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ABSTRACT The rigorous safety verification of control systems in critical applications is essential, given
their increasing complexity and integration into everyday life. Simulation-based falsification approaches play
a pivotal role in the safety verification of control systems, particularly within critical applications. These
methods systematically explore the operational space of systems to identify configurations that result in
violations of safety specifications. However, the effectiveness of traditional simulation-based falsification is
frequently limited by the high dimensionality of the search space and the substantial computational resources
required for exhaustive exploration. This paper presents BEACON, a novel framework that enhances the
falsification process through a combination of Bayesian optimization and covariance matrix adaptation
evolutionary strategy. By exploiting quantitative metrics to evaluate how closely a system adheres to
safety specifications, BEACON advances the state-of-the-art in testing methodologies. It employs a model-
based test point selection approach, designed to facilitate exploration across dynamically evolving search
zones to efficiently uncover safety violations. Our findings demonstrate that BEACON not only locates a
higher percentage of counterexamples compared to standalone BO but also achieves this with significantly
fewer simulations than required by CMA-ES, highlighting its potential to optimize the verification process
of control systems. This framework offers a promising direction for achieving thorough and resource-
efficient safety evaluations, ensuring the reliability of control systems in critical applications. A Python
implementation of the algorithm can be found at https://github.com/SAILRIT/BO-CMA.

INDEX TERMS Falsification, Bayesian optimization, covariance matrix adaptation evolutionary strategy,
safety-critical systems.

I. INTRODUCTION
The growth of cyber-physical systems, such as autonomous
vehicles and robotics, has significantly raised the importance
of ensuring controllers operate safely and reliably [1].
Traditional approaches to safety verification, such as formal
verification, simulation-based testing, and model checking,
each contribute valuable insights but also face significant
limitations [2]. Formal verification methods, grounded in
rigorous mathematical proofs, offer a high degree of assur-
ance by proving system properties. However, their practical
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application is often constrained by the complex nature of
control systems and the computational intensity required to
analyze large state spaces—a phenomenon known as the state
explosion problem. The state explosion problem refers to the
exponential growth of the number of states in a system as its
complexity increases, making exhaustive exploration compu-
tationally infeasible. This challenge limits the scalability of
formal verification techniques, particularly in the context of
high-dimensional and nonlinear control systems [3]. Model
checking automates the process of verifying whether a sys-
tem’s model meets specified criteria [4]. While effective for
discrete systems, model checking struggles with scalability
and the complexities of systems with continuous states.
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Simulation-based falsification, on the other hand, has
become an essential aspect of safety validation in control
systems, particularly in safety-critical systems [5], [6],
[7]. Falsification pertains to the systematic discovery of
counterexamples, or conditions under which the system fails
to meet safety specifications. It serves as a tool in the
design-time assurance process, especially when handling
complex systems where conventional verification approaches
fall short due to nonlinearities and high dimensionality.
Software tools such as S-TaLiRo [8], [9], Breach [10],
C2E2 [11], and DryVR [12] have been instrumental in
system falsification. These tools are designed to automate and
facilitate the falsification process. They provide frameworks
for systematically exploring the system’s behavior under
various conditions, seeking configurations that lead to spec-
ification violations. Various falsification methods, including
search-based testing [13], [14], [15], [16], [17], [18], [19],
optimization-based testing [20], [21], [22], [23], [24], [25],
[26] and machine learning approaches [27], [28], [29], [30]
offer different strengths.

Several works have demonstrated the potential of hybrid
methodologies in the domain of safety verification [31],
[32], [33]. Some approaches have integrated symbolic
methods, which provide strong guarantees on correctness
and completeness, with numeric methods, known for their
efficiency and scalability [34]. The integration of machine
learning algorithms with traditional search or optimization-
based falsificationmethods has been explored to predict areas
of the parameter space more likely to yield counterexam-
ples [35]. This predictive capability can guide the falsification
process more effectively, reducing the number of simulations
required. Approaches that adaptively adjust their search have
shown promise [36], [37].

Despite these advancements, a significant gap remains in
the ability to efficiently identify safety violations in complex
control systems. Many of the existing hybrid approaches still
face challenges in balancing exploration and exploitation,
dealing with high-dimensional spaces. We propose the
BEACON framework, a Bayesian Evolutionary Approach
for COuNterexample Generation. It is designed to tackle
these challenges by integrating Bayesian optimization (BO)
with covariance matrix adaptation evolutionary strategy
(CMA-ES) into a cohesive hybrid strategy.

