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ABSTRACT Identifying crucial proteins in protein-protein interaction (PPI) networks is essential for under-
standing biological systems. However, the ambiguity of interaction strength hinders accurate identification
of key proteins. To address this issue, this study proposes a new framework that introduces Bio-Link
Strength, a fuzzy membership function that utilizes fuzzy set theory to quantifies interaction strength with
continuous values between 0 and 1. Framework extends four commonly used traditional measures (degree,
closeness, betweenness, and eigenvector) to fuzzymeasures (fuzzy connectivity, fuzzy approachability, fuzzy
bridge, and fuzzy influence centrality), enabling effective identification of crucial proteins. The efficacy of
the proposed framework has been assessed on different commonly used real-world PPI network datasets
(Saccharomyces cerevisiae, Escherichia coli, and Drosophila melanogaster), to prove the framework’s
scalability. Results show that proposedmembership function effectively assesses protein interaction strength,
with a strong positive Spearman’s correlation between fuzzy and traditional measures. Furthermore, Gene
Ontology analysis confirms the importance of top proteins identified by our fuzzy measures. Notably, our
fuzzy connectivity and influence centrality measures outperform their traditional counterparts and other
proposed fuzzy measures in identifying crucial proteins.

INDEX TERMS Crucial proteins, protein-protein interaction networks, edge strength, fuzzy membership
function, fuzzy centrality measures, fuzzy biological networks.

I. INTRODUCTION
Proteins are the fundamental building blocks of living
organisms, constituting biological cells and tissues, and
maintaining life activities. As indispensable components of
physiological functions, proteins are closely tied to the phys-
iological states within living organisms [1]. The study of
proteins is crucial, as predicting their functions, discovering
their structures, and exploring protein-protein interactions are
essential for understanding the intricacies of cellular pro-
cesses [2]. Furthermore, protein interaction networks provide
a comprehensive framework that integrates diverse informa-
tion, including topological network properties, correlations
between proteins, and functional relationships, offering a
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powerful tool for elucidating the complex interactions that
underlie life processes [3].

In present time many studies and researches showed
that there has been a marked surge in the inference of
biological graph networks, particularly the investigation
of protein- protein interaction networks (PPI) [4], [5], [6].
The considered networks are analyzed through depiction
as graphs like PPI = (NP,E I), where nodes or vertices
(NP) depicts proteins, and edges (E I) indicate their associa-
tions or communications. Within graph theory, a significant
area of research focuses on pinpointing crucial proteins.
Proteins typically exhibit extensive interconnections with
other components within the considered complex graphs,
underscoring their significance for the network system proper
operations [7]. The deletion of any of these crucial pro-
teins is more prone to result in lethality as contrast to the
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removal of non-crucial proteins, emphasizing their indis-
pensable role in sustaining the protein graph integrity and
functionality [8], [9].

A. NETWORK ANALYSIS TECHNIQUES
The concept of centrality in complex biological graph net-
work analysis stands as a basic and widely employed
concept as proved in proved by many researchers in lit-
erature in different domains. Diverse collections of cen-
trality metrics been conceived and applied to pick the
most vital proteins within the considered biological network
graph datasets. The inference of these measures serves as
invaluable tools for discerning the significance and influ-
ence of proteins to learn complex processes of biological
graph interactions [10]. These methods mainly include
Degree centrality (DC) [11], Closeness centrality (CC) [12],
Betweenness centrality (BC) [13], Eigenvector centrality
(EC) [14], Subgraph centrality (SC) [15], and Information
centrality (IC) [16].

Popular and commonly used centralitymethods in complex
network analysis typically operate under the shared assump-
tion that proteins exhibiting the highest centrality within the
network are more arrowed to be indispensable compared to
those with lower centrality values [17]. Researchers findings
in Previous studies clearly indicate that methods grounded in
network graph topology are proficient in the identification
of vital nodes or proteins [18], [19], [20]. High-throughput
techniques are employed to generate Protein-Protein Interac-
tion (PPI) graph networks, leading to a substantial number
of false-positive interactions (FPI). For catering this issue,
many researches in the literature have suggested prepro-
cessing phenomena that leverage topological properties to
assess and eliminate these false positives nodes. As an
example, Asur et al. [21] introduced an ensemble clustering
framework that incorporates two topology-based similar-
ity metrics. This approach aims to mitigate noise within
Protein-Protein Interaction (PPI) graph networks and deduce
biologically meaningful functional modules. Chen et al. [22]
devised an iterative approach employing alternative paths
and interaction generalities to enhance interactomes through
refinement based on network graph topology. Additionally,
these networks (PPI) do not consider the strength of protein
interactions [23], which lowers their accuracy in predicting
true crucial proteins. Some protein interactions are more
crucial than others. However, the existing networks share the
common attribute that the interaction strength is consistently
crisp, with a value of either 0 or 1, shown in Fig. 1. However,
this is not feasible with real-world data.

To overcome this problem, new measures have been pro-
posed. For instance, Li et al. [24] proposed a method for
assigning confidence scores to each interaction based on
experimental and functional evidence, showing that using
weighted centrality measures can improve the identification
of crucial proteins in yeast. In their study Peng et al. [25]

FIGURE 1. A simple protein-protein interaction network. Nodes δ, ζ, θ, ϕ,
and ψ represent proteins, and edges εδζ , εδθ , εζϕ, εθϕ , and εϕ9 signify
interactions with their corresponding crisp weights representing
interaction strengths.

introduced a new method, which integrates orthology and
PPI networks to identify crucial proteins. Meng et al. [26]
developed a method for crucial protein prediction based on
a novel weighted protein domain interaction network that
integrates gene expression data, protein domain associa-
tions, and topological features that minimize the noise and
improve the precision of PPI networks. Huang et al. [27] have
developed a series of methods for predicting protein-protein
interactions using protein sequence data. They introduced a
novel protein sequence representation, and used a weighted
sparse representation-based classifier to achieve high predic-
tion accuracies. Chen et al. [28] proposed a new predictive
model that leverages GO terms and KEGG pathways to
identify essential and non-essential genes. Li et al. [29] pro-
pose a new centrality measure by integrating protein-protein
interaction and gene expression data. Unlike other centrality
measures, it determines a protein’s cruciality based on its
connectivity and whether it is highly likely to be clustered
and coexpressed with its neighbors. Berahmand et al. [30]
proposed a new semilocal centrality measure that leverages
the natural characteristics of complex networks to identify
influential spreaders. Zhong et al. [31] proposed a new JDC
metric based on PPI network and gene expression data. The
proposed approach binarizes gene expression data using a
dynamic threshold method and then combines the degree
centrality and Jaccard similarity index to generate the JDC
score for proteins in the PPI network. The JDC score shows
the similarity of active and inactive gene expression states in a
network cluster, effectively reducing the effects of false posi-
tives and negatives in PPI network. Similarly, [32] introduced
a newGOSmethod that combines expression data, orthology,
and sub-cellular localization information to identify crucial
proteins. Moreover, new clustering methods [7], [33] have
been proposed for detecting clusters in complex networks.
Furthermore, Researchers [34] proposed a new method to
purify protein interaction networks via gene expression and
subcellular location information. Although these methods
have improved prediction and reduced the effect of false inter-
actions, they are often more complex and computationally
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expensive to run. Additionally, their effectiveness depends on
the availability and quality of the biological data.

This paper proposes a new framework that calculates the
membership degree of interacting protein strengths, con-
verts the network into a fuzzy network, and identifies crucial
proteins. This is the core objective of our paper, which utilizes
fuzzy set theory as a basis for constructing a fuzzy biological
network model. Since each edge is linked to a membership
degree, suitable definitions are proposed to measure central-
ity in fuzzy biological network graphs.

Four commonly used traditional centrality measures,
degree [11], eigenvector [14], betweenness [13], and close-
ness centrality [12], are extended to determine the cen-
trality of nodes. The extension considers that interaction
strength is not a crisp value but a fuzzy one, where
different values are associated with different membership
degrees.

The efficacy of the proposed framework has been assessed
on various real-world PPI networks, as different PPI networks
can exhibit diverse topological features. The results show
that the proposed measures perform well on all networks
and demonstrate greater accuracy than traditional methods.
The paper’s key contribution is an approach that enables
researchers to incorporate fuzzy properties (membership
degree) into centrality calculations. The paper’s specific con-
tributions are summarized as follows:

• Development of membership function for calculating
the interaction strength of each edge.

• Development of the extension of traditional centrality
measures as fuzzy centrality measures.

The remaining sections are organized as follows: Section II
describes the background knowledge, including the funda-
mental concepts of fuzzy logic and set theory. Section III
introduces the proposed framework and algorithms used to
calculate the strength of interacting edges and fuzzy centrali-
ties. The experimental datasets and findings are presented in
Sections IV and V, respectively. Section VI discusses the lim-
itations and deficiencies of the framework, while Section VII
concludes the paper.

II. PRELIMINARIES
A. GRAPH AND ADJACENCY MATRIX
The mathematical notation for a graph is (N,E ), where N is
a set of nodes { 1, 2, 3, . . . , n} and E is a subset of N×N
that denotes the edges of the graph. The presence of an edge
εij ∈ E denotes a connection between the nodes i and j,
commonly referred to as neighboring nodes. Fig. 1 depicts an
example of a simple crisp graph . The given graph comprises
a vertex setN containing the elements {δ, ζ, θ, ϕ, andψ}, and
an edge set E consisting of the edges

{
εδζ , εδθ , εζϕ, εθϕ , and

εϕψ
}
.

The adjacency matrix, Ad is a widely used graphical rep-
resentation. It is a square matrix of size N × N, where N is
the number of nodes in the network. The (i, j) entry of the
matrix Ad is 1 if there is an edge from node i to node j, and

0 otherwise. The term ‘‘adjacency matrix’’ is derived from
the fact that it is constructed based on the adjacencies present
in a graph [35]. The adjacency matrix of the graph present in
Fig. 1 is:

Ad =

δ

ζ

θ

ϕ

ϕ


0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

 (1)

B. CENTRALITY MEASURES
Centrality measures utilize a graph’s topological properties
to ascertain each node’s significance [36]. Several metrics,
including degree centrality [11], closeness centrality [12],
eigenvector centrality [14], and betweenness centrality [13],
are utilized to assess the vitality of nodes. Below are descrip-
tions of these traditional and commonly employed centrality
measures. Subsequently, in the manuscript, these metrics are
expanded to assess the significance of nodes in a fuzzy bio-
logical network.
Definition 1: Degree centrality (DC)
The DC [11] quantifies the number of edges emanating

from a network node. The formula for DC for node i is:

DC(i) =

∑n

j=1
a(i, j) (2)

where, a(i, j) is the Ad element, representing the edge
between node i and j.
Definition 2: Betweenness centrality (BC)
The BC [13] is a metric that quantifies the frequency with

which a node serves as a bridge through the shortest path
connecting two other nodes within a network. The formula
for BC for node i is:

BC(i) =

∑
m̸=n̸=i

σmn(i)
σmn

(3)

where, σmn represents the total count of shortest paths con-
necting nodesm and n, σmn(i) denotes the quantity of shortest
paths originating from node m and terminating at n while
traveling via node i.
Definition 3: Closeness centrality (CC)
The CC [12] is a metric that quantifies the efficiency with

which a node can establish connections with every other
node within a network, taking into account the shortest path
distances. The formula for CC for node i is:

CC(i) =
1∑n

j=1 l(i, j)
(4)

where, l(j, i) represents the length of the shortest distance
from the beginning of node i to node j, and the sum is
computed over every node j in the network.
Definition 4: Eigenvector centrality (EC)
EC [14] is a metric that determines a node’s importance

in a network based on the importance of its neighbours. The
power iteration method is employed for its computation. The
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formula for calculating eigenvector centrality is:

EC =
Ad ∗ vk

∥Ad ∗ vk∥
(5)

where, Ad is the network’s adjacency matrix, vk is the iter-
ation vector. The algorithm begins with an initial vector v0,
then iteratively multiplies the vector by the adjacency matrix
and normalizes it. This process continues until the normalized
values converge and become the same.

C. FUNDAMENTALS OF FUZZY SET THEORY
Zadeh [37], [38] initially introduced the concept of fuzzy
set theory as a means of addressing the challenges posed
by vagueness and ambiguity in decision-making processes,
from a mathematical perspective. Unlike crisp sets, fuzzy
sets include partial membership qualities and respond bet-
ter to realistic membership expressions used in real-world
problems, such as modeling and analyzing human trafficking
chains [39], computing protein similarities [40], and many
others. The representation of a fuzzy set is denoted by the
set Z̃ , which is defined as Z̃ =

{(
x, µZ̃ (x)

)
| x ∈ X

}
. Here,

X represents a set of elements, and µZ̃ (x) is a membership
function that assigns a membership degree, µZ̃ (x) ∈ [0, 1] to
each element x in the set. TheµZ̃ (x) can be used to determine
the degree of inclusion of an element x in a set. Specifically,
when µZ̃ (x) = 0, x is not a member of the set. In contrast,
when µZ̃ (x) = 1, x is entirely included in the set. For values
of 0 < µZ̃ (x) < 1, x is partially included in the set. For
any given fuzzy set Z̃ , the cut Z̃ the cut Z is defined as the
subset of elements whose degree of membership is equal to or
greater than a particular threshold value α. The determination
of the cut of Z̃ , which is as follows:

Z̃(α)(x) =
{
x ∈ X | µZ̃(x) ≥ α

}
(6)

The intersection of two distinct fuzzy sets, P and Q, on a
given set X is denoted by the symbol P ∩ Q. The degree of
membership for each element x in the intersection of sets P
and Q is provided by the following expression:

µP∩Q(x) = µP(x) ∧ µQ(x)

= min
{
µP(x), µQ(x)

}
(7)

Moreover, the union of sets P and Q is denoted as P ∪ Q.
The degree of membership for each element x in the union of
sets P and Q is provided by the following expression:

µP∪Q(x) = µP(x) ∨ µQ(x)

= max
{
µP(x), µQ(x)

}
(8)

D. MEMBERSHIP FUNCTION DEFINITIONS
There are various types of membership functions (MF); how-
ever, the most commonly used ones are triangular (TriMF),
trapezoidal (TraMF), Gaussian (GauMF) functions [41].

A Triangular Membership Function (TriMF) is a function
characterized via three parameters, namely {x1, x2, x3}.

triangle (x; x1, x2, x3) =



0, x ≤ x1
x− x1
x2 − x1

, x1 ≤ x ≤ x2
x3 − x
x3 − x2

, x2 ≤ x ≤ x3

0, x3 ≤ x

(9)

where, x1 < x2 < x3. Fig. 2 (a) displays an example of a
triangular-shaped MF defined by the triangle (x; 2, 5, 8).

A trapezoidal membership function (TraMF) is character-
ized by the following four variables, namely {x1, x2, x3, x4}.

trapezoidal (x; x1, x2, x3) =



0, x ≤ x1
x− x1
x2 − x1

, x1 ≤ x ≤ x2

1, x1 ≤ x ≤ x3
x4 − x
x3 − x2

, x4 ≤ x ≤ x3

0, x4 ≤ x

(10)

The values of x1, x2, x3, and x4 must follow the rule that
x1 is less than x2 and x3 is less than x4. Fig. 2 (b) displays
an example of a trapezoidal-shaped MF characterized by the
trapezoid (x; 2, 4, 6, 8)

On the other hand, a Gaussian membership function
(GauMF) is characterized by the variables: c and σ . c rep-
resents the mean, while σ represents the standard deviation.
Fig. 2 (c) shows an illustration of a Gaussian-shaped MF
defined by Gaussian (x; 2, 5).

gaussian(x; c, σ ) = e−
1
2 (

x−c
σ )

2
(11)

E. FUZZY GRAPH
In a fuzzy graph represented as ′

f
(
N′,E ′

)
, the set of

vertices is denoted as N′
= { 1, 2, 3, . . . , n}. The

edges and their degree of membership to the set E ′ are
denoted by E ′

=
{(
εij, µE

(
εij

))
| i ∈ N′, j ∈ N′

}
as a

fuzzy set [27]. The degree of membership of an edge
reflects the level of interaction or relationship between
two vertices. Fig. 3 depicts a fuzzy graph that serves
as a model for a biological network with five proteins,
namely ∂, ℓ, , ρ, and ω. The edge set E comprising of
(ε∂ℓ, 0.3) , (ε∂ , 0.4) , (εℓ , 0.5) ,

