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ABSTRACT Convolutional Neural Networks (CNNs) have achieved significant success in image classi-
fication and object detection. CNN models generally consist of a single-stream and process single image
data at once. In addition, multi-stream (or multi-modal) models have recently begun to be proposed that
allow the processing of more than one input at the same time. The data can be an image, video, voice,
or any other sensor data. Multi-modality may help us extract some hidden features of the same object.
Furthermore, several new studies examine sharing feature maps between different streams of the same CNN.
However, systematic studies that can adequately demonstrate the contribution of multi-modality and feature
map sharing features to performance have not yet been conducted. Processing power and lack of available
datasets are among the important factors that negatively affect progress. In this study, the contributions
of multi-modality and feature map sharing (FMS) to increase the performance in object recognition are
examined in detail. For this purpose, a new dataset and a new multi-modal multi-feature map sharing CNN
model, which we call FMSNet, are developed. The proposed model achieved a 3.06% higher accuracy rate
than its non-FMS counterpart, DenseNet-201, exceeding most of the state-of-the-art single-stream CNN
models.

INDEX TERMS Artificial intelligence, convolutional neural networks, feature map sharing, four-stream,
multi-modal, image classification.

I. INTRODUCTION
Computer vision deals with the problem of gaining meaning-
ful information out of image data. Although this seems like a
very easy problem to solve for humans, it is quite difficult for
computers since all they can see and interpret are the numbers
that represent the colors.

Image classification is considered as the main task of
computer vision. To perform this task, image data are input,
analyzed, and one of the predefined classes is decided by
a classification algorithm. Other tasks are ‘‘semantic seg-
mentation’’, ‘‘image classification and localization’’, ‘‘object
detection’’ and ‘‘instance segmentation’’. Whereas ‘‘image
classification and localization’’ deals with a single object;
‘‘object detection’’ and ‘‘image segmentation’’ tasks aim to
find multiple objects in an image data. An improvement in
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the main task, which is ‘‘image classification’’, means an
improvement in all other tasks.

Studies in the field of computer vision date back to
the 1950s, when the first Convolutional Neural Network
(CNN) algorithm was designed [1] and gained great momen-
tum in 2012 with another CNN model with success in a
well-known benchmark competition [2]. In the following
years, many other CNN algorithms were designed in a sim-
ilar fashion, trying to improve the performance in terms of
speed and accuracy. These algorithms are typically designed
by stacking convolutional layers that perform some specific
tasks.

After reaching a certain limit of accuracy, the concept of
‘‘ensemble’’ emerged to further increase performance. With
this method, different CNN algorithms are trained separately
with the same or different datasets. To obtain results or infer-
ences, the test data are input to each trained CNN separately.
The results or inferences of these CNNs are compared either
by averaging out or selecting the maximum value among all.
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This method provides approximately +2/3% accuracy and is
still widely used.

Our senses enable us to perceive the environment in which
we live. It is well known that these senses are taste, sight,
touch, smell, and hearing. We obtain information about the
environment by evaluating the data received from these
senses. All of these data influence our rational processes,
whether we get them from one or more senses.

Even the absence of data provides information. By combin-
ing the data we perceive with our different senses, we obtain
more information about the object. The approach of training
CNN algorithms on only one source of data is prevalent, but,
based on this idea, designing CNN architectures using the
concept of multi-modality emerged.

In general, modality is every means that provides informa-
tion about the environment. Therefore, a research problem or
method is characterized as multimodal when it involves more
than one such source of information or data.

As illustrated in Fig. 1, multi-modal models incorporate
more than one data source, and each source can make use
of (same or) different data types, such as text, image, voice,
or video at the same time. These data are semantically in
correlation and can provide complementary information to
each other [3]. The multi-modality enables CNN to extract
hidden features, thus improving performance dramatically.

FIGURE 1. Multi-modal architecture.

We can perceive 3D depth by our brain processing two
images received from our eyes. Each eye has a different angle
of viewpoint, which makes 3D perception possible. There
are studies focused on computing the depth information of
a scene by using images from two different viewpoints. This
is called the stereo vision problem, and can be achieved by
having two cameras located at a pre-defined distance from
each other. Disparity mapping calculations are performed,
and effective results are obtained [4]. If more than two cam-
eras can be utilized to compute depth information, then it is
called multi-view stereo. But why do we not use this relation
to separate one object from other objects?

