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ABSTRACT This study introduces an integrated convolutional mask method for enhancing edge detection
in digital images by combining the linear homotopy parametric value (LHP) with classical edge detection
operators. Our results, obtained from extensive experimentation and comparison with conventional
MATLAB-based methods, demonstrate that the LHP-based method outperforms previous techniques in
terms of reliability and structural accuracy. LHP is integrated to address issues of noise sensitivity and diverse
image structures, highlighting the algorithm’s improved performance across a range of images.

INDEX TERMS Convolution, edge detection, enhancement, gradient based method, LHP.

I. INTRODUCTION
A fundamental technique in image processing, edge detec-
tion is essential for computer vision and image analysis.
It is designed to identify boundaries within an image
by emphasizing regions where significant variations in
color or intensity occur. This procedure is crucial for
tasks such as feature extraction, image segmentation, and
object recognition [4]. While edge enhancement involves
increasing the contrast between the edge and background
to make the edge more noticeable, edge detection focuses
on locating edge pixels. Numerous edge detection methods
and algorithms exist, each with unique advantages and
disadvantages. Common techniques include the Canny edge
detector, the Laplacian of Gaussian (LoG) method [7], and
gradient-based techniques such as Sobel, Prewitt, andRoberts
operators, among others.

Distinguishing edges can be challenging in the presence
of noise, poor contrast, or complex textures. Our MATLAB-
based approach focuses on enhancing the precision and
quality of the identified edges, which can be influenced
by parameters and mask selection. To achieve the best
comparison results with the classical Canny edge detection
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method available in MATLAB, we have also applied this
method to various other operators, such as LoG, Sobel,
Prewitt, and Roberts, with Canny outperforming the rest.

In grayscale images, pixel values range from 0 to 255,
with each pixel’s brightness directly indicated by its value.
Grayscale images have only one channel for intensity,
whereas RGB images are separated into different channels
for color. Specifically, we focus on enhancing image quality
by optimizing parameters to balance blur, brightness, and
contrast. Finally, we include the metric values of our analysis
and examples of output images from the original, Canny, and
our proposed method, demonstrating the advantages of using
our approach.

A. QUALITY FACTORS AND TECHNIQUES IN EDGE
DETECTION
A comprehensive edge detection algorithm is designed by
integrating contrast [8], correlation, energy, entropy, and
homogeneity, with similar work found in [9]. The difference
in intensity between neighboring pixels is explored as
a quality factor influencing edge detection. We explore
contrast-based edge enhancement techniques to improve the
visibility of edges against varying backgrounds and lever-
age correlation-based approaches indicating pixel pattern
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similarity to refine edge detection. We compare the efficacy
of these methods with traditional techniques for capturing
patterns and edges. Additionally, measures of intensity
distribution are integrated into edge detection algorithms.
By considering energy, we aim to enhance the robustness
of edge detection, particularly in images with varying levels
of intensity. Using entropy [11], a measure of uncertainty
or disorder, we improve edge identification in noise or
texture-filled images. We discuss entropy-based methods and
their effectiveness in challenging visual settings for locating
edges. We also examine homogeneity as a quality factor for
edge detection, which denotes pixel uniformity. A survey
on image detection effectively outlines the approach and
earlier techniques [13]. In this paper, we present an enhanced
version of the Canny edge detector, as well as gradient-based
techniques such as the Roberts operator, Prewitt operator, and
Sobel operator.

B. CANNY EDGE DETECTOR
The Canny edge detector is one of the conventional methods
for edge detection. It remains the most efficient operator
with the greatest number of variations, having been first
proposed by J. Canny for his M.Sc. thesis at MIT in 1983
[10]. When searching for image edges using the technique of
isolating noise from the image, the Canny approach becomes
even more important. Without changing the image’s edge
properties, this method is more effective after applying the
appropriate threshold value, showing a strong tendency to
locate edges. Our method integrates with the classical Canny
edge operator method to provide an enhanced version of
Canny. The method consists of several steps, each intended to
improve and enhance the edge detection technique. Related
work on the upgrade of the Canny operator can be found
in [12]. In our method, we apply Gaussian blur, and then
the gradient computed using convolution indicates potential
edges. Non-maximum suppression results in a thinner and
more accurate representation of edges. Two thresholds are
applied to categorize edges, enabling the incorporation of
hysteresis for final Canny edge detection. Finally, we apply
the LHP mask to enhance the outcome of the Canny edge
operator.