(
εℓρ, 0.7

)
,
(
ε ρ, 0.7

)
, and(

ερω, 0.1
)
, is utilized to model the interactions or relation-

ships between the proteins. The membership degree of εij,
denoted as µδ

(
εij

)
, represents the degree of interaction. The

biological network graph presented in Fig. 3 illustrates that
the interaction strength of all the edges in the network are
not the same; some edges are more strongly connected than
others. The membership degree of ερω is 0.1, indicating that
the interacting strength between proteins ρ and ω is 0.1,
whereas the membership degree of the interaction between
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FIGURE 2. An example of membership functions (a) triangularshaped MF
(b) trapezoidal-shaped MF (c) Gaussian-shaped MF.

proteins ℓ and is 0.5. Unlike traditional graphs, where all
edges have the same interaction strength.
Theorem: The sum of the degrees of each vertex in a fuzzy

graph equals two times the sum of the membership degree of
all edges [42].

FIGURE 3. An illustration depicting example biological network graph
with fuzzy connections.

Proof: Let ′
f =

(
N′,E ′

)
be a fuzzy graph, where

N′
= { 1, 2, 3, . . . , n} represents the set of vertices and

E ′
=

{(
εij , µE

(
εij

))
| i ∈ N′, j ∈ N′

}
signifies the edges

and their membership degree.
we know that;

∑
I∈N

d( ) =

n∑
k=1

d ( K)

= d ( 1)+ d ( 2)+ d ( 3)+ . . .+ d ( N)

where, d(n) = vertex’s degree.
As per the definition of degree of a vertex,

d( ) =

∑
i̸=j

(
εij, µε

(
εij

))
d ( 1) = (ε12, µε (ε12))+ (ε13, µε (ε13))

+ (ε14, µε (ε14))+ . . .+ (ε1n, µε (ε1n))

d ( 2) = (ε21, µε (ε21))+ (ε23, µε (ε23))

+ (ε24, µε (ε24))+ . . .+ (ε2n, µε (ε2n))

d ( 3) = (ε31, µε (ε31))+ (ε33, µε (ε32))

+ (ε34, µε (ε34))+ . . .+ (ε3n, µε (ε3n))

...
...

...

d ( n) = (εn1, µε (εn1))+ (εn2, µε (εn2))

+ (εn3))+ . . .+ (εnn−1, µε (εnn−1))

Since each edge is connected to exactly two vertices, each
edge gets counted twice, once at each end. Therefore,

d ( 1)+ d ( 2)+ . . .+ d ( n) = 2 [(ε12, µε (ε12))

+ (ε13, µε (ε13))+ . . .+ (εn−1n, µε (εn−1n))]∑
d( ) =

∑
i̸=j

2
(
εij, µε

(
εij

))
.

Example:Consider a fuzzy graph, ′
f =

(
N′,E ′)with a set

of vertices, N′
= { 1, 2, 3}. The degree of each vertex is as

follows: d ( 1) = 0.7, d ( 2) = 0.8 and d ( 3) = 0.9. The
membership values of the edges are (ε12, 0.3) , (ε23, 0.4), and
(ε13, 0.5). Here

∑
d( ) = 2.4 and

∑ (
ε1j, µε

(
ε1j

))
= 1.2.

Therefore,
∑
d( ) =

∑
i̸=j 2

(
εij, µε

(
εij

))
.
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F. FUZZY ADJACENCY MATRIX
If ′

f
(
N′,E ′

)
is a fuzzy graph, with set of vertices N′

= { 1,

2, 3, . . . , n} and E ′
=

{(
εij, µε

(
εij

))
| i ∈ N′, j ∈ N′

}
represents the edges and their membership degree. The fuzzy
adjacency matrix (FAd ) of ′

f
(
N′,E ′

)
is an N′

× N′ matrix
defined as:

FAd =

{
µε

(
εij

)
, if there is an edge between i and j

0, otherwise

(12)

When all the nonzero membership values, µε
(
εij

)
in a fuzzy

graph are equal to 1, the matrix of the fuzzy graph becomes
the traditional adjacency matrix [43].

III. PROPOSED METHODOLOGY
In this section, to address the issues and limitations dis-
cussed in Section I, the new framework for crucial proteins
identification is introduced and discussed in detail in A and
demonstrated using a dummy researcher network in B.

A. FRAMEWORK FOR IDENTIFYING CRUCIAL PROTEINS
One of the challenges in studying biological (PPI) networks
is quantifying the strength of the interactions between the
proteins. This is important because the strength of the inter-
actions can affect the behavior of the network as a whole and
make it hard to identify and comprehend a network’s true
crucial proteins. Traditionally, the strength of the interactions
in biological networks are quantified using binary values,
Fig. 4 (a). However, this approach is not always accurate,
as the interactions in biological networks are often not binary.
To address this issue, we propose a new framework, Fig. 4 (b),
for identifying crucial proteins in PPI networks that takes into
account the strength of protein interactions. The framework
consists of three major steps:
Step 1: Assessing the strength of interactions between

proteins using a proposed membership function, Bio Link
Strength. This function assigns a degree of membership to the
strength of edges in a network. Unlike existing membership
functions such as triangular, trapezoidal, andGaussian, which
are not suitable for determining edge strength in PPI networks
due to their inflexibility, Bio Link Strength considers the
intricate dynamics of the network.
Step 2: Using the membership degrees obtained in Step 1,

convert the crisp PPI network to a fuzzy PPI network. This
means that each network edge now has a membership degree,
which represents the intensity of the relationship. Algorithm 1
outlines the pseudocode for constructing a fuzzy biological
(PPI) network.