In this context, our contributions are mainly three-fold.
• First, we created a multi-stereo dataset systematically by

using five cameras, the images of which overlap to enable the
CNN to extract hidden features. There are many multi-view

stereo datasets in the literature, but these include images
either taken randomly or not overlapping in a systematic
manner. Our dataset enables users to evaluate the contribution
of multi-modality and FMS to a CNN model.

• The second contribution is the multi-modal CNN archi-
tecture we developed, which can extract features (like depth,
edges, corners, color intensity differences, etc.) by processing
multi-stereo images and sharing the features inside the CNN
structure itself. We assume that more hidden features can be
extracted by using the correlations of all 4 images of the same
object.

• The last contribution is putting forward how the feature
map sharing itself contributes to the learning process. For
this purpose, we utilized a well-known CNN model, which
is DenseNet-201, as our backbone algorithm to develop
FMSNET. We trained the DenseNet-201 and FMSNET sep-
arately, which could then enable us to compare and present
how adding FMS feature actually affects the overall learning
process and so the accuracy.

Experimental results show the proposed CNN achieved a
3.06% higher accuracy rate than its non-FMS counterpart,
DenseNet-201, and exceeded most of the state-of-the-art
single-stream CNN models.

The rest of the paper is organized as follows. In Section II,
we review the related studies on multi-modality and multi-
modal CNN models. In Section III, we introduce the
multi-stereo dataset we created. In Section IV, the testing
environment is presented. In Section V, the proposed CNN
model is shared in detail. The performance is evaluated
and compared to state-of-the-art performance in Section VI.
Finally, conclusions and future works are summarized in
Section VII.

II. RELATED WORK
Applying multi-modality to a CNN model is not a new
concept. In [5], a two-stream CNN model is proposed that
incorporates spatial and temporal networks for action recog-
nition in video. Each stream is implemented using a CNN
architecture. They fused these two separate streams after the
last softmax layers by combining the scores using either
averaging or a linear SVM. They decompose video data into
spatial (single frame) and temporal components (multi-frame
optical flow) to input into these separate CNN streams. They
outperform all existing deep architectures at the time without
implementing FMS.

Feichtenhofer et al. [6] proposed a similar two-stream
CNNmodel for action recognition in video data. They investi-
gated how and where to fuse two different CNN streams. For
spatial fusion, sum, max, concatenation, conv, and bilinear
fusion methods are implemented and tested. These methods
can be applied at different points in the network, namely
early-fusion, late-fusion, or multiple-layer fusion. This is one
of the very early studies that discusses the FMS. Video data
is used, as in previous study, to train both CNN streams.

For automated categorization of Age-Related Macular
Degeneration (AMD), a two-stream CNN is proposed in [7].
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TABLE 1. Number of images in each class per camera.

An ophthalmologist uses color fundus photography (CFP)
and Optical Coherence Tomography (OCT) for a diagnosis.

These two types of images are input to each stream of the
proposed CNN model, which is adopting the ResNet-18 [8]
architecture (pretrained on ImageNet [9]) as its backbone.
The two streams are fused at the last fully connected layer,
making a four-class prediction (probability of the eye being
normal, dryAMD, Polypoidal Choroidal Vasculopathy (PCV)
or wetAMD). They outperform the prior AMD categorization
methods.

There is no doubt that the use of images taken in different
modes from the same viewing angle in a multi-model CNN
architecture helps to obtain better feature maps by providing
more information.

Multi-modal CNN models have made progress in many
other areas. For traffic speed prediction, Ke et al. [10]
implemented a two-stream CNN architecture where a
multi-channel speed matrix and multi-channel volume matrix
are input. The streams are flattened and concatenated into one
speed-volume vector and passed to fully connected layers.

Guo et al. [11] proposed a four-stream CNN model for
improving glioma classification accuracy by using MRI
images of four modalities. Streams are fused at the infer-
ring stage by implementing element-wise addition of tensors.
Each CNN stream is designed based on the DenseNet model
proposed in [12]. The DenseNet model connects each layer to
every other layer in a feed-forward fashion. In this model, for
each layer, the feature maps of all preceding layers are used as
inputs, and its own feature maps are input into all subsequent
layers.