The rationale behind the integration of BO and CMA-ES
in BEACON is twofold. At its core, BO excels in efficiently
exploring search spaces by using a probabilistic model,
typically a Gaussian process (GP), to guide the search
process. This model-based approach enables BO to make
informed decisions about where to sample next, balancing
the trade-off between exploration (searching in new areas)
and exploitation (focusing on areas with known potential).
However, BO’s performance can be limited by the accuracy
of the surrogate model and its tendency to focus too narrowly
on regions of perceived interest, potentially overlooking other
critical areas of the search space. CMA-ES addresses some of

the limitations inherent in BO by employing an evolutionary
strategy that adaptively refines the search based on the fitness
of previous candidates. CMA-ES maintains a multivariate
Gaussian distribution over the search space, characterized by
a mean vector and a covariance matrix. The mean vector
represents the current best estimate of the optimal solution,
while the covariance matrix captures the correlations and
scaling of the search distribution. By updating the mean
and covariance based on the most promising solutions
in each iteration, CMA-ES can dynamically adjust the
search distribution and adapt to the structure of the search
space. This ability to adapt the search distribution based
on evolutionary principles allows CMA-ES to effectively
explore the search space.

The integration of BO and CMA-ES in BEACON com-
bines the strengths of both approaches while mitigating
their individual limitations. BO provides a global search
mechanism, efficiently exploring the search space and
identifying promising regions based on the surrogate model.
CMA-ES, on the other hand, brings a powerful local
search capability, adaptively refining the search within
the identified regions and effectively navigating complex
fitness landscapes. By alternating between these two search
strategies, BEACON can strike a balance between explo-
ration and exploitation, leveraging the surrogate model
of BO to guide the global search and the evolutionary
adaptation of CMA-ES to refine the solutions locally.
This synergistic combination allows BEACON to efficiently
explore high-dimensional search spaces, handle multi-
ple local optima, and converge towards globally optimal
solutions.
Our Contributions: In this paper, we present the following

contributions:
• We propose a novel framework that synergistically
merges BO and CMA-ES to efficiently uncover coun-
terexamples in complex, high-dimensional uncertainty
spaces.

• We conduct an extensive evaluation of our framework,
emphasizing its adaptability and effectiveness in refin-
ing the search strategy for optimal falsification results.

• We release the BEACON framework as open-source
software to facilitate the adoption of our approachwithin
the safety verification community.

Paper Organization: Section II presents the foundational
background to the proposed framework and the problem
statement. Section III describes the BEACON framework.
Section IV presents our experimental setup, results, and
discussion. Finally, Section VI concludes the paper with a
summary of the findings and future works.

II. PRELIMINARIES AND PROBLEM SETUP
A. SIGNAL TEMPORAL LOGIC
Specifications consist of properties (predicates) ψ over a
continuous time signal. These properties are expressed in the
formal language of signal temporal logic (STL) [38]. STL
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TABLE 1. Reference of symbols commonly used throughout the paper.

TABLE 2. Quantitative semantics.

formulas are defined by:

ϕ := ⊤ | ψ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |

G[a,b]ϕ | F[a,b]ϕ | ϕ1U[a,b]ϕ2 (1)

Besides ψ which stands for a predicate or requirement, each
of the following symbols represents a Boolean operator. ⊤
denotes the true operator;¬ denotes negation;∧ denotes and;
∨ denotes or.G[a,b] denotes globally true (always) over a time
range [a, b] where a, b ∈ R[0,∞] and a ≤ b. F[a,b] denotes
eventually. Eventually states that the specification is true at
some point within the time range. U[a,b] denotes until which
states that ϕ1 remains true until ϕ2 has been met.
Quantitative STL Semantics: STL formulas reveal whether

a specification has been violated or not. By incorporating
quantitative semantics, defined in Table 2, one acquires
a measure of robustness, how well a signal follows the
specification [39]. A positive robustness value indicates
the specification is satisfied; a negative robustness value
indicates the specification has been violated.