Step 3: Identifying crucial proteins in the fuzzy PPI net-
work using fuzzy centrality measures. These measures are
extensions of traditional centrality measures and take into
account the strength of protein interactions. The details are
as follows.

1) BIO-LINK STRENGTH (µBLS )
In this study, the proposed membership function is utilized,
a method, to assess the membership degree of the strength
of the edge between two interacting proteins. This method
relies on the concept of shared neighbors [44], where a higher
number of shared neighbors indicates a stronger interaction
between two proteins. The computation of (µBLS) is deter-
mined using Eq. (13)

µBLS(i, j)

=


|P(i) ∩ P(j)|
|P(i) ∪ P(j)|

, if there is an edge between i and j

0, otherwise
(13)

where |P(i)∩ P(j)| represents the common proteins that i and
j share. On the other hand, |P(i)∪ P(j)| refers to the entire set
of distinct neighboring proteins connected to either protein i
or j, or both. A higher membership degree score signifies a
stronger interaction between two proteins, indicating a closer
relationship and potential functional interdependence within
the network.

Algorithm 1 Construction of a Fuzzy Biological (PPI) Net-
work
Input: The crisp PPI network, = (N,E )
Output: The fuzzy PPI network, f ′

(
N′,E ′

)
where, E ′

=
{(
εij, µE

(
εij

))
1: for each edge (i, j) in E do
2: calculate the (µBLS ) of each edge according to

Eq. (13);
3: if there is an edge between i and j
4: else 0
5: return the fuzzy PPI network, ′

f
(
N′,E ′

)

2) FUZZY CENTRALITY MEASURES
As per the proposed framework, there is a need to develop
some metrics for identifying crucial proteins in fuzzy PPI
networks; Fuzzymeasures are proposed that includemember-
ship degree values for edge interaction strength by extending
commonly used traditional centrality measures. The detail of
each proposed centrality measure is defined as follows:
Definition 4: Fuzzy connectivity centrality (FCC)
It is a measure of the extent to which a node is connected

to other nodes in the network, considering the strength of
connections. It is a fuzzy version of degree centrality. The
formula for FCC for node i is:

FCC(i) =

∑n

j=1
µ(i, j) (14)

where, µ(i, j) is the element in the fuzzy adjacency matrix
FAd , represents edge strength between node i and j.
Definition 5: Fuzzy bridge centrality (FBC)
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FIGURE 4. Illustration of the (a) traditional and (b) proposed framework.

FBC is a metric that measures how often a network node
serves as a bridge across the shortest connection by consider-
ing the connecting strength between two other network nodes.
It is a fuzzy version of betweenness centrality. The formula
for calculating FBC for node i is:

FBC(i) =

∑
m̸=n̸=i

δmn(i)
δmn

(15)

where δmn represents the total count of shortest paths accord-
ing to their interacting strength connecting nodes m and
n, δmn(i) denotes the quantity of shortest paths with their

strengths originating from node m and terminating at n while
traveling via node i.
Definition 6: Fuzzy approachability centrality (FAC)
The FAC is a metric that measures how fast a node can

connect with all other nodes in a network, taking into account
the shortest paths and their strength. It is a fuzzy version of
closeness centrality. The formula for FAC for node i is:

FAC(i) =
1∑n

j=1 sl (i, j)
(16)

VOLUME 12, 2024 108431



A. Moiz et al.: New Framework for Pinpointing Crucial Proteins in Protein-Protein Interaction Networks

where, sl represents the strength of length of the shortest
distance from the beginning of node i to node j.
Definition 7: Fuzzy influence centrality (FIC)
FIC is a metric that measures a node’s impact on the

network. based on the importance of its interacting nodes
(neighbours). It is a fuzzy version of eigenvector centrality.
The formula for calculating fuzzy influence centrality is:

FIC =
FAd ∗

′
v k∥∥∥FAd ∗
′
v k

∥∥∥ (17)

where FAd is the network’s fuzzy adjacency matrix, vk is the
iteration vector. The algorithm starts with an initial vector v̇0,
then iteratively multiplies the vector by the fuzzy adjacency
matrix and normalizes it. This continues until the normalized
values converge.

B. EXAMPLE EXPLANATION
To illustrate the proposed framework, consider a small
dummy network of 8 researchers shown in Fig. 5 as an
example.
Step 1 (CalculateMembership Degree for Edge Interaction

Strength)According to Eq. (13) themembership degree of the
strength of each edge is calculated:

ε12 = edge between 1 and 2.

=
{| 3|}

{| 1, 2, 3, 4, 8|}
=

1
5

= 0.2

ε13 = edge between 1 and 3.

=
{| 2|}

{| 1, 2, 3, 4|}
=

1
4

= 0.25

Similarly, the strength of remaining edges is calculated. The
outcomes are shown in Table 1.
Step 2 (Construct Fuzzy Adjacency Matrix (FAd )): Now

construct a fuzzy adjacency matrix by using Eq. (12)

FAd =



0 0.2 0.25 0 0 0 0 0
0.2 0 0.4 0.143 0 0 0 0
0.25 0.4 0 0.167 0 0 0 0
0 0.143 0.167 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Step 3 (Computed Proposed Fuzzy Centrality Metrics):

Finally, values of each proposed fuzzy centralitymeasures are
calculated by Eqs. (14) to (17), respectively. Values of each
measure are shown in Table 2. For avoiding the calculation
complexity in Fuzzy Bridge (FBC) and Accessibility (FAC)
centrality we take edges of 0 strength as approximately 0.