Jo and Kwak [13] proposed a novel four-stream model
of Bidirectional Long Short-Term Memory (Bi-LSTM) and
CNN for the diagnosis of depression from audio and text
information. Late fusion is performed on the softmax scores
of the four CNN streams to diagnose depression.

These previous studies benefit from multi-modality, which
enables the CNN to extract more hidden features and finally
increase the classification accuracy. However, they fuse the
network at only the inferring stage, which is called late fusion,
or only at the beginning, which is called early fusion, as dis-
cussed before. There was no research to find out the effects
of multiple FMS and, therefore multiple fusions between the
streams.

The most closely related study to ours is the two-stream
CNN architecture proposed in [14], which is called

HyperDense-Net. HyperDense-Net extends the DenseNet
architecture one step forward by sharing the feature maps
multiple times, not only in the same stream but also in the
other stream. Therefore, the CNN can learn more complex
correlations or features between the modalities at all levels of
abstraction.

In terms of datasets, there are stereo datasets, which con-
tain pairs of color images captured by the dual-lens system
with two color cameras. These datasets can be used to achieve
multi-modality; however, the contribution of multi-modality
to the CNN may not be put forward since there is not any
other image of the object to train a single-stream CNNmodel
and compare [15], [16], [17], [18].

There are also multi-view datasets that contain more than
two color images of the same object, which are captured by
multiple color cameras [19], [20], [21], [22]. These datasets
cannot be used for our study because they contain images
either taken from random viewpoints or that do not have any
overlapping areas (of the object) in order to let CNN extract
hidden features by making use of the correlations.

III. DATASET
As discussed in the previous section, there is no available
dataset in the literature to utilize in our study. For this rea-
son, we created a dataset by building a rig, consisting of
five cameras (Logitech C310 HD 720p) placed in parallel
on the horizontal axis. Each camera can provide images in
19 different resolutions with two different codec options.

The cameras are labelled from one to five for ease of use.
The distances between the lenses are shared in Fig. 2, so that
the dataset can be used in different studies (e.g., disparity
mapping, depth estimation).

FIGURE 2. Rig setup consisting of five cameras.

A simple interface is designed to facilitate the process,
as shown in Fig. 3. When the ‘‘snapshot’’ button is pressed,
snapshots obtained from all five cameras are saved in five
separate folders with the same file name. The naming
convention for each snapshot is ‘‘snapshotYYYYMMD-
DHHMMSS.png’’.
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FIGURE 3. Interface.

When the ‘‘video’’ button is pressed, video data obtained
from all five cameras and audio data obtained from themicro-
phones of the cameras on the far right and left are saved as a
file in separate folders. Both video and audio are recorded for
the duration of five seconds. The naming convention for each
video data is ‘‘videoYYYYMMDDHHMMSS.avi’’ and for
each audio data, it is ‘‘audioYYYYMMDDHHMMSS.wav’’.

An important point here is to be able to capture image
and video data simultaneously. As a result of our exami-
nation, we determined that there is a maximum delay of
approximately half a second between the first and fifth
cameras.

Mobility is important to be able to obtain outdoor images
and videos. For this reason, the cameras are connected to a
laptop. The final hardware set-up is shown in Fig. 4.

FIGURE 4. Hardware set-up to create the dataset.

Cameras labelled; 1, 2, and 3 have the resolution of
800 × 600 pixels, whereas 4 and 5 have the resolution of
640×480 pixels. The reason for this difference in resolutions
is the bottleneck of the available ‘‘USB Controller Band-
width’’ provided by the hardware configuration (the laptop).
Higher resolutions and simultaneity can be achieved with
different hardware configurations. However, the horizontal
field of view of each camera, which is 600, is more important
and considered adequate for this study.

The number of classes in the dataset consisting of
‘‘Automobile’’, ‘‘Cat’’, ‘‘Dog’’, ‘‘Bus’’, ‘‘Tree’’, ‘‘Bicycle’’,
‘‘Building’’, and ‘‘Traffic Lights’’ is eight.

TABLE 2. Examples from the dataset.

Table 2 shows some examples of data from the ‘‘Traffic
Lights’’, ‘‘Cat’’, and ‘‘Bicycle’’ classes in the dataset.