B. BAYESIAN OPTIMIZATION
BO is a sample-efficient, global optimization technique
for expensive-to-evaluate, black-box objective functions
that lack explicit analytical forms or are non-convex and
non-differentiable, widely applied across various domains
including machine learning, robotics, control, and design
optimization problems [40], [41], [42], [43], [44]. BO has
emerged as a tool for falsification tasks, where the goal
is to discover system configurations that lead to unde-
sirable behaviors or safety specification violations [23],
[45], [46]. Given the unknown relationship between the
robustness function and environment parameters, BO uses
surrogate modeling, typically through Gaussian processes
(GP), to approximate this function based on observed data.

Consider we have a set of n observations from previ-
ously evaluated environmental parameters, represented as
yn =

[
ρ̂ϕ (e1) , . . . , ρ̂ϕ (en)

]
at environmental parameters

e1, . . . , en. Here, ρ̂ϕ(e) = ρϕ(e) + ω incorporates Gaussian
noise ω ∼ N

(
0, σ 2

)
. The posterior distribution of ρϕ(e) is

characterized by the following equations for the mean mn(e),
covariance kn

(
e, e′

)
, and variance σn(e):

mn(e) = kn(e)(Kn + Inσ 2)−1yn (2)

kn(e, e′) = k(e, e′)− kn(e)(Kn + Inσ 2)−1kTn (e
′) (3)

σ 2
n (e) = kn(e, e′) (4)

The covariance between a new set of environmental parame-
ters and the previous ones is captured in the vector kn(e) =
[k (e, e1) , . . . , k (e, en)]. Here, σ 2

n (e) denotes the variance, In
represents the identity matrix, and Kn refers to the kernel
matrix with entries

[
kn

(
e, e′

)]
.

C. COVARIANCE MATRIX ADAPTATION EVOLUTIONARY
STRATEGY (CMA-ES)
The covariance matrix adaptation evolutionary strategy
(CMA-ES) is a powerful optimization algorithm that belongs
to the class of evolutionary algorithms. It is particularly
well-suited for solving high-dimensional, non-convex opti-
mization problems [47]. Central to CMA-ES is its strategy of
exploiting the correlations among variables to steer the search
towards the global optimum efficiently. This is achieved
through a mechanism that dynamically adapts the search
strategy based on the history of previous evaluations.

CMA-ES initiates its process by generating a population
of P candidate solutions e1, . . . , eP, each representing a set
of environmental parameters. These candidates are sampled
from a multivariate normal distribution defined as:

ei ∼ N (µ, λ2C), i = 1, . . . ,P (5)

whereµ represents the mean vector,C denotes the covariance
matrix capturing the relationship between variables, and λ
signifies the scale or step size of the search. To refine its
search strategy, CMA-ES evaluates the generated candidates
based on the robustness function ρϕ(e) and ranks them
according to their performance, from the least to the most
robust outcomes:

ρϕ(e1) ≤ . . . ≤ ρϕ(eP) (6)

Subsequently, the algorithm updates the mean µ and the
covariance matrixC based on the top-performing candidates,
identified as Pbest , where Pbest ≤ P. The updated mean and
covariance matrix are calculated as follows:

µ =
1

Pbest

Pbest∑
i=1

ei (7)

σ 2
nn′ =

1
Pbest

Pbest∑
i=1

(ei,n − µn)(ei,n′ − µn′ ), (8)
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where σ 2
nn′ represents the elements of the covariance matrix

C, and ei,n and µn are the nth components of the ith environ-
mental parameter vector and the mean vector, respectively.

This adaptive process allows CMA-ES to iteratively
refine its search distribution, progressively focusing on
more promising regions of the search space. The algorithm
continues this evolutionary cycle, adjusting µ and C with
each generation, until a predefined termination criterion is
met.

D. PROBLEM STATEMENT
Given a system under test (SUT) embedded within a high-
dimensional parameter space UG ⊆ Rn, the goal of
falsification is to identify sets of environmental parameters
e ∈ UG that lead the SUT to violate one or more predefined
safety specifications. These safety specifications are formal-
ized as constraints over the system’s output trajectories S(e),
where S : Rn

→ Rm is a function mapping environmental
parameters to system responses. A safety specification ϕ
is inherently defined in relation to the trajectories of a
SUT. We interpret ϕ to include all finite-horizon trajectories
S(e) that adhere to the defined system safety requirements.
A trajectory S(e), resulting from a set of environmental
parameters e, is deemed compliant with the specification ϕ if
and only if S(e) ∈ ϕ. This condition is denoted as S |H ϕ,
meaning that ϕ evaluates the trajectory S(e) as satisfying
the safety specification. The structure of ϕ is derived from
multiple individual conditions, termed predicates. These
predicates act as the elemental logical units that, through a
combination of logical operations, construct the overall safety
specification. Each predicate µ is considered a continuous
function evaluated along the trajectory S(e). Satisfaction of
a predicate occurs when µ(S(e)) > 0, indicating adherence
to the safety criterion; otherwise, the predicate—and by
extension, the trajectory—is considered falsified. Instead of
merely assessing the Boolean satisfaction of a predicate,
the notion of robust or quantitative semantics is introduced
to measure the extent of satisfaction [39]. This approach
introduces a more refined safety assessment by associating
a real-valued function ρφ(S(e)) with each predicate, which
is evaluated along the system trajectory S(e). This function
serves as a ‘‘measure’’ of how significantly the safety
specification is satisfied. The falsification task can thus be
represented as an optimization problem:

argmin
e

ρϕ (S (e)) (9)

where ρϕ(S(e)) is a robustness metric quantifying the degree
of safety specification violation by the system’s output for a
given set of parameters e.
The BEACON framework addresses this optimization prob-

lem through a hybrid strategy that combines the exploratory
strengths of BO with the adaptive capabilities of CMA-
ES. Specifically, the framework partitions the global search
space UG into localized search zones UL , each potentially
containing parameter sets that lead to specification violations.

1) BAYESIAN OPTIMIZATION COMPONENT
BO is applied within each UL to efficiently identify parameter
sets that are likely to violate safety specifications. This is
achieved by constructing a probabilistic model (e.g., a GP)
of the robustness metric ρϕ(S(e)) and using acquisition
functions to guide the selection of new parameter sets for
evaluation.

2) COVARIANCE MATRIX ADAPTATION EVOLUTIONARY
STRATEGY (CMA-ES) COMPONENT
CMA-ES is used to adaptively refine the search within UL
based on the outcomes of previous evaluations. It adjusts the
sampling distribution (mean and covariance) to concentrate
future simulations in regions of the parameter space more
likely to uncover falsifying examples.

III. METHODOLOGY
This section details the BEACON framework, a novel
approach that integrates BO andCMA-ES strategy to advance
the falsification of control systems. The framework is
designed to efficiently identify counterexamples in complex,
high-dimensional search spaces characterized by numerous
local optima. By synergistically combining the explorative
capabilities of BO with the global search strategy of CMA-
ES, BEACON aims to significantly reduce the number of
simulations required to locate violations of safety specifica-
tions. The core strategy is depicted in Figure 1.

The methodology uses a strategic division of the global
search space, UG, into localized search zones, UL ⊆

UG, each defined by the adaptive mechanisms inherent in
CMA-ES. This partitioning enables focused exploration and
exploitation within subsets of the search space. Within each
localized search zone UL , the BO constructs a GP model
to serve as a surrogate for the system’s robustness function,
ρϕ(e). To guide the selection of new test points within
UL , the framework uses the lower confidence bound (LCB)
acquisition function, balancing the exploration of unexplored
regions against the exploitation of known areas of interest:

en = argmin
e∈UL

mn−1(e)− ξ
1
2 σBOn−1(e) (10)

where ξ dynamically adjusts the focus between exploring
new areas and exploiting existing knowledge to efficiently
converge on global minima.

After simulating a set of P environmental parameters
within the current localized search zone UL , the framework
applies CMA-ES’s adaptive mechanisms to update the search
strategy. This process begins by evaluating the robustness
of the Pbest performing parameters, which then informs the
calculation of the mean vector,µ, and the variance, σ 2. These
statistical parameters are crucial for shaping the boundaries of
the next local search zones:

UL =
n⋃
i=1

[µi − σi, µi + σi] (11)
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FIGURE 1. Schematic Representation of the BEACON Falsification Framework. This framework constructs a model
for evaluating system specifications within a defined local search zone, UL ⊆ UG, as highlighted by the red box.
Over P iterations, BO is used to select new environmental parameters for simulation within UL. Upon exhausting
the iteration budget P , the framework uses the Pbest environmental parameters to derive the mean and standard
deviation, using principles from the CMA-ES, as indicated in blue. These statistical measures are then used to
determine the upper and lower bounds of the subsequent local search zone, setting the stage for the next cycle of
the process.

The Eq. 11 shows how the BEACON framework dynamically
tailors local search zones, UL , through a union of intervals
across each dimension of the input space. Each interval
is centered around the mean, µi, of the best-performing
parameters, expanded by their standard deviation, σi. This
adjustment ensures that the search zones are not only
concentrated around the most informative regions identified
thus far but also sufficiently broad to explore areas that
may harbor undiscovered counterexamples. Figure 2 provides
a visual illustration of how the local search zones evolve
over three consecutive iterations in a 2-dimensional global
search space. Each subsequent search zone contracts around
the Pbest environmental parameters highlighted in the prior
search zone. The visualization helps to understand how the
BEACON framework progressively refines the search regions
based on the information gained from previous iterations,
enabling a more targeted exploration of the parameter space.

In the iterative exploration of local search zones by
BEACON, we closely monitor the evolution of robustness
values to identify any signs of stagnation. Stagnation occurs
when the algorithm fails to find lower robustness values in
successive local search zones, indicating a potential trap in a
local optimum or having reached the vicinity of the global
minimum. Mathematically, this is evaluated by comparing

the minimum robustness values between consecutive search
zones, as follows. Let ẑ = [e(g)1 , . . . , e

(g)
P ] denote the set

of environmental parameters evaluated in the current search
zone (g), and ŷ = [e(g−1)1 , . . . , e(g−1)P ] represent those from
the previous zone (g − 1). The corresponding robustness
vectors for these sets are z = [ρϕ(e

(g)
1 ), . . . , ρϕ(e

(g)
P )] and

y = [ρϕ(e
(g−1)
1 ), . . . , ρϕ(e

(g−1)
P )], respectively. Stagnation is

formally detected when:

min(z) > min(y) (12)

implying no improvement in robustness has been achieved in
the most recent search zone compared to its predecessor.

To address potential stagnation and avoid exhaustive focus
on suboptimal regions, the BEACON framework incorporates
a stagnation monitoring mechanism. This mechanism acti-
vates when the search fails to yield improved robustness
outcomes over successive iterations. A predetermined thresh-
old, δ, represents the maximum number of consecutive local
search zones allowed without observing any improvement.
The counter, γ , tracks the number of such zones, and
once γ equals or exceeds δ, it triggers a shift. This
shift entails relocating the search focus to an unexplored
area of the global search space, UG, in pursuit of new
counterexamples.
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FIGURE 2. Illustration of the BEACON methodology applied within a 2-dimensional global search space UG = [0, 20]2. Each subfigure
shows the evolving boundaries of local search zones, with the highlighted points representing the Pbest environmental parameters
selected to refine the subsequent search space. This sequential adaptation showcases the framework’s progression through the search
space to efficiently explore regions of interest.

Algorithm 1 BEACON: Bayesian Evolutionary Approach for
COuNterexample Generation
1: Input: global search space UG, global simulation budget
b, search zone simulation budget P, and stagnation factor
δ

2: Initialize: simulate random samples
3: Until simulation count = b do:
4: for i = 1ton do
5: µ← 1

Pbest

∑Pbest
i=1 ei ▷ Calculate CMA-ES mean

6: σ 2
n ←

1
Pbest−1

∑Pbest
i=1 (ei,n − µn)2 ▷ Calculate

CMA-ES variance
7: UL ←

⋃n
i=1[µi − σi, µi + σi]

8: end for
9: Initialize local GP model of UL

10: for p = 1toP do
11: en← argmine∈UL mn−1(e)− ξ

1
2 σBOn−1(e) ▷ Select

parameters with BO
12: Update GP model with ρϕ(e) ▷ Refine GP model

with new data
13: end for
14: Previous search zone: y← [ρϕ(e

(g−1)
1 ), . . . , ρϕ(e

(g−1)
P )]

15: Current search zone: z← [ρϕ(e
(g)
1 ), . . . , ρϕ(e

(g)
P )]

16: if min(z) ≤ min(y) then ▷ Stagnation monitor process
17: Update UL
18: else
19: γ ← γ + 1
20: if γ ≥ δ then
21: Shift UL to an unexplored region of UG
22: end if
23: end if

We present the BEACON framework in Algorithm 1.
The algorithm initiates with a set of random samples for
simulation and records the associated robustness values.
Using equations from CMA-ES, the mean and variance are
calculated to determine the boundaries of the subsequent
local search space (line 6 − 8). Within this new local
search space, BO selects environmental parameters for
simulation based on the LCB acquisition function (line 11).
After simulating the chosen parameters, a GP model is
constructed to map the inputs to their robustness values

(line 12). If stagnation is observed, the search is redirected
to a new region (line 16− 23).

IV. EXPERIMENTAL SETUPS AND CASE STUDIES
We evaluate the proposed method against vanilla BO and
CMA-ES on several benchmark problems. For each case
study, the methods are exposed to the same uncertainty
space UG. BEACON and vanilla BO are subject to simulation
budgets of 100, 200, 300, 400, and 500 where they
perform 150 tests for each budget. CMA-ES is subject to
150 tests per case study and is not restricted to a simulation
budget.

For BEACON, we choose several user-defined settings prior
to testing that remain consistent across experiments. The local
search zone simulation budget P is set to 20 simulations. For
this study, BEACON uses the top quarter Pbest = 5 of the
environmental parameters to calculate UL . Finally, we set the
stagnation constant δ = 2 so that BEACON can effectively
exploit local areas, but retain resources for wider exploration.
Vanilla BO starts with an initial sampling of 20 parameters,
the same as with BEACON. Finally, each generation of CMA-
ES performs 20 simulations from which the top 5 are used to
adapt the covariance matrix.

A. CASE STUDY 1: MOUNTAIN CAR
The mountain car environment is an autonomous car situated
at the bottom of a valley on a one-dimensional track. The
car’s objective is to ascend the right hill by employing
acceleration in both the left and right directions. The car
has two observable states: its position x and its velocity ẋ.
We consider four sources of uncertainty whose ranges are
provided in Table 3. The uncertain parameters are the initial
position x, initial velocity ẋ, the car’s maximum velocity
ẋmax , and maximum power magnitude ρmax .

The car is controlled by a policy trained with deep
deterministic policy gradient (DDPG) [48]. The controller
is subject to two safety specifications simultaneously rep-
resented in STL format in Table 3. The first specification
states that the car’s velocity should always remain below
0.0735 when its position is less than−1.1 or greater than 0.5.
Second, the car’s velocity should remain below 0.055 until it
has reached the position 0.1.
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TABLE 3. Mountain car specifications and environmental parameters.

TABLE 4. Automatic transmission specifications and environmental
parameters.

B. CASE STUDY 2: AUTOMATIC TRANSMISSION
The automatic transmission environment is a scenario that
simulates the speed of a 4-gear vehicle with an automatic
transmission. The simulation has two observable properties:
the vehicle’s speed ẋ and engine speed ω. We consider four
sources of uncertainty whose ranges are provided in Table 4.
We consider two input signals, the throttle angle θthr and
brake angle θbrk .

We explore the uncertainty space for a combination of
environmental parameters that cause the vehicle to violate
one of the following two specifications presented in Table 4.
First, the vehicle’s speed should always remain below 80mph.
Second, the engine speed should always remain below
1400rpm.

C. CASE STUDY 3: NEURAL NETWORK CONTROLLER
This environment models a magnet levitating above an
electromagnet, maintaining a specific reference height. The
simulation tracks the height h of the magnet, with the
only input being the reference position. Thus, the model
incorporates eight sources of uncertainty, detailed in Table 5.
We evaluate the nonlinear autoregressive moving average

(NARMA) neural controller’s capability to move the magnet
to a reference position by controlling the current [49]. The
neural controller consists of a neural network with nine
hidden layers. The controller is subjected to two safety
specifications given in STL format in Table 5. First, the
controller should always keep the magnet below 3.9mm.
Second, the magnet should always settle to a new reference
position within two seconds. This can be reworded as the
magnet should eventually remain within the specified range
of the reference position for one second.

D. CASE STUDY 4: F16-GROUND COLLISION AVOIDANCE
This environment simulates the F-16 control system, with a
specific focus on the aircraft’s ground collision avoidance

inner-loop controller, modeled by 16 continuous piece-
wise nonlinear differential equations [50]. Although the
F-16 environment features a wide range of observable
properties, such as roll, pitch, and yaw angles, the primary
concern for the falsification problem is the aircraft’s altitude.

We falsify the controller against five sources of uncertainty
listed in Table 6. The uncertainty parameters consist of the
altitude alt , initial velocity ẋ, roll angle θ , pitch angle φ, and
yaw angle ω. The controller is subject to the singular safety
specification that the aircraft should always avoid colliding
with the ground during evasive maneuvers.

E. CASE STUDY 5: AIR FUEL CONTROL
The air fuel control system model captures the dynamics
of fuel regulation, focusing on the air-fuel ratio in response
to varying inputs such as throttle angle and engine speed.
This model allows us to analyze the behavior of the air-
fuel mixture across different operational conditions [51]. The
uncertainty space consists of 11 parameters whose ranges
are given in Table 7. The system is subjected to one safety
parameter provided in Table 7. The specification states that
the air-fuel ratio should always remain with 0.7% of the
value of 14.7, otherwise, the system may emit undesirable
quantities of noxious fumes.

V. RESULTS AND DISCUSSION
We present the violation rates and simulations required to
locate a violation for each experiment from BEACON, BO,
and CMA-ES in Table 8. The highlighted numbers indicate
the highest violation rate achieved within a case study
between BEACON and BO. Numbers in bold represent the
higher violation rate obtained in each experiment. The results
for BEACON and BO are visualized in Figure 3 for each case
study.

In our initial case study, the mountain car scenario,
BEACON consistently outperforms BO. BEACON achieves an
average violation rate of 77.5% compared to 73.7% for BO.
In particular,BEACON achieves a higher violation rate in three
of the five experiments which have simulation budgets of
100, 200, and 500. CMA-ES, while exhibiting a violation
rate of 86.9%, is accompanied by a significant resource
demand of 4788 simulations, in contrast to BEACON’s
highest performance at 500 simulations with a violation
rate of 83.2%. BEACON’s results are within 3.7% of those
achieved by CMA-ES, all while utilizing only a tenth of the
resource budget. Similar trends are recorded in the automatic
transmission environment. Here, BEACON maintains an
average violation rate of 74.8%, surpassing BO’s 73.8%.
In this case study, BEACON secures higher violation rates in
three of the experiments given 100, 200, and 400 simulations.
CMA-ES, with an average violation rate of 83.7%, comes
with a cost of 4744 simulations. In contrast, BEACON reaches
its highest rate with 200 simulations at 76.5%. BEACON,
requiring only 4% of the simulations to achieve within 7.2%
of CMA-ES’s violation rate.
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TABLE 5. Neural network specifications and environmental parameters.

FIGURE 3. The illustration of violation rate vs. simulation budget for the mountain car, automatic
transmission, neural network, F16, and air fuel control case studies. In these plots, BEACON’s results are
presented in blue, and BO’s results are presented in red. BEACON performs better than BO at lower
simulation budgets in the cases of mountain car and automatic transmission. In the air fuel control case
study, BEACON and BO performed similarly across each budget. In the neural network and
F-16 environments, BEACON achieves higher violation rates for each budget than BO.

TABLE 6. F16 specifications and environmental parameters.

BEACON demonstrates its second-highest performance in
the neural network environment, consistently outperforming
BO. BEACON achieves an average violation rate of 85.9%
compared to BO’s 77.5%. Although CMA-ES reaches its
peak performance with a violation rate of 91.9%, this

TABLE 7. Air fuel control specification and environmental parameters.

comes at the expense of an average of 1157 simulations.
BEACON, on the other hand, achieves a rate of 87.5% with
200 simulations, delivering results within 4.4% of CMA-ES
with only a fifth of the resources.

In the F-16 case study, BEACON shines, achieving an
average violation rate of 86.1%. This rate is 7% higher
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TABLE 8. Results for each case study found with BEACON, BO, and CMA-ES.

FIGURE 4. Comparative analysis of violation rates across case studies.

than that of BO’s result and 36% higher than CMA-ES’s
53.9%. Notably, BEACON outperforms BO and CMA-ES
in each experiment. BEACON’s lowest rate in this scenario,
84.2%, is achieved with 200/300 simulations, while BO’s
highest rate is 81.4% at 500 simulations, falling 2.8% short
of BEACON’s performance with a 1.5 times larger budget.

In the final case study, air fuel control, all three methods
obtain similar rates. On average, BEACON achieves a rate
of 15.44%, compared to 15.24% with BO, and 16.9%
with CMA-ES. BEACON outperforms BO in three out of
five experiments when given 200, 300, and 500 simulation
budgets. CMA-ES requires 14363 simulations on average to
achieve its 16.9% violation rate. BEACON performs within
1.4% of CMA-ES with 3.5% of the simulations. Across the
five experiments for each case study, BEACON consistently
outperforms BO by an average margin ranging from 0.2%

TABLE 9. Comparison of violation rates and simulation counts across
different methodologies for each case study. The table showcases the
highest violation rates attained by BEACON, BO, and CMA-ES. Parentheses
indicate the number of simulations conducted to reach the noted
violation rate. Green highlights denote instances where BEACON or BO
demonstrates superior performance within the comparison, whereas
yellow highlights emphasize case studies where CMA-ES outperforms.
Orange highlights signify the scenarios demanding the highest simulation
effort to achieve the reported outcomes.

to 8.3% as depicted in Figure 4. Table 9 provides further
insight for our comparison by presenting the highest violation
rate achieved with each method along with the required
simulation budgets (in parentheses). In Table 9, green
highlighting indicates the highest violation rate achieved
by either BEACON or BO in a given case study, yellow
highlights denote instances where CMA-ES achieved the
highest violation rate, and red highlights signify the largest
simulation budget required by the three methods. In three
of the case studies, CMA-ES achieves the highest violation
rate. However, in all cases, this approach requires far more
resources to achieve its results compared to BEACON which
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was discussed in each case study. BEACON achieves the
highest rate out of the three methods in the F-16 environment,
and higher rates than BO in mountain car and neural
network. From the data, we can observe that BEACON tends
to achieve its highest rates with 200 or fewer simulations
compared to BO whose highest rates occur mostly from
400− 500 simulation budgets.

Several key conclusions can be drawn from these results.
BEACON excels in situations where locating violations can
prove challenging, such as in the neural network and
F-16 environments. Additionally, BEACON operates more
efficiently at lower simulation budgets, primarily due to its
ability to perform multiple uncertainty space searches before
exploring unknown regions. In contrast, BO tends to shift
from exploration to exploitation as it acquires information.
Overall, BEACON performs on par with or better than BO,
depending on the circumstance, and is capable of achieving
similar results to CMA-ESwith significantly fewer resources.
Limitations: The BEACON framework, while promising,

has certain limitations that should be acknowledged and
addressed in future research. One limitation lies in the
assumption of continuous and smooth robustness functions.
In real-world systems, the robustness function may exhibit
discontinuities or non-smooth behavior, which can impact the
effectiveness of the GP model and the overall search process.
Discontinuities can arise from abrupt changes in system
dynamics or from the discrete nature of certain environmental
parameters. Another limitation of BEACON is its scalability
to high-dimensional search spaces. As the number of
dimensions increases, the volume of the search space grows
exponentially, making it challenging to efficiently explore
and identify counterexamples. The curse of dimensionality
can hinder the performance of BEACON, particularly in
systems with a large number of environmental parameters.
This limitation calls for the development of advanced
sampling techniques, dimensionality reduction methods, and
efficient surrogate models that can handle high-dimensional
spaces.

VI. CONCLUSION
In this work, we have proposedBEACON, a novel hybrid falsi-
fication framework that integrates Bayesian optimization and
covariance matrix adaptation evolutionary strategy, aiming to
enhance the efficiency of safety violation detection in control
systems. BEACON segments the global parameter space into
localized search zones, enabling the generation of accurate
surrogate models to guide the selection of environmental
parameters more effectively. Through comprehensive evalu-
ation across diverse case studies, BEACON has demonstrated
its capability to not onlymatch but in certain instances surpass
the efficacy of its constituent methodologies in identifying
counterexamples.
Future Work: There are several exciting avenues for

future research and development that can further enhance
the capabilities and performance of the BEACON. One
crucial direction is to investigate the integration of dynamic

parameter ranges from the CMA-ES component into the BO
process. Currently, the BO assumes fixed uncertainty spaces
for each parameter, which may not fully capture the evolving
nature of the search space as it is adapted by CMA-ES.
By incorporating techniques to update the surrogate model
and acquisition function based on the dynamic parameter
ranges, BEACON could more accurately model the search
space and make informed decisions during the falsification
process. This integration has the potential to significantly
improve the efficiency of the framework in discovering
counterexamples. Another promising avenue is to explore
the application of BEACON to a wider range of complex
scenarios and safety specifications. Conducting extensive
experiments with diverse and challenging falsification tasks
will provide valuable insights into the scalability, robustness,
and generalizability of the framework. By considering a
broader spectrum of specifications and system complexities,
we can assess the performance of BEACON in real-world
settings and identify areas for further improvement.
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