Protein interaction networks are usually depicted as undi-
rected graphs [19], where connections between proteins don’t
have a specific direction. Proposed framework is applicable to
both undirected and directed networks, in the case of directed
networks, the same steps can be followed.

FIGURE 5. A small-scale network of 8 researchers (or 8 nodes).

TABLE 1. Membership degree of edges strength.

IV. EXPERIMENTAL ASSESMENT
A. TEST DATASETS
To evaluate the efficacy of the proposed framework,
we applied it to Saccharomyces cerevisiae (Baker’s yeast)
and Escherichia coli (E. coli) to identify crucial proteins.
These particular organisms were chosen as they have been
extensively studied through experimental techniques and are
commonly used as a benchmark in crucial protein evalu-
ations. The protein-protein interaction data for this study
was sourced from the Database of Interacting Proteins (DIP)
[45]. The analyzed organisms, Saccharomyces cerevisiae,
and Escherichia coli, initially contained 5,221 proteins and
24,918 interactions, and 2,994 proteins and 13,379 interac-
tions, respectively, at the time of download (version 10.1.7.3).
After filtering unnecessary (self and duplicate) interactions,
a total of 24,743 interactions among 5,093 proteins in the
Saccharomyces cerevisiae network and 11,803 interactions
among 2,727 proteins in the E. coli network were included in
our analysis. Some of the key traits of the organisms discussed
in this study and the networks’ protein-protein interaction
(PPI) are shown in Fig. 6 (a and b).

B. BENCHMARK CRUCIAL PROTEIN LIST
A comprehensive list of crucial proteins in Saccharomyces
cerevisiae and Escherichia coli was extracted from [31].
Based on the information obtained from the dataset, a total of
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TABLE 2. Computed values of each fuzzy centrality metrics of researcher
network.

1,167 proteins out of the 5,093 proteins and 254 out of 2,727
proteins in the studied organisms were identified as crucial.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. VALIDATION OF PROPOSED MEMBERSHIP FUNCTION
In order to validate the effectiveness of the proposedmember-
ship function for evaluating edge strength in the PPI network,
we utilized theorem, discussed in section II. The results pre-
sented in Table 3 demonstrated that the sum of the fuzzy
connectivity (degree) of each protein in the saccharomyces
cerevisiae and Escherichia coli network is twice the sum
of the membership value of all edges. This suggests that
the proposed function correctly evaluates the edge strength’s
membership degree.

B. COMPARING THE EFFECTIVENESS OF PROPOSED
FUZZY TO TRADITIONAL CENTRALITIES
To evaluate the effectiveness of the proposed fuzzy central-
ities, namely Fuzzy Connectivity Centrality (FCC), Fuzzy
Bridge Centrality (FBC), Fuzzy Approachability Centrality
(FAC), and Fuzzy Influence Centrality (FIC), we compared
their performance with that of traditional centrality measures:
Degree (DC) [11], Betweenness (BC) [13], Closeness (CC)
[12], and Eigenvector (EC).We ranked proteins based on their
centrality values obtained from each measure and selected
a particular number, K̇ , of top-ranking proteins as candi-
dates for crucial proteins. The identified candidate proteins
were then compared to benchmark proteins to determine the
proportion of them were actually crucial proteins. Table 4
displays the comparison results obtained from the Saccha-
romyces cerevisiae and Escherichia coli PPI network.

The outcomes demonstrate that the proposed fuzzy cen-
trality methods significantly outperform traditional centrality
methods in predicting crucial proteins. For example, in the
saccharomyces cerevisiae network, FCC and FIC identify
nearly twice as many crucial proteins (66 and 55, respec-
tively) at the top ≈ 2% as DC and EC ( 46 and 37,

respectively). This pattern is consistent across all
′

K . These
measures perform well in the E. coli network as well. Fig. 7
and Fig. 8 provide a more detailed representation of the
performance of above discussed methods.

TABLE 3. Membership degree of edge strength in saccharomyces
cerevisiae and escherichia coli network.

C. ANALYSIS OF THE OVERLAPPING AND DIFFERENT
TRUE CRUCIAL PROTEINS
To understand which proteins were identified by both the
proposed and traditional methods and which were different,
we looked at the top 100 ranked proteins. The results are
shown in Table 5, where Tc represents one of these traditional
methods (DC, CC, EC, and BC). | ∗ ∩ #| means the number
of crucial proteins identified by both methods (intersection),
while | ∗ − #| means the number of crucial proteins found
by method ‘‘*’’ instead of ‘‘#’’(difference). Here, * and # are
the arbitrary representation of the discussed measures. The
results show that FBC has a higher number of overlapping
crucial proteins with Tc compared to other methods in the
Saccharomyces cerevisiae network. FCC and FIC, on the
other hand, have a higher percentage of crucial proteins in
their differences with Tc in both discussed organisms.

D. VALIDATION OF PROPOSED MEASURES BY SIX
STATISTICAL METHODS
The validation and evaluation of the efficacy of any proposed
method are commonly carried out using statistical methods,
including negative predictive value (NPV), positive predictive
value (PPV), accuracy, F-measure, specificity (SP ), and sen-
sitivity (SN) [46], [47]. In this paper, we validate our proposed
fuzzy centrality measures using these measures.

The formulas for calculating these statistical measures are
as follows:
Sensitivity: the ability to correctly identify true positives.

Sensitivity (SN ) =
TP

(TP + FN )
(18)

Specificity: the ability to correctly identify false negatives.

Specificity (SP) =
TN

(TN + FP)
(19)

Positive Predictive Value: ratio of true positives out of all
positive predictions.