The dataset is divided into three groups: ‘‘training’’, ‘‘vali-
dation’’, and ‘‘test’’. Table 1 shows the number of images per
camera in each class utilized in this study.

Images obtained from cameras 2, 3, 4, and 5 are used
for training the proposed CNN, and images obtained from
Camera-1 are used for the evaluation purposes.

IV. TESTING ENVIRONMENT
The hardware used in this study to design, train, test and
evaluate the CNNs is shown in Table 3. GPU, HDD/SSD, and
RAM are the main components that affect training time and
ability to design and train more complex CNNs.

TABLE 3. Hardware.

Various popular software such as Caffe, Keras, PyTorch,
and TensorFlow are available for building CNN architec-
tures. In this study, we used Deep Network Designer tool of
MATLAB R2023b software.

V. PROPOSED METHOD
This section provides detailed information about the proposed
model.
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FIGURE 5. FMSNet: Four-stream CNN architecture for multi-stereo image classification by feature map sharing.

A. FMSNET CONFIGURATION
The configuration of our multi-stream CNN is presented
graphically in Fig. 5. Each of the four streams is essentially
an untrained DenseNet-201 architecture. We applied;

• ‘‘Feature Map Sharing’’ after Dense Blocks - 1, 2, and 3.
The sharing of the features is depicted by arrows with differ-
ent colors.

There are a number of methods to fuse layers between dif-
ferent networks/streams like sum, max, concatenation, conv
and bilinear fusions [6].
A fusion function f : xat , x

b
t , x

c
t → yt fuses three

feature maps xat ∈ RH×W×D, xbt ∈ RH ′
×W ′

×D′

and

xct ∈ RH
′′
×W

′′
×D

′′

, to produce an output feature map yt ∈

RH
′′′

×W
′′′

×D
′′′

, at time t , where H is height, W is width, D
is number of channels, and superscript a, b, c and d are
networks/streams to be fused as depicted in Fig. 5.
For the purpose of ‘‘Feature Map Sharing’’, we applied

depth concatenation by taking the outputs from own and the
neighboring two pooling layers and stacking them along the
channel dimension. Fusion function:

ycat = f cat
(
xa, xb, xc

)
(1)

concatenates the three feature maps at the same spatial loca-
tions i, j across the future channels d, where y ∈ RH×W×3D:

ycati,j,2d = xai,j,d ycati,j,2d−1 = xbi,j,d (2)

So, for stream-1; a is 1 (own stream), b is 2 (neighboring
stream) and c is 3 (other neighboring stream). ‘‘Future Map
Sharing’’ is employed in the same manner to the other layers
and streams.

• Addition layer, which performs element-wise addition to
fuse the four streams.

ysum = f sum
(
x1, x2, x3, x4

)
(3)

computes the sum of the four-feature maps at the same spatial
locations i, j and dimension d :

ysumi,j,d = xai,j,d + xbi,j,d + xci,j,d + xdi,j,d (4)

where 1 ≤ i ≤ H, 1 ≤ j ≤ W , 1 ≤ d ≤ D and xa, xb, xc, xd ,
y ∈ RH×W×D.

Image input size is set to 227,227,3 and classification layer
output is set to eight. All other layers are used as they are in
the DenseNet-201 architecture.

B. TRAINING
The hyper-parameters play an important role in the success
of CNN training. Appropriate hyper-parameter selection may
vary depending on the architecture of the CNN being trained
and the type of data to be trained. The hyper-parameter values
used in our study are presented below.

1) LEARNING RATE
Whereas a constant learning rate can be used throughout the
entire training, a learning rate that is high at the beginning
of the training and decreases steadily or exponentially as
the training progresses (decaying learning rate) can also be
preferred. The value of 0.001 is used as the learning rate in
our CNN and kept constant throughout the training.

2) OPTIMIZATION ALGORITHM
Stochastic Gradient Descent (SGD) algorithm is used for
optimization purposes.
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3) MOMENT VALUE
For our CNN not to be negatively affected by local minima
during backpropagation, the moment value is set to 0.9.

The dataset is resized to 227,227,3 and normalized before
training. Images obtained from the four adjoining cameras
are inputted into the four separate streams all at once for
each of the forward passes. At each iteration, a mini batch
of 16 images is used. Training is performed from scratch for
the duration of five epochs.

