE 3. Comparative characteristics of ML algorithms used in solar power generation prediction

Algorithm Type Complexity Feature Handling Interpretability
CatBoost Gradient Boosting Decision Trees High Handles categorical features natively Moderate
GBM Ensemble of Decision Trees High Requires feature preprocessing Moderate
MLP regressor Neural Network High Requires feature scaling and preprocessing Low
SVM Support Vector Machine High Requires feature scaling Low
XGBoost Gradient Boosting Decision Trees High Requires feature preprocessing Moderate
RF Ensemble of Decision Trees Moderate Handles feature interactions automatically High
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FIGURE 6. Flowchart of the predictive modeling process for solar power generation.
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power generation. Assessing these metrics guarantees the
reliability and interpretability of the models, thereby facili-
tating improved decision-making and optimization for solar
power forecasting.
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IV. RESULTS AND DISCUSSION

In this section, we showcase the outcomes of our predictive
modeling for solar power generation, utilizing a range of ML
algorithms. The analysis entails a thorough assessment of the
models’ performance on both the training and test datasets.
We use multiple metrics and visualizations to assess each
algorithm’s precision and ability to generalize. This section’s
data offers a comprehensive understanding of the models’
efficacy by demonstrating how well they can use the features
provided to predict power output.

Figure 7 depicts the significance of several attributes
in forecasting solar power generation, as estimated by the
Lasso Regression model. This study aids in determining
the factors that exert the most substantial influence on the
performance of the predictive model. The Lasso Regression
technique uses regularization to improve the model’s capac-
ity to generalize and mitigate overfitting by punishing less
significant features. This information is useful for compre-
hending the fundamental factors that influence solar power
generation and enhancing the effectiveness of prediction
models.

Figure 8 displays scatter plots comparing the actual power
output to the predicted power output in the training set. Six
different algorithms are used to create the plots: CatBoost,
GBM, MLP regressor, SVM, XGBoost, and RF. Figure 8(a)
through Figure 8(f) illustrate each subplot, which shows how
well an algorithm performs. Understanding the degree of
expertise each model has acquired from the training data
depends on the scatter plots. A high correlation between
observed and predicted values indicates excellent model per-
formance. The majority of algorithms demonstrate a strong
concentration of data points near the line of perfect predic-
tion, indicating their successful capture of the underlying
patterns in the training data. Data points dispersed and clus-
tered along the diagonal line reveal each model’s precision
and dependability.
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FIGURE 7. Feature importance analysis using lasso regression for solar
power generation forecasting.

Figure 9 displays scatter plots comparing the actual power
output to the predicted power output in the test set. The plots
are generated using six algorithms: CatBoost, GBM, MLP
regressor, SVM, XGBoost, and RF. Subplots in particular,
Figure 9(a) through Figure 9(f) show how well the model
performs on data that it has never seen before. These scatter
plots are essential for evaluating each algorithm’s capacity
for generalization. When points on the diagonal line strongly
correlate, the predictive accuracy is high. The deviations in
the concentration and distribution of data points from the
regression line show the extent of prediction errors. By com-
paring these plots with those shown in Figure 8, we can
determine whether the models retain their predictive accuracy
when applied to new data. This is crucial for real-world
applications.

Figure 10 depicts the correlation between solar azimuth
and power output for the training set predictions made
by six algorithms: CatBoost, GBM, MLP regressor, SVM,
XGBoost, and RF. The subplots Figure 10(a) through
Figure 10(f) illustrate the correlation between the predictions
of each model and the solar azimuth angles in the training
set. The capacity of these plots to faithfully depict the impact
of solar azimuth on power generation is moderately com-
promised. The identification of recurring trends or patterns
within the data suggests that the models have adequately
accounted for the azimuth angle of the sun. Any inconsisten-
cies or abnormalities detected may suggest areas that might
be improved or require new features in the model.

Figure 11 depicts the relationship between solar azimuth
and power output for test set predictions using the same
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FIGURE 9. Scatter plots of actual vs. predicted power output in the test set using different algorithms (a) CatBoost, (b) GBM, (c) MLP regressor,

(d) SVM, (e) XGBoost, (f) RF.

six algorithms: CatBoost, GBM, MLP regressor, SVM,
XGBoost, and RF. Each subplot Figure 11(a) through
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Figure 11(f) shows the model’s ability to predict power
output relative to solar azimuth angles in the test set. These
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FIGURE 10. Relationship between solar azimuth and power output for training set predictions using different algorithms (a) CatBoost, (b) GBM,
(c) MLP regressor, (d) SVM, (e) XGBoost, (f) RF.

plots play a critical role in evaluating the models’ ability to and power output to novel data. A model’s performance
extrapolate the discovered correlation between solar azimuth is considered robust when the projected values and actual
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FIGURE 11. Relationship between solar azimuth and power output for test set predictions using different algorithms (a) CatBoost, (b) GBM,
(c) MLP regressor, (d) SVM, (e) XGBoost, (f) RF.

necessity of including more variables to enhance the model’s
accuracy across different contexts.

solar azimuth trends show constant alignment. Substantial
deviations may indicate issues with overfitting or indicate the
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TABLE 4. Descriptive statistics of key variables in the solar power
generation dataset.

Model Rﬁnaze R%rain R?est Mean of SDtest RSD
Test Set

CatBoost 0.786 0.786 0.786 1131.562 833.260 | 0.736
GBM 0.829 0.836 | 0.802 1137.566 | 854.565 | 0.751
MLP 0.876 0.905 0.766 1183.541 908.547 | 0.768
SVM 0.911 0.948 | 0.768 1160.487 | 951.396 | 0.820
XGBoost 0.928 0.956 0.822 1146.255 869.111 0.758
RF 0.940 0.971 0.818 1147.735 854.705 | 0.745

Figure 7 displays the qualities on the horizontal axis and
their associated significance ratings on the vertical axis. The
qualities encompass climatic factors such as shortwave radi-
ation, mean sea level pressure, wind speed and direction
at different altitudes, precipitation, cloud cover at various
levels, temperature, and relative humidity. In addition, the
solar power generation process takes into account particular
features like azimuth and angle of incidence, which have a
significant impact. The research reveals that some parame-
ters, such as shortwave radiation and mean sea level pressure,
exhibit significant positive significance, demonstrating their
substantial positive impact on the prediction model. On the
other hand, variables such as angle of incidence demonstrate a
negative significance, indicating a reverse correlation with the
model’s forecasts. Additional characteristics exhibit different
levels of significance, underscoring their varied influence on
the accuracy of predictions. This research assists in improv-
ing the predictive models for solar power generation by
finding and comprehending the most significant aspects. This
information is crucial for maximizing model performance,
strengthening forecasting precision, and eventually improv-
ing the efficiency of solar power systems. The knowledge
acquired from this study can provide direction for future
research and development endeavors in the realm of renew-
able energy prediction.

To evaluate the ML algorithms used in this study in
detail, we analyzed a large number of variables that provide
insightful information about their effectiveness in solar power
generation predictions. The metrics include the mean, stan-
dard deviation, and RSD of the test set predictions coupled
with the R? scores for the whole data frame, training set, and
test set. These metrics taken together show that the models
can correctly forecast new, untested data and reflect the train-
ing data appropriately.

Table 4 presents the performance characteristics of the
six ML algorithms employed in this study: CatBoost, GBM,
Multi-Layer Perceptron MLP regressor, Support Vector
Machine (SVM), XGBoost, and RF. The R? ratings for the
entire data frame, training set, and test set offer valuable
insights into the extent to which each model can account for
the variability in solar power generation. The RF algorithm
earned the maximum R? score of 0.940 for the entire data
frame and 0.971 for the training set, suggesting a strong fit
of the model. On the test set, XGBoost exhibited superior
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generalization performance, achieving a R? score of (0.822).
This demonstrates that XGBoost achieved a favorable equi-
librium between precisely fitting the training data and making
accurate predictions on fresh, unknown data.

MLP regressor had the greatest mean value (1183.541 kW)
in terms of the test set predictions, indicating that it consis-
tently projected greater power outputs on average. Contrarily,
CatBoost had the smallest standard deviation (833.260 kW)
among the models tested, suggesting that its predictions were
more uniform and less dispersed in comparison to the other
models. The RSD, which normalizes the standard deviation
by the mean, measures the level of forecast stability in relation
to the average output. The CatBoost model had the lowest
RSD (0.736), indicating a high level of stability in its pre-
dictions compared to its mean output. On the other hand,
the SVM model had the greatest RSD (0.820), suggesting a
greater degree of unpredictability in its predictions. Collec-
tively, these measures effectively demonstrate the advantages
and disadvantages of each method for forecasting solar power
production. RF and XGBoost demonstrated robust fitting
and generalization capabilities, respectively, while CatBoost
exhibited the highest level of prediction consistency. These
insights are critical for selecting the best model for precise
and dependable solar power prediction.

V. CONCLUSION

This study assessed the efficacy of six ML algorithms, namely
CatBoost, GBM, MLP regressor, SVM, XGBoost, and RF,
in forecasting solar power generation. The dataset used for
this analysis consisted of 4213 sets. The RF method did the
best, with a R? score of 0.940 for the whole dataset, 0.971 for
the training set, and 0.818 for the test set. This showed how
accurate and useful it is in real life. Most algorithms did
great on the training set, but not so well on the test set. This
suggests that the models might change as they see more data.
Comparing XGBoost and RF to models like MLP regressor
and SVM, their better balance in performance across the
training and test sets suggests that they are less prone to
overfit. We found inconsistent test set forecasts based on the
relative and standard deviation metrics of the models’ find-
ings. CatBoost and RF exhibited greater prediction stability
compared to SVM, which displayed the highest degree of
fluctuation. The application of Lasso regression identified
the salient features. This improved the model and provided
more insight into the factors influencing solar power gen-
eration. The model’s precision is highly dependent on these
novel concepts. We highly recommend the RF and XGBoost
models for real-world solar power forecasting due to their
exceptional accuracy, resilience, and efficacy on both training
and test datasets. These findings establish a solid basis for
maximizing the incorporation of solar electricity into the
energy system. Potential future research can prioritize several
feasible routes. An important focus is the creation of hybrid
models that integrate the advantages of many methodolo-
gies, perhaps resulting in improved accuracy and resilience.
Integrating domain-specific information into ML frameworks
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has the capacity to improve the performance of the models.
Expanding the scope of datasets to include regularly updated
ones has the potential to enhance the usefulness and reliability
of models in different environmental conditions. Additional
study might investigate the influence of seasonal fluctuations
and meteorological conditions on the production of solar
energy, perhaps resulting in more precise and adaptable pre-
diction models. By focusing on these specific areas, future
studies can further enhance the field of renewable energy
forecasting, thereby promoting the development of more effi-
cient and sustainable energy systems.

VI. FUTURE WORK

To enhance the precision and effectiveness of our solar power
prediction models, it is advisable for future research to focus
on developing hybrid models that combine the benefits of
many ML methods. An effective strategy is to merge the
robustness of RF with the strong ability to generalize of
XGBoost. Using ensemble methods—that is, aggregating
forecasts from several models—is one approach to do this.
One can effectively achieve this integration using stack-
ing, mixing, and voting, among other techniques. Stacking
is an approach whereby one trains many models and then
uses another model to find the best way of aggregating
their forecasts, hence improving general accuracy. Blend-
ing, a less complex variant of stacking, uses a distinct
dataset to train the ultimate model, hence mitigating the
likelihood of overfitting. Voting methods aggregate model
predictions by either averaging them (for regression tasks)
or accepting the majority vote (for classification tasks). This
can be accomplished through hard voting, which follows a
majority rule, or soft voting, which considers weighted prob-
abilities. Moreover, using sophisticated feature engineering
approaches might enhance hybrid models even more. Lasso
Regression has already demonstrated its utility in detecting
relevant characteristics. Future studies might use methods to
improve the feature set, such Recursive Feature Elimination
(RFE) or Principal Component Analysis (PCA). Further-
more, looking at feature interactions could help produce more
all-encompassing input for the models. Time-series model-
ing techniques help to improve the accuracy of solar power
generation projections by considering the temporal elements
influencing them. Better results come from combining nor-
mal regression models with techniques designed especially
to control temporal dependencies—such as LSTM networks.
Hybrid models gain from adaptive learning, a technique
whereby a model changes constantly as fresh data becomes
accessible. Combining online learning algorithms—which
continuously learn from fresh data points—with conventional
batch learning techniques helps one create a more agile and
current model. Comprehensive evaluation systems are needed
if we are to fairly gauge the performance of these hybrid
models. By lowering overfitting and guaranteeing the gen-
eralizability of the model, cross-valuation methods include
k-fold cross-valuation help to improve the evaluation process.
Still another inspiring direction is looking at unique hybrid
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techniques. LSTMs for temporal dynamics and CNNs for
spatial data extraction could be used, respectively. More-
over, using evolutionary algorithms and other optimization
techniques helps one find the weighting of several models
and the most suitable combination. Future studies employing
these approaches can provide hybrid models that surpass
individual algorithms in terms of expected accuracy, therefore
producing more accurate and reliable solar power estimates.
Maximizing the inclusion of renewable energy sources into
power systems depends on these innovations, which also help
to increase their efficiency and sustainability.
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