C. GRADIENT BASED METHODS
For the three most common operators, Marr and Hildreth [5],
Prewitt [6], and Sobel and Feldman [1], [2], we will apply
our LHP method to achieve improved edge detection images.
These improved images are significantly better than those
produced by the conventional methods, showcasing how our
proposed approach surpasses them with more vivid and clear
outcomes. All these operators employ small 2× 2 or pairs of
3× 3 convolution kernels for edge detection, with one kernel
for detecting vertical edges (Px) and the other for horizontal
edges (Py). Traditional Robert masks use a 2 × 2 matrix

Rx =

[
1 0
0 −1

]
, Ry =

[
0 1

−1 0

]

where as the Prewitt and sobel uses 3 × 3 matrix with

Px =

 1 1 1
0 0 0

−1 −1 −1

 , Py =

−1 0 1
−1 0 1
−1 0 1


and Sx =

−1 −2 −1
0 0 0
1 2 1

, Sy as the transpose of Sx .

Here,

µR = (Rx2 + Ry2)1/2,

µP = (Px2 + Py2)1/2,

µS = (Sx2 + Sy2)1/2,

where µR is the gradient magnitude of the Robert operator,
µP is the gradient magnitude of the Prewitt operator, and µS
is the gradient magnitude of the Sobel operator. Here, our
dedicated mask with the average value integrates with these
oldermasks, and by using the parameters, we achieve a better-
enhanced image of the detected edges. The convolution of
an image with a Gaussian smoothing filter followed by the
Laplacian filter constitutes the Laplacian of Gaussian (LoG)
image processing operation. This operation aims to enhance
an image’s edges and reduce noise. The Laplacian operator
highlights regions of abrupt intensity change, while Gaussian
smoothing helps to reduce noise sensitivity.

II. METHODOLOGY
Many methods for detecting edges were explored, and while
the discussed methods are diverse, some are effective in
detecting edges of the overall picture but not in unimproved
subregions. To address this, the enhanced edge detection
model suggested in this study is based on a new class
of homotopy from emerging algebraic topology. Compared
to traditional image edge detection models, this approach
offers an improved version of the image and provides a
better display of image information. Homotopy is one of the
most powerful invariants of algebraic topology, and when
linearity is imposed on these classical invariants through the
concatenation of paths, it enables many modern applications.
Here, we use one of the factors to compute the LHP values,
which include α∗, β∗ and γ ∗.

A path in space X that we are relating with loops here
is nothing but a continuous mapping over a unit period of
time such that f : I → X where I = [0, 1]. A homotopy of
paths in X is a family ft : I → X , 0 ≤ t ≤ 1, such that the
endpoints ft (0) = x0 and ft (1) = x1 are independent of t and
the associated map F : I × I → X defined by F(x, t) = ft (x)
is continuous [3].
If two paths f0 and f1 are connected in the aforementioned

way of homotopy ft , then they are said to be homotopic paths,
i.e., f0 ≃ f1. Essentially, any two paths in Rn with the same
initial or endpoints x0 and x1 are homotopic via the homotopy:

ft (x) = (1 − t)f0(x) + tf1(x), (1)

where each point f0(x) travels at a constant speed along the
line segment to f1(x). One can think of an image’s edges
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as continuous paths. The homotopy concept ensures that
the detected edges create continuous, smooth transitions,
maintaining the integrity of the shapes and borders in the
image.

If α, β, γ : I → X are paths such that α(1) = β(0) and
β(1) = γ (0), then α ◦ β ◦ γ : I → X is a composition or
product path which traverses from α to γ as

α ◦ β ◦ γ (x) =


α(3x), whenever 0 ≤ x ≤ 1/3
β(3x − 1), whenever 1/3 ≤ x ≤ 2/3
γ (3x − 2), whenever 2/3 ≤ x ≤ 1

(2)

Paths α, β, and γ represent segments of a continuous path in
a topological space. These paths are concatenated to form a
single path from one point to another, capturing transitions
and changes in direction, as shown in Figure 1. The function
α ◦ β ◦ γ (x) is defined piecewise over the interval [0, 1],
allowing the path to change its rule at specific points. This
models edge detection in images, where different segments
might exhibit different edge characteristics. The piecewise
function uses different rules (paths) for different segments
to model these variations. From the above two equations (1)
and (2), we have

ft (x) = (1 − t)α(3x) + tβ(3x − 1) + (1 − t)β(3x − 1)

+ tγ (3x − 2) + (1 − t)γ (3x − 2) + tα(3x)

= α(3x) + β(3x) + tα(3x) − β(1) + tγ (3x) − tγ (2) .