VI. EXPERIMENTAL RESULTS, EVALUATION AND
DISCUSSIONS
There is unfortunately no benchmark competition or similar
study in literature to compare and evaluate the results of
the proposed CNN. To validate the effectiveness of the pro-
posed model, we compare it with four state-of-the-art CNNs
that have proven themselves in various benchmark compe-
titions by providing high accuracy rates. These CNNs are
DenseNet-201, GoogLeNet [23], InceptionResNet(v2) [24],
and Inception(v3) [25]. For training, the images obtained only
from Camera-1 are used, which are resized according to the
requirements of the related CNN and normalized before the
training.

After the pre-processing of the dataset, these CNNs are
trained from scratch by using the same hyper-parameters,
training images and training options (learning rate, optimiza-
tion algorithm, minibatch size, epoch, and moment values) as
in our proposed CNN. After training, CNNs are tested with
the test data of Camera-1. Experimental results are presented
in Table 4, where we reported the number of parameters,
training time, query response time and accuracy rate of each
CNN.

TABLE 4. Experimental results of the CNN models.

Our proposed CNN outperformed all other CNN models
owing to utilizing feature map sharing; however, the number
of parameters, training, and query response time are increased
significantly.

Although FMSNet is utilizing DenseNet-201 as a back-
bone model, it achieved 11.3% higher accuracy rate. The
closest result to FMSNet is InceptionResNet(v2) with the
accuracy rate of 82.49%, which still means 3.95% lower
accuracy rate than FMSNet.

One may think that FMSNet is trained on images obtained
from Cam2, Cam3, Cam4, and Cam5, whereas other CNNs
are trained on images obtained only from Cam1. This means
a considerable number of less training data and so inequality.
In order to resolve this mismatch, we trained all CNNs from
scratch with images obtained from Cam2, Cam3, Cam4, and
Cam5 by using the same hyperparameters mentioned in pre-
vious section. The results are presented in Table 5.

TABLE 5. Experimental results of the CNN models (Trained with equal
amount of training data).

The CNN model to achieve the highest accuracy rate is
InceptionResNet(v2) with only 0.52% difference. FMSNet
achieved once more a 3.06% higher accuracy rate than its
non-FMS counterpart, DenseNet-201, in second in place.
This clearly shows the contribution of the FMS to the learning
process. Training times are increased due to the increased
training data, whereas the query response times stay the same.

VII. CONCLUSION AND FUTURE STUDIES
In this study, we propose a novel multi-modal multi-feature
map sharing CNN model (FMSNet) and a new dataset con-
sisting of multi-stereo images that are overlapping in a
systematic manner. The proposed model achieved a 3.06%
higher accuracy rate than its non-FMS backbone CNNmodel,
which is a single-stream DenseNet-201. Our model also
gained better results than most of the state-of-the-art single-
stream CNN models.

It is of no question that our brain receives multi-modal
data, and processes these with neurons that have intricate
connections. We assess that studies in the area will shift
towards researching how feature map sharing (FMS), which
brings about intricate connections between different CNN
streams, should be configured.

FMS brings about a high number of parameters. This
feature is highly dependent on computer resources like pro-
cessing power (CPU, GPU/parallel programming) and RAM.
Progress in hardware will enable further studies.

The lack of dataset is another challenge that hinders further
studies. Existing multi-stereo datasets contain images that
are randomly captured or do not systematically overlap. The
dataset created in this study will be improved by adding voice
and video data. In further studies, these data can be input in a
CNN as another stream, which can significantly improve the
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feature extraction process. This dataset can also be used for
depth estimation studies.

In this study, one of our main objectives is to put forward
how the feature map sharing itself contribute to the learning
process. In this context, utilizing thewell-knownCNNmodel,
which is DenseNet-201, as a backbone helped to make com-
parison with FMSNET.

More parameters mean long query response times. This
will hamper the utilization of our proposed CNN especially
in online platforms which requires instant query responses.
Having known the importance and positive contribution of
utilizing the FMS feature, other single-stream CNN models
can be re-modelled or new CNN models can be created in
future studies to increase accuracy and reduce the number of
parameters, training, and query response time.
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