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ABSTRACT Underwater target detection has developed greatly in recent years. However, the accuracy
of underwater target detection is limited by the complex underwater environment. Based on YOLOv7,
we propose an underwater object detection algorithm model to improve precision and confidence (BiFusion
Neck module and a MPDIoU loss function). Compared to traditional networks module, the Bifusion Neck
module preserves more features from the lower layers by utilizing the output of the P2 feature layer.
Moreover, the loss function was improved on the basis of IoU introducing Minimum Point Distance.
Finally, the LSKA attention mechanism is introduced to enhance the feature extraction of targets at different
scales. The experimental results demonstrate that the BFD-YOLO model proposed in this study achieves
an average detection accuracy(mAP50) of 84.8% on a customized dataset, surpassing the performance
of the YOLOv7 algorithm by 11.5% and outperforming other tested algorithms. Furthermore, the BFD-
YOLO algorithm exhibits strong performance on various datasets and demonstrates superior generalization
capabilities.

INDEX TERMS Underwater object detection, YOLOv7, BiFusion, MPDIoU, BFD-YOLO, LSKA.

I. INTRODUCTION
The deterioration of the ecological environment has led
many developed countries to pay more attention to the
vast oceans. The exploration and utilization of the ocean,
especially the deep sea, involves a wide range of activities
including resource extraction, deep-sea fishing, cultural
heritage protection, and national defense security. These
activities urgently require the support of advanced underwater
optical and acoustic technologies, revealing the rich scientific
research value contained within. However, traditional manual
diving fishing methods are fraught with limitations, including
high risk, low efficiency, and environmental damage to the
seabed ecosystem. The development of a robotic system
capable of autonomously completing underwater target
recognition and intelligent fishing tasks becomes crucial.
Such an automated solution can not only improve operational
efficiency and reduce costs but also help protect the
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marine ecological environment and promote the sustainable
development of marine fisheries.

One of the keys to underwater robot technology is its sens-
ing and detection capabilities, which rely on sonar detection
and optical imaging technologies. Although sonar detection
technology is an indispensable method for the positioning
and recognition of underwater targets, it faces challenges
when dealing with complex underwater environments and
external noise interference. In contrast, underwater opti-
cal imaging technology, with its intuitive, high-resolution,
and cost-effective advantages, has become the preferred
tool for close-range environmental detection. However, the
unique physical characteristics of underwater environments,
such as light attenuation, scattering, and absorption, along
with complex ecological conditions, such as the signif-
icant size difference and dense distribution of aquatic
organisms, pose additional challenges to underwater target
detection [1], [2], [3].

Since the 1950s, the exploration of underwater target detec-
tion algorithms has been a focal point of research across the
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globe, yielding a multitude of advancements. Initial endeav-
ors predominantly leveraged traditional machine learning
algorithms, necessitating processes such as region selection,
feature extraction, and classifier design for operational
functionality. For instance, Mathur and Goel [4] developed
an underwater remotely operated vehicle (ROV) predicated
on RGB and HSV color models to utilize the color attributes
of objects for detection. Despite achieving basic detection
capabilities, this method was susceptible to interference
from similarly colored background objects. Zhu et al.
[5] addressed light path considerations between the light
source and camera, employing color compatibility for object
detection to process images directly, thereby diminishing
computational demands and enhancing real-time perfor-
mance and stability. González-Sabbagh and Robles-Kelly [6]
introduced a physical autonomous underwater vehicle
equipped with a binocular vision system for image capture,
focusing on shape feature extraction and center feature
identification of objects, supplemented by an optical flow
algorithm for motion speed detection within images. