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ABSTRACT Ensuring the integrity of insulators is critical for the reliability and safety of power transmission
systems. To address the need for efficient and real-time inspection of insulator defects on power lines,
this paper introduces an advanced defect detection model built upon the YOLOV8 architecture. The model
incorporates a novel C2f-Faster-EMA module that modifies the original C2f module used in YOLOVS’s
backbone for feature extraction. This adaptation employs FasterNet to reduce the model’s parameter count,
while incorporating an EMA-based attention mechanism to enhance detection accuracy. Additionally,
we replace the conventional PANet structure with a BIFPN-P feature fusion module to improve the extraction
of shallow features, which is crucial for detecting small-target defects in insulators. Further refinements
include the implementation of the Inner-IoU concept to augment the MPDIoU loss function, thus improving
the model’s ability to learn from challenging samples. Experimental results demonstrate that the proposed
Insulator-YOLOVS8s model achieves a superior performance over existing mainstream algorithms, with a
mean Average Precision (mAP) of 91.5% at an IoU threshold of 0.5. The model is characterized by a
parameter count of 5.66M and computational requirements of 21.1 GFLOPs, achieving detection speeds
up to 113 frames per second. These enhancements enable the proposed model to identify insulator defects
swiftly and with high accuracy, thereby contributing significantly to the safety and maintenance of power
transmission infrastructure.

INDEX TERMS Insulator location, defect detection, YOLOVS, lightweight.

I. INTRODUCTION

As technology progresses and the smart industry evolves, the
complexity and scale of power networks continue to grow,
introducing heightened challenges in the safety inspection
of power lines [1]. Insulators are a crucial component of
electrical power systems. Their primary functions are to
support and secure conductors while ensuring electrical
insulation between the conductors and other components.
The relationship between insulators and other components
encompasses mechanical support, electrical insulation, and
safety protection. However, insulators are inevitably suscep-
tible to various failures due to the influence of factors such as
lightning, storms, and magnetic fields during their operation.
These damages can manifest as spontaneous shattering, string
breakages, corrosion, and cracking, posing significant threats
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to the stability of the power grid [2], [3], [4]. The necessity for
regular inspection and timely mitigation of potential risks is
paramount. Traditionally, insulator defect detection has relied
on manual inspections, which are not only inefficient and
costly but also pose substantial safety risks [5]. In response,
recent advancements have seen the adoption of computer
vision technology for aerial imaging, presenting a more
economical and effective method for detecting insulator
defects. Nonetheless, achieving accurate detection remains
challenging due to the small size of defect pixels relative to
the overall image and the complex backgrounds typical of
aerial photographs [6].

In recent years, the advancements in deep learning
technologies have significantly enhanced the field of object
detaction, and its related technologies have also been widely
used in all walks of life [7], [8], [9], [10]. Initially,
object detection algorithms relied on manually designed
features. This methodology has transitioned to the use of
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Convolutional Neural Networks (CNNs), which automate
the identification and extraction of image features, thereby
improving detection efficiency [11]. Object detection algo-
rithms are primarily categorized into two types: two-stage
and single-stage detection methods [12]. Two-stage detection
methods, which include generating candidate regions for
object detection, are known for their high detection accu-
racy despite their complexity and slower speeds. Notable
examples include R-CNN [13], Fast R-CNN [14], and
Faster R-CNN [15]. For instance, Shan et al. [16] employed
deep residual networks and cascaded R-CNN operations to
detect various objects, including normal insulators, insulator
explosions, and bird nests. Similarly, Ghashghaei et al. [17]
utilized a concatenated Faster R-CNN model integrated with
feature pyramids and region proposal networks, significantly
enhancing the detection and recognition accuracy of insulator
explosions.

Conversely, single-stage detection methods have gained
popularity due to their simplified network architectures and
rapid detection capabilities. Noteworthy algorithms include
SSD (Single Shot Detector) [18] and YOLO (You Only Look
Once) [19]. Wang et al. [20] refined the SSD algorithm
for identifying power components in transmission lines,
achieving high detection accuracy with fast response times.
Additionally, Zhao et al. [21] implemented MobileNet [22]
as the backbone for SSD, leveraging its depthwise sep-
arable convolutions and bottleneck architecture to reduce
the model’s parameter count. Zheng et al. [23] developed
an improved real-time detection algorithm using YOLOv4
[24], which integrated additional positional and semantic
information to enhance multi-scale target detection accuracy
and reduce false positives. Chen et al. [25] introduced atten-
tion mechanisms and a bidirectional pyramid structure into
YOLOVS [26], improving the detection of insulators and their
defects in complex backgrounds. Yi et al. [27] introduced
lightweight convolution, designed MaECA attention mech-
anism, and adopted Mish activation function and SIoU loss
function to improve YOLOVS, thus improving the detection
accuracy and speed of insulator images. Moreover, Zhai et al.
[28] enhanced the detection capabilities of YOLOvV7 [29] for
small targets by designing the C3GhostNetV2 module and
incorporating the CA [30] coordinate attention mechanism,
thus reducing the model’s complexity.

Despite these advancements, the localization and defect
detection of insulators still face numerous challenges. For
example, when dealing with complex background environ-
ments, most methods struggle to effectively extract features
of small and blurry targets, resulting in high rates of missed
and false detections of insulator defects. Additionally, due
to the memory limitations of mobile hardware devices,
effectively balancing detection performance with hardware
resource consumption remains one of the challenges in
achieving real-time insulator defect detection. In this context,
this paper proposes a lightweight detection algorithm,
Insulator-YOLOvV8s, based on an enhanced version of
YOLOvVS [31]. This algorithm is designed to optimize the

106782

balance between model detection speed and accuracy. The
main contributions of this paper are as follows.

1) Alightweight C2f-Faster-EMA module is designed and
integrated into the backbone network, replacing the
original C2f module in YOLOVS. This modification
significantly reduces the number of parameters and
computational load of the model, while further enhanc-
ing detection accuracy and speed.

2) A BiFPN-P feature fusion module is introduced in the
neck network, which strengthens the feature extraction
capability for shallow information. This improvement
notably increases the detection accuracy for small
insulator defects and effectively reduces both the miss
rate and false detection rate.

3) The Inner-MPDIoU loss function is developed to
optimize the original bounding box regression loss
function. This advancement accelerates the bounding
box regression process and enhances the model’s
generalization ability, resulting in improved precision
of anchor box localization for targets.

The primary contributions of our work are summarized
as follows: Firstly, the backbone feature extraction network
of YOLOvVSs incorporates the newly developed C2f-Faster-
EMA module, which combines the FasterNet module and
EMA attention mechanisms. This innovation not only signif-
icantly reduces the parameter count and computational load
but also enhances detection accuracy and speed. Secondly,
in the neck network, the conventional PANet structure
has been replaced with a BiFPN-P feature fusion module.
This module improves the network’s ability to extract
features from shallow layers, thereby increasing the detection
precision for small target defects in insulators. Lastly, the
Inner-MPDIoU technique has been introduced to refine the
loss function. This approach distinguishes among different
regression samples and utilizes auxiliary bounding boxes
of varying scales to compute the loss, which accelerates
bounding box regression speed and boosts the model’s
generalization capability.

Il. ORIGINAL YOLOv8s AND IMPROVED YOLOv8s

The YOLOv8 model is classified into five variants based
on network depth and width: n, s, 1, m, x. Each vari-
ant demonstrates an incremental increase in network size
and detection accuracy, with a corresponding decrease in
detection speed due to enhanced complexity. Given the
computational constraints of drone platforms, this study
employs the YOLOv8s model, which optimizes the balance
between model size and detection accuracy, thereby fulfilling
the demands for real-time detection.

The architecture of YOLOVS comprises four primary
components: input, backbone, neck, and head, as illustrated
in Figure 1. The input layer employs Mosaic data aug-
mentation, a technique that amalgamates four randomly
cropped and scaled images into a composite image to enrich
feature extraction from diverse perspectives and bolster the
model’s generalization ability. Additionally, YOLOvV8 adopts
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FIGURE 1. The structure of YOLOv8s network.

a strategy from YOLOX [32], where data augmentation is
deactivated during the last ten training iterations to acclimate
the model to real-world imaging characteristics.

The backbone network incorporates Conv, C2f, and SPPF
modules, with the C2f module designed to learn residual
features and enhance gradient flow across layers through
augmented cross-layer connections. The neck network uti-
lizes a Path Aggregation Network (PAN) structure to enhance
feature integration from objects at various scales. The
head network segregates classification and detection tasks,
focusing on loss calculation and detection box selection. The
classification branch employs Binary Cross-Entropy (BCE)
for training, while the regression branch integrates Distri-
bution Focal Loss (DFL) [33] and Complete Intersection
over Union (CIoU) [34] loss functions, aiming to refine the
precision of bounding box predictions.

To enhance the detection accuracy and inference
speed of insulator defects, while simultaneously reducing
the network’s parameter count, this paper presents an
improved network model based on YOLOvS8s, specifically
tailored for insulator defect detection. The proposed
model, named Insulator-YOLOVS8s, introduces three sig-
nificant enhancements and optimizations to the YOLOv8s
architecture:

1) Backbone Feature Extraction Network Improvement:
The original C2f module has been re-engineered
into the C2f-Faster-EMA module, which incorporates
the FasterNet [35] leveraging PConv convolution.
This modification not only accelerates the network’s
detection speed but also reduces the parameter count.
Additionally, by integrating the EMA [36] attention
mechanism with the FasterNet module, the network
more effectively focuses on areas of interest, thereby
enhancing detection accuracy.

2) Neck Network Modifications: The existing PANet
in the YOLOV8s neck has been merged with the
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Bidirectional Feature Pyramid Network (BiFPN) [37]
to create a new feature fusion module, BiFPN-P. This
module downsamples shallow P2 feature maps from
the backbone and merges them with two P3 layers from
the neck, enhancing the extraction of shallow semantic
information. This development not only increases the
detection accuracy of small-target defects in insulators
but also standardizes all channels of BiFPN-P to
256, reducing both computational load and model
size.

3) Optimization of the Loss Function: The loss function
in YOLOv8s has been refined by incorporating the
Inner-IoU [38] concept into the MPDIoU function,
resulting in the creation of the Inner-MPDIoU [39].
This replacement for the original CloU loss function
enhances the model’s bounding box regression preci-
sion and improves detection accuracy for challenging
samples.

The structure of the enhanced network model, Insulator-
YOLOWVSs, is depicted in Figure 2. The detection process
and feature extraction of the proposed Insulator-YOLOv8s
network model are as follows: First, the input insulator
images are preprocessed and resized to 640 x 640 pixels,
ensuring that all images maintain the same dimensions
when entering the neural network. The preprocessed images
then pass through a series of convolutional layers, pooling
layers, and activation functions in the backbone network
to extract multi-level features. Next, the neck network
employs the BiFPN-P feature fusion module to combine the
extracted features at different scales, enhancing the detection
capabilities for both small and large targets. Finally, the
detection head converts the extracted feature maps into
target detection results. This sequence of steps ensures that
YOLOVS can efficiently extract multi-scale features from
the input images and generate accurate target detection
results.
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FIGURE 2. The structure of the enhanced Insulator-YOLOv8s network model.

lll. METHOD
A. FasterNet AND PConv
In the feature extraction phase, CNNs repeatedly compute
and extract semantic information from feature maps. As the
network deepens, redundant information within these deeper
feature maps increases, leading to potential computational
wastage. To address the overhead of parameters and computa-
tions, modern lightweight networks often employ techniques
such as Deepwise Separable Convolution (DWConv) or
Grouped Convolution (GConv). Although these methods
have achieved some success, they may increase the frequency
of memory access, thereby slowing down the inference speed.
Inresponse, Chen et al. have developed a novel architecture
named FasterNet, utilizing a PConv convolution technique to
reduce redundancy in calculations and memory usage, and
to minimize repetitive feature information, thereby boosting
network efficiency. PConv only needs to apply the filter to
a part of the input channels for spatial feature extraction,
and the rest of the channels remain unchanged. It calculates
the first or last consecutive channel as a representative of
the entire feature map. This approach allows either the
first or the last contiguous set of channels to represent the
entire feature map for computation. This selective processing
contrasts with traditional Conv convolutions, which demand
higher computational resources, as detailed in Equation (1).
Assuming a uniform number of channels in both input
and output feature maps, the computational load of PConv,
where the channel ratio r = ¢,/c = 1/4, implies that
PConv’s computational demand is only one-sixteenth that of
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conventional Conv, as shown in Equation (2).
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FIGURE 3. Comparison of PConv and Conv structure. (a) PConv module;
(b) Conv module.

The comparison of PConv and conventional Conv struc-
tures is illustrated in Figure 3. In computational terms, where
F. and F), represent the computational demands of Conv and
PConv respectively, the parameters such as channel height
h, channel width w, and the number of channels ¢ for Conv
and ¢, for PConv, along with the filter size k, determine the
overall computational load. This framework is designed to
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substantially reduce the computational footprint, particularly
in environments demanding high efficiency and speed.

FasterNet =T PConv — Conv — BatchNorm— ReLU — Conv —{)—

FIGURE 4. Network structure of FasterNet.

The FasterNet architecture prominently features the PConv
convolution technique, which plays a crucial role in opti-
mizing computational efficiency. Specifically, each FasterNet
module integrates a 3x3 PConv layer flanked by two 1x1
Conv layers. Between these layers, batch normalization
(BN) and the ReLU activation function are employed to
enhance the network’s non-linear expressiveness and improve
its generalizability. To further refine network performance,
FasterNet incorporates residual connections between the
PConv and Conv layers. These connections facilitate the
efficient flow of information and the propagation of gradients
throughout the network. The detailed structure of the
FasterNet module, including the arrangement of PConv and
Conv layers along with their interconnections, is illustrated in
Figure 4.

B. EMA ATTENTION MECHANISM

The Efficient Multi-Scale Attention (EMA) module is a
cross-spatial learning mechanism designed to focus attention
on areas of interest while preserving information across
network channels. The architecture of the EMA module is
depicted in Figure 5.
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FIGURE 5. EMA attention mechanism.

The operation of the EMA module begins by dividing any
given input feature map X € RE*#*W across the channel
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dimension into G sub-features, X = [Xo, X, ..., Xc-1],
where X; € R%XH *W and G = C. Attention weights for
these grouped feature maps are generated independently via
1 x 1 and 3 x 3 convolution branches.

In the 1 x 1 branch, channel information is first encoded
through dual one-dimensional global average pooling oper-
ations. The resulting features are merged and processed
through a 1 x 1 convolution to produce two parallel
one-dimensional feature encoding vectors, each passed
through a sigmoid activation function. A multiplication
operation then aggregates the attention maps for each channel
group, facilitating the interaction of features across different
channels.

Conversely, the 3 x 3 branch captures local cross-channel
interactive features by adding a 3 x 3 convolution layer,
enhancing the spatial representation of features. This branch
employs a two-dimensional global average pooling to encode
global spatial information before jointly activating the
channel features. The output of this smaller branch is adjusted
to match the dimensions and shape required for activation.
The process concludes with the application of a Softmax
function on the linear transformations, generating the initial
spatial attention map.

This detailed explanation of the EMA module highlights
its dual strategy of integrating both global and local feature
interactions, thus optimizing attentional focus and enhancing
the overall representational capacity of the network.

C. C2f-FASTER-EMA MODULE

The Faster-EMA submodule redesigns the C2f module’s
Bottleneck structure using PConv convolution and the EMA
attention mechanism, as shown in Figure 6. It starts by
applying PConv convolution to a quarter of the input
channels, leaving the rest unchanged. These channels are then
concatenated to minimize redundancy.

Faster-EMA = T PConv3x3 —» CBSs=1k=1— Convixl —»  EMA ﬁ?—»

FIGURE 6. Faster-EMA module structure.

Next, the concatenated output is processed by the Channel
Boosting and Shrinking (CBS) module, which doubles the
number of channels to enhance feature diversity and reduce
latency. The CBS module, which includes 1 x 1 convolutions,
normalization, and activation functions, adjusts dimensions
and maintains the input channel count. Subsequently, the
EMA attention module is integrated to encode global
information and improve cross-spatial feature aggregation,
enhancing multi-scale feature extraction and inter-layer
connectivity.

The C2f-Faster-EMA module, incorporating the Faster-
EMA submodule, initially expands the output channels and
then splits and concatenates them with multiple Faster-EMA
submodules (e.g., n = 3), as depicted in Figure 7. This
structure not only reduces parameters and computational load
but also optimizes gradient flow. The final output feature map
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FIGURE 7. C2f-Faster-EMA module structure.

combines these elements to produce a channel count adjusted
to ¢? using the CBS module.

D. BiFPN-P FEATURE FUSION MODULE
The YOLOv8 model’s neck network employs the PANet
architecture, leveraging semantic information from high-level
feature maps and positional details from lower-level maps,
as shown in Figure 8a. The Bidirectional Feature Pyramid
Network (BiFPN) enhances this by introducing efficient
bidirectional cross-scale connections and weighted fusion,
depicted in Figure 8b. Inspired by BiFPN, this paper proposes
the BiFPN-P module, illustrated in Figure 8c, designed
to improve the information flow between feature maps of
various scales, thus enhancing object detection performance.
BiFPN-P leverages skip-connection capabilities to pre-
serve original feature map information effectively, partic-
ularly beneficial for detecting small objects like insula-
tor defects using the larger-scale P2 feature map. The
module optimizes the network architecture by maintaining
bidirectional connections and streamlining the structure.
It eliminates unnecessary branches while preserving P3,
P4, and P5 channels as feature map outputs. The P2
channel is downsampled and concatenated with the P3
channel from the neck network, enhancing feature richness.
To reduce computational demand, all channels in BiFPN-P
are uniformly standardized, simplifying the structure without
compromising on feature fusion capabilities. This module
employs a weighted fusion method for integrating features,
detailed in the subsequent formula (3).

=2 5t ®
= — i
— € + Zj wj
where w represents the weight of the input feature, ¢ =
0.0001 to prevent numerical instability, and /; represents the
eigenvalue of the channel input. Weighted feature fusion is
a process where a weight is added to each input feature to
balance the features of different channels, allowing for quick
normalization of the features.

E. LOSS FUNCTION IMPROVEMENT

The design of the loss function is critical to the performance
of an object detection model, particularly the bounding box
loss function, which is integral to refining the accuracy
of detections. Bounding box regression aims to adjust the
predicted window of the detector to more closely align with
the actual object’s location. The Intersection over Union
(IoU) metric, as detailed in Equation (4), has become a widely
adopted standard for evaluating the accuracy of predicted
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bounding boxes in the field of object detection.
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where, B and BSt are the center points of the predicted box
and the real box respectively.

Over the years, the IoU has undergone continual iterations
and updates, resulting in the emergence of many novel
bounding box regression loss functions. The bounding box
regression loss function used in YOLOvS8 employs the CloU
loss. The computational formulas for CIoU are presented in
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equations (5), (6), and (7).

,OZ(Bpred, Bgt)
CloU = IoU — (0—2 + av) 5)
4 gt
V= P (arctan % — arctan %) (6)
+v @)

o =

1 —IoU
where, p is the Euclard distance between two central points,
v is a measure of the aspect ratio parameter, c is the diagonal
distance of the smallest closure area that can contain both
the predicted box and the real box, w8’ and hgt represent
the width and height of the real box, w and h represent the
width and height of the predicted box, and « is the orthogonal
balance parameter.

ClIoU accounts for the aspect ratio differences between
predicted and actual bounding boxes, it does not address
the issue of low-quality samples in the dataset. Low-quality
samples refer to anchors that have a poor match with
actual target objects. These low-quality anchors exhibit the
following characteristics: (1) Low IoU values between the
anchor and the ground truth bounding box, resulting in
inadequate coverage of the target object. (2) Significant
differences in size or shape between the anchor and the
target object, leading to poor matching with the target
object. (3) Considerable positional offset of the anchor from
the target object, leading to decreased detection accuracy.
In response to this, Inner-IoU introduces the concept of using
auxiliary bounding boxes to calculate IoU, thereby enhancing
the model’s generalizability. The specific calculation process
is as follows.

bft = 8 w8t x ratio’ B = x84 w8 x ratio
2 2
3
hst ti hst ti
b = ff_ﬂ7 bif:yfq_ﬂ
2 2
)
w X ratio w X ratio
bl:xc‘_Ta brzxc-f-T (10)
h x ratio h X ratio
btzyc_T» bbzyc+T (11
inter = (min(b§’, by) — max(bf', bl))
x (min(bg’, by) — max(b?", b,)) (12)
union = w8’ - A" . (ratio)? - w - h - (ratio)” — inter  (13)
IOUintCI‘ — ﬂ (14)
union

where, xcgt and yft are the horizontal and vertical coordinates
of the center point of the real box, x. and y, are the horizontal
and vertical coordinates of the center point of the prediction
box, ratio is the scale factor, and the value range of ratio is
[0.5, 1.5].

Inner-IoU quantifies the Intersection over Union (IoU)
between auxiliary bounding boxes, enhancing the bounding
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box regression process. When the ratio is less than one, the
auxiliary bounding box is smaller than the actual bounding
box. This reduction in size limits the regression range but
increases the gradient’s absolute value, facilitating faster
convergence for samples with high IoU values. Conversely,
a ratio greater than one indicates that the auxiliary bounding
box is larger than the actual one, which broadens the
effective regression range, benefiting samples with low IoU
values.

MPDIoU improves upon traditional methods by mini-
mizing the distance between corresponding points at the
top-left and bottom-right corners of the predicted and
ground truth bounding boxes. This approach is particularly
effective for both overlapping and non-overlapping scenarios,
enhancing convergence rates as mathematically demonstrated
in Equation (15).

2 Ppred, Pgt 2 prcd, Pgt
MPDIoU:IoU—('O Ci PO G 1)) s

w? + h? w? + h?

where, P‘fred, P‘;"t, P(‘ft, P%t refers to the upper left corner
and lower right corner of the prediction box and the ground
truth box respectively, and pz(gred, P‘%t) refers to the distance
between the corresponding points.

Utilizing the design concept of Inner-IoU, we applied the
Inner-IoU loss to the boundary box regression loss function
of MPDIoU, thereby designing a new Inner-MPDIoU loss
function. The expressions of MPDIoU, Inner-IoU and
Inner-MPDIoU loss functions are shown in equations (16),
(17) and (18), respectively.

LMPDIoU =1 — MPDIoU (16)
Linper-tou = 1 — ToUimner )

Linner-MPDIoU = Lyppiou + IoU — ToU™eT  (18)

IV. EXPERIMENT AND ANALYSIS

A. EXPERIMENTAL ENVIRONMENT AND DATA
COLLECTION

The experimental setup for this study was configured as
follows: The software environment utilized the PyTorch
framework version 2.0 and Python version 3.8 on an Ubuntu
20.04 operating system. The hardware setup included a CPU
with 16 vCPUs (Intel Xeon Platinum 8350C @ 2.60GHz)
and 42 GB of RAM. The GPU was an NVIDIA GeForce
RTX A5000 with 24 GB of memory, using CUDA version
11.7 to accelerate model training. Key parameters were an
input image size of 640x640 pixels, a batch size of 16,
and an initial learning rate of 0.01. The Stochastic Gradient
Descent (SGD) method with a momentum of 0.937 was used
for updating network parameters over 200 epochs, with data
augmentation disabled in the final 10 epochs.

The dataset used in this study is sourced from the Chinese
Power Line Insulator Dataset (CPLID), defect images of
glass insulators from Problem B of the 8th “Teddy Cup”
competition, and insulator defect images obtained from
the internet. The CPLID dataset includes 600 images of
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FIGURE 9. Comparison of effects before and after improvement. (a) Detection effects of YOLOvSs, (b) Detection effects of

Insulator-YOLOvSs.

normal insulators and 248 images of defective insulators,
with a resolution of 1152x864. The “Teddy Cup” Problem
B dataset consists of 40 high-resolution insulator images.
For this study, these high-resolution images were processed
by dividing them into 4x4 grids, and background images
without insulators were removed, resulting in 254 usable
glass insulator images. Due to the relatively small number of
defect images in the insulator datasets, data augmentation was
performed. The augmentation techniques included horizontal
flipping, rotation, and Gaussian blur, as illustrated in Figure 9.
After these augmentations, the dataset expanded to a total of
7,178 images, comprising 4,258 images of normal insulators
and 2,920 images of defective insulators. This significantly
enhanced the model’s robustness in detecting insulator
defects under complex conditions. All augmented images
were annotated using the Labellmg tool, with annotations
categorized as either ‘insulator’ or ‘defect’. The generated
annotation files were then saved in a dedicated folder for
labels.

For model training and evaluation, the dataset was divided
into training, validation, and test sets in a 6:2:2 ratio.
The training and validation sets were used for model
parameter adjustments, while the test set assessed the model’s
performance in real-world applications.
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B. EVALUATION METRICS

To evaluate the detection performance of different network
models, this study utilizes several metrics: Precision (P),
Recall (R), mean Average Precision (mAP), parameters,
frames per second (FPS), and floating point operations
(FLOPs). Precision and Recall are calculated as shown
in formulas (19) and (20), respectively. Average Precision
(AP) is computed by averaging precision across various
recall levels, with higher AP values indicating better average
model accuracy, as detailed in formula (21). The mean
Average Precision (mAP) is the average AP across all
categories, calculated as shown in formula (22). Additionally,
mAP@0.5 refers to the mAP calculated for each category at
an IoU threshold of 0.5.

Tp
R=—" % 100% (19)
Tp+ Fy
Tp
P=—" 100% (20)
Tp+ Fp
1
AP = / P(R) dR 1)
0
N
L AP;
mAP = Z% (22)
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where, Tp represents the number of positive samples
predicted, Fp represents the number of positive samples
wrongly predicted, F epresents the number of negative
samples wrongly predicted, and N represents the number of
categories in the data set.

C. MODEL TRAINING PROCESS

To optimize the training outcomes of the improved YOLOvV8s
algorithm, it is essential to train the model until the loss
curve converges. Under consistent experimental conditions,
the insulator defect detection model is trained using training
set and verification set. Then, the test set is used to evaluate
the overall performance of the model. As illustrated in
Figure 10, the loss curve showed a progressively flattening
decline with increasing training epochs. By the 150th epoch,
the loss fluctuations substantially reduced, and the total loss
decreased to below 1.5, indicating convergence and optimal
performance.

3.5

3.0

2.54

Loss value

2.0

1.54

1.0

0 25 50 75 100 125 150 175 200
Epoch

FIGURE 10. Loss value curve.

The training results, presented in Table 1, revealed
detection accuracies of 92.3% for intact insulators and
96.4% for defective insulators. Recall rates were 81.0% and
91.9%, respectively, with overall accuracy and recall rates
of 94.4% and 86.5%, and an mAP@0.5 of 91.5%. These
results demonstrate that the trained model meets practical
requirements for detecting insulator defects in UAV imagery.

TABLE 1. Results of model training.