When the path is closed, we add (1 − t)γ (3x − 2) + tα(3x)
that is, α(0) = γ (1) gives

ft (x) = α(3x) + β(3x) + γ (3x) − β(1) − γ (2) ,

our equation becomes independent of t . Therefore, there
won’t be any changes as a result of t; hence, in our case,
ft (x) = f (x).

f (x) = α(3x) + β(3x) + γ (3x) − β(1) − γ (2) . (3)

Constants like α∗, β∗, and γ ∗ are introduced to scale the
paths correctly. These parameters adjust the sensitivity and
accuracy of edge detection algorithms. Simplifying the
combined effect of these paths into a single function allows
for efficient computation of edges, effectively highlighting
areas of high gradient (edges). In addition, we have our
parametric values in a constant function as

α∗
+ β∗

+ γ ∗
= f (5) (4)

which statisfies our model, additionally setting

α(x) = x/3, β(x) = (1 − x)/3, γ (x) = x/5 .

Substituting the above equation in equation(3), we have

f (x) = 3α(x) + 3β(x) + 3γ (x) − β(1) − γ (2)

= 1 + (3x)/5 − 2/5

= 3 ((1 + x)/5)

FIGURE 1. Concatenation of paths.

which becomes f (5) = 36/10, for x = 5, from equation (4)
we can conclude that

α∗
+ β∗

+ γ ∗
= 36/10 .

Parametric values and piecewise functions help in fine-
tuning the edge detection process, ensuring that different
parts of the image are analyzed appropriately. The range
of α∗, β∗, and γ ∗ lies between [1, 2] to achieve better
enhancement output for this dedicated mask. One of the
hardest challenges in the edge detection process is quanti-
tative evaluation. A single, universal metric can’t be used
to evaluate an enhanced algorithm’s efficiency. Given the
variations in individual visual perception, a quantitative
analysis is required to verify the subjective evaluation of the
enhanced pictures. The five different quantitative indicators
used to evaluate the enhancement quality throughout this
paper are contrast, correlation, energy, homogeneity, and
entropy. Additionally, we will determine the Optimal Dataset
Scale (ODS), Optimal Image Scale (OIS), and Average
Precision (AP). In our case, the binary image will be from one
of the five operators, which will be taken as the ground truth
image to compute our ODS, OIS, and AP. The parametric
values α∗, β∗, and γ ∗ are used to improve the image.
We have denoted IE and M as the enhanced edge detected
image and mask for LHP respectively. Let Ip denote the input
image with

IE (x, y) = M ∗ Ip(x, y) ,

where ∗ is the convolution product. The parametric values
α∗, β∗, and γ ∗ represent the mask of the LHP window.
Based on our parametric values, we have diligently utilized
a specific mask through extensive trial and error, which
has significantly enhanced our method, table 1 shows how
eight masks are made using distinct directions from this
investigation. For this method, when we try to do the same
for other directional values, we end up with sometimes over-
exposed or under-exposed images, which makes them look
unnatural, along with less coverage in the image boundaries
of moderate quality.
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FIGURE 2. Flowchart of LHP.

Our working model is illustrated in the flowchart in
Figure 2. In our method, the original RGB image is first
converted to grayscale because edge detection algorithms
typically operate on single-channel images. The conversion is
done using a weighted sum of the RGB components, typically
using the formula:

Grayscale = 0.299R + 0.587G + 0.114B

Then edge detection is performed using traditional operators
like Canny, Sobel, or Prewitt. These algorithms calculate the
gradient of the image intensity at each pixel, highlighting
regions with high spatial derivatives. The bilateral filter is an
edge-preserving smoothing filter that combines domain and
range filtering to preserve edges while reducing noise. it’s
represented as:

I ′(x) =
1
Wp

∑
xi∈S

I (xi)fr (||I (xi) − I (x)||)gs(||xi − x||)

where I is the input image, I ′ is the output image, fr is
the range kernel for intensity differences, gs is the spatial
kernel for coordinate differences, and Wp is a normalization
factor. The bilateral filter balances both spatial proximity
(controlled by gs) and intensity similarity (controlled by fr )
to achieve edge-preserving smoothing while reducing noise
in the output image.

TABLE 1. Dedicated directional convolutional mask suitable for our
parametric values.

A. DEDICATED MASKS
Two functions (or images) are combined by the convolution
technique to create a third function (or image). In order to
calculate the weighted total of the overlapping values of two
functions, one (the filter or mask) must be slid over the
other (the input image). Usually, the output image, or new
function created by the convolution, retains characteristics
like edges, textures, and patterns. With regard to identifying
edges or other features, every mask corresponds to a
certain orientation. Upon convolving the input image with
these masks, the weighted total of the pixel values in the
overlapping regions is calculated, leading to the output image
highlighting distinct features. Here, the image is subjected
to a variety of filters (masks) via convolution. For edge
detection, every mask corresponds to a distinct orientation.
The general convolution operation is defined as:

C(x, y) =

a∑
i=−a

b∑
j=−b

H (i, j) · I (x − i, y− j)

where C is the output image, H is the filter mask, and I
is the input image. The mask in the table 1 shows how we
carefully adjust the settings to obtain several orientations that
are well suited to our parameters and methodology. Out of the
eight conventional masks, we have taken the average mask of
all eight directional masks that are appropriate and provide
specific results.