Positive Predicted Value (PPV) =
TP

(TP + FP)
(20)

Negative predictive value: ratio of true negatives out of all
negative predictions.

Negative Predicted Value (NPV)
TN

(TN + FN )
(21)
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FIGURE 6. A network of protein-protein interactions in the (a) Saccharomyces cerevisiae and (b) Escherichia coli,
visualized using the Gephi software.
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F-measure: harmonic mean of recall and precision.

F−Measure =
2xSNxPPV
(SN + PPV)

(22)

Accuracy: ratio of accurate predictions to the overall number
of predictions made.

Accuracy =
TP + TN

(TP + TN + FP + FN )
(23)

where, the term TP denotes proteins predicted to be crucial
that are actually crucial, FN represents proteins predicted to
be non-crucial that are actually crucial, FP represents proteins
predicted to be crucial that are actually non-crucial and,
TN represents proteins predicted to be non-crucial that are
actually non-crucial.

The results presented in Table 6 strongly support the
precision of fuzzy connectivity (FCC) and fuzzy influence
centrality (FIC). Each validation criterion for FCC and FIC
in the Saccharomyces cerevisiae network has a significantly
higher value than the other methods. FCC performs well
on the Escherichia coli network as well. This suggests that
FCC and FIC are more accurate than the other identification
methods for crucial proteins.

E. VALIDATION BY GENE ONTOLOGY (GO)
To identify crucial proteins in biological networks,
we selected the top 5 proteins from each centrality measure
and analyzed them using the Gene Ontology (GO). We found
that 4 of the top 5 proteins in fuzzy connectivity and fuzzy
influence centrality was true crucial, indicating that these
proposed approaches are highly significant for identifying
crucial proteins in biological networks. Table 7 shows the
results of our analysis. UsingGO allowed us to systematically
and accurately describe the concept of crucial proteins.

F. SPEARMAN CORRELATION WITH TRADITIONAL
MEASURES
The Spearman rank correlation (ρ) is a statistical metric
employed to evaluate the magnitude and orientation of the
association between two variables or methodologies. It yields
a numerical value within the range of −1 to 1 [48]. Our
study employed this methodology to conduct a comparative
analysis between proposed fuzzy and traditional centralities.
A coefficient of 1 denotes a complete positive correlation,
whereas a −1 signifies a complete negative correlation.
A correlation coefficient of zero signifies the absence of any
association between the centralities. The Spearman’s rank
correlation coefficients between fuzzy and traditional (crisp)
methods on a network are computed by Eq. (24):

ρ = 1 −
6

∑
d i2

n
(
n2 − 1

) (24)

The diagonal elements of the table 8 represent the correlations
between the fuzzy and traditional versions of each centrality
measure, which are all strongly positive and statistically sig-
nificant. The off-diagonal elements represent the correlations

TABLE 4. Number of crucial proteins identified by proposed and
traditional measures.

between different centrality measures using the same method
(either fuzzy or traditional). These correlations are also pos-
itive but generally weaker than the diagonal correlations.
The results suggest that fuzzy centrality measures are highly
correlatedwith their traditional counterparts and that different
measures are positively correlated.

G. COMPARING WITH OTHER RECENT TOPOLOGICAL
AND BIOLOGICAL INFORMATION BASED METRICS
In above experiments, we compared the proposed measures
with their traditional counterparts, validating the effective-
ness of our approach. To further validate our method,
we compared it with ten other previously proposed measures
(Subgraph Centrality, Information Centrality, Bottle Neck,
Density of Maximum Neighborhood Component, Range-
Limited Centrality, L-Index, LeaderRank, Normalized α-
Centrality, and Moduland-Centrality) mentioned in [29].
As shown in Table 9, our proposed fuzzy connectivity cen-
trality (FCC) outperformed the aforementioned metrics in
identifying crucial proteins within the yeast protein-protein
interaction network, demonstrating a significant improve-
ment over the results reported in [29].
In the top 100 rankings, FCC identified 66 crucial proteins,

outperforming all other methods. SC identified 37, IC identi-
fied 44, BN identified 36, DMNC identified 55, RL identified
49, LI identified 41, LR identified 45, NC identified 37, and
MC identified 39. In the top 200 rankings, FCC identified
122 crucial proteins, whereas SC, IC, BN, DMNC, RL, LI,
LR, NC, and MC identified 77, 80, 76, 89, 80, 74, 82, 77,
and 78 respectively. In the top 300 rankings, FCC identi-
fied 182 crucial proteins, whereas SC, IC, BN, DMNC, RL,
LI, LR, NC, and MC identified 119, 118, 104, 136, 115,
123, 114, 120 and 124 respectively. In the top 400 rankings,
FCC identified 223 crucial proteins, whereas SC, IC, BN,
DMNC, RL, LI, LR, NC, and MC identified 158, 161, 145,
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FIGURE 7. Comparison of the number of crucial proteins identified by proposed and traditional measures in Saccharomyces cerevisiae network

(a)
′

K = 100 (b)
′

K = 200 (c)
′

K = 300 (d)
′

K = 400 (e)
′

K = 500 (f)
′

K = 600 top ranked proteins.

FIGURE 8. Comparison of the number of crucial proteins identified by proposed and traditional measures in Escherichia coli network (a)
′

K = 100

(b)
′

K = 1200 (c)
′

K = 2000 top ranked proteins.

182, 161, 158, 155, 157, and 166 respectively. In the top
500 rankings, FCC identified 259 crucial proteins, whereas
SC, IC, BN, DMNC, RL, LI, LR, NC, and MC identified
192, 207, 175, 225, 190, 207, 204, 191, and 200 respec-
tively. In the top 600 rankings, FCC identified 309 crucial
proteins, whereas SC, IC, BN, DMNC, RL, LI, LR, NC, and
MC identified 221, 251, 203, 265, 229, 256, 251, 221, and
247 respectively.