Labels Precision(%)  Recall(%) mAP@0.5(%)
insulator 923 81.0 87.8
defect 96.4 91.9 95.3
all 94.4 86.5 91.5

D. ABLATION EXPERIMENT

To validate the enhanced detection performance of the modi-
fied Insulator-YOLOvVS8s model, this study sequentially incor-
porated three improvements into the base YOLOv8s model:
the C2f-Faster-EMA lightweight module, the BiFPN-P
feature fusion module, and the Inner-MPDIoU loss function.
Different modules were added one by one to conduct ablation
experiments under consistent experimental conditions, with
results presented in Table 2.
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FIGURE 11. Comparison curve of ablation experimental results. (a) The
change in curve in mAP@0.5, (b) The change in curve in loss value.

The ablation study reveals the following:

o Group 2: Substituting C2f with the C2f-Faster module
resulted in a minor mAP@0.5 decrease of 0.2%, but
parameters, FLOPs, and model size were reduced by
25.4%, 24.6%, and 24.9%, respectively, indicating a
reduction in network complexity.

o Group 3: Introducing the EMA attention mechanism to
form the C2f-Faster-EMA module led to a significant
mAP@0.5 increase of 0.7% compared to Group 2,
without a substantial increase in parameters or FLOPs,
demonstrating enhanced detection accuracy.

o Group 4: Replacing the PANet with the BiFPN-P
feature fusion module, setting all channels to 256 and
incorporating P2 shallow feature maps, resulted in a
slight mAP@0.5 decrease of 0.2% compared to Group 3,
but network parameters and model size decreased by
28.7% and 27.8%, respectively, indicating effective
model optimization.

o Group 5: Optimizing the CloU loss with Inner-MPDIoU
improved mAP@0.5 by 0.5% compared to Group 4,
without altering model size and FLOPs, demonstrating
higher localization accuracy.

These results illustrate that the sequential incorporation of
these modules and optimizations effectively reduces model
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TABLE 2. Results of model training.

Group Model mAP@0.5(%) ParameterscM) FLOPs(G)  Model Size (M)  FPS(f/s)
1 YOLOv8s 90.7 10.61 28.4 22.5 105
2 YOLOvV8s + C2f-Faster 90.5 7.92 21.4 16.9 115
3 YOLOvV8s + C2f-Faster-EMA 91.2 7.94 21.8 16.9 117
4 YOLOv8s + C2f-Faster-EMA + BiFPN-P 91.0 5.66 21.1 12.2 113
5 YOLOV8s + C2f-Faster-EMA + BiFPN-P +Inner-MPDIoU 91.5 5.66 21.1 12.2 113

(b)

insulator 0.89

— -
insulator 0.84

b
h defect 0.67
insulator 0.8¢ B S

FIGURE 12. Comparison of effects before and after improvement. (a) Detection effects of YOLOv8s, (b) Detection effects of

Insulator-YOLOvSs.

complexity while enhancing detection accuracy and perfor-
mance. Firstly, the C2f-Faster-EMA module leverages PConv
convolution and the EMA attention mechanism. PConv con-
volution improves feature processing efficiency by reducing
redundant information during computation, while the EMA
attention mechanism focuses attention on areas of interest
to enhance detection accuracy. Consequently, this module
significantly reduces network complexity while improving
the mAP@0.5 metric. Secondly, the BiFPN-P feature fusion
module, with its skip connection capability, effectively
preserves the initial information in the feature maps and
achieves higher-level feature fusion. This reduces the missed
detection rate of small insulator targets and decreases the
model’s parameter count. Lastly, the Inner-MPDIoU loss
function distinguishes different regression samples and uses
auxiliary bounding boxes of various scales to compute the
loss, thereby enhancing the localization accuracy of anchor
boxes for detection targets and further improving the accuracy
of insulator defect detection.

The results from the ablation studies demonstrate that the
proposed improvements significantly enhance the model’s
performance, increasing accuracy and inference speed in
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detecting insulator defects. Compared to the baseline
YOLOvVS8s, the enhanced model shows an increase in
mAP@0.5 by 0.8%, a reduction in parameters by 46.7%,
FLOPs by 25.7%, and model size by 45.8%, along with an
increase in FPS by 8 frames. These enhancements ensure that
the improved model meets real-time detection requirements
for aerial images of insulators.

The comparative curves from the ablation studies are
illustrated in Figure 11. Figure 11a shows that each improved
method is gradually improved in mAP@0.5 metric, which
proves that each module adopted can optimize the model.
Figure 11b indicates that the proposed methods achieve
the lowest loss values and fastest convergence rates, which
verifies that the improved model has higher localization
accuracy for detection targets.

E. COMPARISON EXPERIMENT OF DIFFERENT DETECTION
MODELS

To validate the enhanced performance of the algorithm
improved in this study, several mainstream and classic
network models were selected for comparative experiments.
The specific results are presented in Table 3. Models denoted
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TABLE 3. Results of model training.

Model Precision(%)  Recall(%) mAP@0.5(%) Parameters(M) FLOPs(G)  Model Size(MB)
Faster R-CNN 94.8 87.8 92.3 136.7 401.7 167.2
SSD 92.5 82.1 87.9 62.7 26.3 94.6
YOLOVS5s 95.4 83.9 89.5 7.02 15.8 13.8
YOLOV7-tiny 94.3 84.9 90.1 5.73 13.0 11.7
YOLOVS8s 94.5 85.2 90.7 10.61 28.4 22.5
YOLOv8s+MobileNetv3 91.9 81.3 87.3 6.03 15.7 13.0
YOLOv8s+ GhostNet 93.4 82.9 88.7 10.64 19.5 15.8
YOLO-S [25] 95.7 84.5 89.9 6.52 14.9 13.1
IDD-YOLOvV7 [27] 94.8 85.3 90.5 30.5 90.3 58.7
Insulator-YOLOVS8s 94.4 86.5 91.5 5.66 21.1 12.2

as YOLOv8s+MobileNetv3 and YOLOv8s+GhostNet use
MobileNetv3 and GhostNet [40] as the backbone for
YOLOvVSs, respectively. Compared to SSD, YOLOVSs,
YOLOv7-tiny, YOLOvS8s, YOLOv8s+MobileNetv3, and
YOLOV8s+GhostNet, the improved algorithm demonstrated
increases in mAP@0.5 by 3.6%, 2.0%, 1.4%, 0.8%, and
4.2%, respectively, and exhibited higher recall rates. In addi-
tion, compared with the insulator defect detection methods
mentioned in literature [25] and [27], our algorithm not only
has higher detection accuracy, but also has lower parameters
and FLOPs. Although our algorithm slightly underperforms
Faster R-CNN in mAP@0.5, it requires significantly fewer
parameters and FLOPs, making it advantageous for devices
with limited memory. These results affirm that the improved
algorithm achieves the balance of detection accuracy and
lightweight of the model. This is particularly beneficial
for real-time detection applications such as drone-based
surveillance of insulators, where it shows considerable
potential and practical value.

To further demonstrate the detection capabilities of the
Insulator-YOLOVS8s model, three images of insulators against
varied complex backgrounds from the test dataset were se-
lected for evaluation. The results are depicted in Figure 12,
with sub-figure (a) illustrating detection outcomes using the
YOLOvS8s model and sub-figure (b) showing results with the
Insulator-YOLOVS8s model. During experiments, ‘insulator’
anchor boxes determined the boundaries of insulators, while
‘defect’ anchor boxes identified defect boundaries. In sub-
figure (a), the first and third images missed two small defect
targets, and the second image failed to detect a distant, blurred
insulator. Conversely, sub-figure (b) shows that the Insulator-
YOLOV8s model effectively addresses these detection issues.
Therefore, the proposed insulator defect detection model out-
performs the original model.

V. CONCLUSION

To address defect detection in insulators, this study introduces
a lightweight detection network model based on Insulator-
YOLOVvSs. This model effectively resolves issues of complex
network structures and slow detection speeds in existing
algorithms. Comparative and ablation experiments reveal
that replacing the C2f module with the lightweight C2f-
Faster-EMA module in the backbone significantly reduces
the model’s parameter count and computational load, while
enhancing detection precision and inference speed. Addi-
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tionally, the BiFPN-P feature fusion module can effectively
extract the shallow layer information of insulator string and
defects, and it has a good detection effect on small targets
and fuzzy targets. Finally, Inner-MPDIoU, as the boundary
box regression function of the model, strengthens the model’s
learning ability of difficult samples, and further improves the
accuracy of insulator defect location.

Experimental data indicate that, compared to the
YOLOvV8s model, the Insulator-YOLOvS8s network reduces
parameter count by 46.7%, computational demand by 25.7%,
and model size by 45.8%, while improving mAP@0.5 by
0.8% and increasing FPS by 8 frames. Therefore, the
improved method can effectively reduce the model com-
plexity and improve the detection accuracy and speed.
The improved model can realize the real-time detection of
insulator defect image by UAV.

Insulator defect detection tasks currently face numerous
challenges. Existing methods often fail to detect insula-
tors in images with particularly complex backgrounds or
occluded targets. Additionally, there is a scarcity of publicly
available insulator defect images. The dataset used in this
paper was primarily expanded through image augmentation
techniques, lacking a sufficient variety of defect samples for
comprehensive model training and testing. Therefore, one
of the future research goals is to introduce various back-
ground interferences or use advanced image augmentation
techniques to expand the dataset, enabling the model to better
adapt to different complex background situations. Moreover,
future research could focus on applying techniques such as
knowledge distillation or model pruning to make the model
more lightweight, thereby further enhancing its detection
speed and efficiency.
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