B. PERFOMANCE METRICS
Optimal Dataset Scale (ODS) [14]: This metric evaluates
the overall performance across all images in a dataset at a
fixed scale (threshold = 1). It’s calculated using precision
and recall, which are derived from true positives (TP), false
positives (FP), and false negatives (FN)

precision = (TP)/(TP + FP)

recall = (TP)/(TP + FN)

ODS = (2 · precision · recall)/(precision + recall)

Optimal Image Scale (OIS) [14]: This metric evaluates the
best possible performance for each image individually, then
averages the results. It’s also based on the F1 score, which is
the harmonic mean of precision and recall.

Average Precision (AP): This metric summarizes the
precision-recall curve as the weighted mean of precisions
achieved at each threshold, with the increase in recall from
the previous threshold used as the weight

AP =

∑
n

(Rn − Rn−1)Pn
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FIGURE 3. LHP applied on Robert’s, Prewitt, Sobel, Log and Canny
operator.

FIGURE 4. Scaled section of the gantrycrane image displaying the Sobel,
LoG, and Canny regions that were found.

where Pn and Rn are the precision and recall at the nth
threshold.

III. EXPERIMENTAL RESULTS
We have selected a 3×3-pixel window, which is theoretically
better than a 5 × 5-pixel window or larger, as the latter may
require more metric parametric values to achieve nearly the
same result or may cause an image to appear excessively
exposed or blurry. The built-in images in MATLAB, resized
to 300 × 400, are utilized in this article. The edge detection
measurements of the proposed algorithm aim to improve
the edge-detected regions by displaying high-quality metric
values such as ODS, OIS, and AP, including contrast,
correlation, energy, entropy, and homogeneity. These metrics
assess the effectiveness of the edge detection technique and
compare the enhanced image quality to the original. Once the
setup is done, our suggested method takes only a few seconds
per image test. The performance test was implemented
using MATLAB(Mathworks) on Windows 11. Processor:
11th Gen Intel(R) Core(TM) i3-1115G4 @ 3.00GHz. This
methodworks verywell and surpasses the traditionalmethods
available in MATLAB. Additionally, this method’s primary
benefit is its ability to capture low-light image edges in
a way that other methods cannot. This method brightens
and broadens edges, making the edge-detected image appear
perfect to the human eye. However, it also blurs edges to
connect broken lines by filling in the spaces.

The method we propose improves the total number of
edges detected by applying all five operators. Among them,
LHP applied to Canny, denoted as LHPC, provides superior
results, while LHP applied to Log yields better results

FIGURE 5. LHPC applied on grayscale images; first row: original images,
second row: canny algorithm based images, and third row: LHP based
images.

FIGURE 6. LHPC applied on color images; first row: original images,
second row: canny algorithm based images, and third row: LHP based
images.

FIGURE 7. A random comparison of both color and grayscale images of
original, Canny, bilateral Canny using LHP and LHPC.

for images with less noise or detail. Figure 3 illustrates
the application of several operators using our method by
highlighting the edge area of a color image, including Robert,
Prewitt, Sobel, Log, and Canny. In this case, Canny and
Log perform better than the other operators, which only
capture the outer pixel difference and miss inner boundaries.
The figure5 and figure6 demonstrate the LHP applied to
the Canny operator on various grayscale and color images
available on MATLAB; the first row displays the original
image, while the second row displays the images produced by
the Canny operator, and the third row displays the enhanced
edge detected images using LHPC. The pixel difference
nearer the inner boundary is captured by our suggested
method, as seen in figures 3 and 4, while the other operators
were unable to do so. To introduce readers to the values,
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TABLE 2. Computational values of various quality factors.

TABLE 3. Homogeneity and entropy values obtained using LHPC .

TABLE 4. Perfomance metrics.

we have included the experimental computational values of
the different quality factors in tables 2, 3, and 4. In addition,
figure 7 illustrates the comparison between LHPC and the
original Canny algorithm.

IV. CONCLUSION
In conclusion, our proposed method demonstrates supe-
rior performance in edge detection when applied to the
Canny operator, surpassing previous approaches and other
MATLAB operators. By integrating the LHP method,
we achieve advanced edge detection and image processing
results. Our LHP-based method enhances crucial edges
and outperforms traditional approaches, utilizing innovative
algorithms to create more effective tools. We are committed
to refining our approach to remain competitive with the
latest methods, minimizing code and execution time while
preserving image integrity. Future research will focus on
persistent homology to determine the genus and improve edge
detection, contributing significantly to tumor and cancer cell
detection.
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