Moreover, our proposed FCC compared favorably with the
recent PeC measure proposed by Li et al. [29], which inte-
grates protein-protein interaction data and gene expression
data. While PeC identified 328 crucial proteins in the top
600, our FCC identified 309, with a difference of less than
20 proteins. This highlights the significance of our proposed
framework, which relies solely on topological properties and
is easier to compute.
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TABLE 5. Analysis of the overlapping and different true crucial proteins.

TABLE 6. Comparative analysis in terms of F-Measure, Accuracy, NPV, PPV, SN,SP between proposed and traditional measures.
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TABLE 7.AQ:4 Gene ontology of top 5 ranked proteins of each measure.
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TABLE 8. Proposed and traditional centralities comparison using
spearman’s rank correlation coefficients.

TABLE 9. Number of crucial proteins identified by FCC and other recent
metrics.

H. DROSOPHILA MELANOGASTER (FRUIT FLY) PPI
NETWORK (VALIDATION DATASET)
The proposed framework was also applied to the Drosophila
melanogaster PPI network dataset mentioned in [102], which
consists of 7,783 proteins (nodes) and 35,015 interactions
(edges). Drosophila melanogaster, the fruit fly, is a widely
used model organism in various biological disciplines, from
fundamental genetics to tissue and organ development.
Notably, the Drosophila genome shares 60% homology with
the human genome, with fewer redundancies, and approx-
imately 75% of human disease genes have homologs in
flies [103].

To evaluate the top three proteins from each proposed
centrality metric, we sourced biological essentiality data from
UniProtKB. UniProt, the Universal Protein Resource, pro-
vides a comprehensive, freely accessible, and stable central
resource on protein sequences and functional annotation.
UniProt Knowledgebase (UniProtKB) is an expertly curated
database that integrates protein information from multi-
ple sources, offering a complete compendium of protein
sequence data linked to functional information. UniProt
integrates data from multiple resources, adding biological
knowledge and metadata to protein records, and serves as a
central hub linking to 180 other resources [104], [105].

The outcomes highlight the importance of the proposed
metrics in identifying crucial proteins, demonstrating that
their removal would significantly disrupt cellular function.

TABLE 10. Biological essentiality of top 3 ranked proteins.

As shown in Table 10, the essentiality of proteins evaluated
through mostly proposed centrality metrics aligns with their
biological essentiality, supporting the value of this framework
in understanding complex biological networks.

VI. LIMITATIONS AND DEFICIENCIES
A. EVALUATING FUZZY ACCESSIBILITY CENTRALITY
PERFORMANCE USING GRAPHS
To investigate why fuzzy accessibility centrality did not per-
form better than the traditional methods or could not predict
more crucial proteins, we randomly selected two noncrucial
proteins with high values of fuzzy accessibility centrality.
Network visualizations of these proteins are shown in Figs. 9
(a) and (b). These networks illustrate that although these
proteins were more central in the network and provided
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FIGURE 9. Protein-Protein Interaction (PPI) of (a) YJR091C and its
interacting neighbours (b) YCL018W and its interacting neighbours.

shorter paths to other proteins, their neighboring proteins
did not have higher strength degrees. This analysis suggests
that the proposed fuzzy accessibility centrality method shares
similarities with the traditional closeness centrality method.

B. EFFECT OF SCALE-FREE NETWORK PROPERTY
Biological networks are often characterized by a power-
law (scale-free) node degree distribution, where numerous
nodes have low degrees, while high-degree nodes (hubs) are
relatively rare but still present. Scale-free networks exhibit
distinct properties, including average degree and clustering

FIGURE 10. Network properties of the E-coli network (a) Average degree
distribution (b) Clustering coefficient distribution.

coefficient [120]. In this study, we compute the membership
degree of edge strength based on shared neighbors, which
is influenced by the scale-free network property. To under-
stand why our proposed fuzzy measures didn’t outperform
traditional measures in the E-coli network, we analyzed
the network’s properties using Gephi software. The results
(Fig. 10 a and b) show a low average degree (8.656) and
clustering coefficient (0.143), indicating potential scale-free
characteristics.

VII. CONCLUSION AND FUTURE WORK
This paper discussed the pinpointing of crucial proteins in
PPI networks. Most of the existing PPI network neglect
the strength of the interacting proteins in a network, which
make it difficult to find the network’s true crucial proteins.
A membership function (µBLS), for evaluating edge strength
in a network was thus proposed in this paper. Also, extend
four commonly used traditional measures into fuzzy ones to
identify the true crucial proteins in the network. Considering
the membership degrees of the interacting strength in their
calculations. The proposed methods were evaluated on dif-
ferent real-world networks. By comparing proposed fuzzy
measures with their traditional counterparts, the effectiveness
of the proposed measures was validated. The importance of
the top proteins identified by proposed fuzzy measures was
also confirmed by gene ontology. Moreover, the correlation
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between the proposed fuzzy and traditional measures was
highly positive, indicating their accuracy. The best results
were always provided by the proposed fuzzy connectivity and
influence centrality methods among all proposed measures.
Future work aims to address the limitations and deficiencies
discussed and extend the application of the proposed mea-
sures to other biological networks.

DATA AND CODE AVAILABILITY
The processed dataset and source codes used in this
study are available in https://github.com/abmoiz15/A-
new-frameworkfor-pinpointing-crucial-proteins-in-protein-
proteininteraction-networks-.git
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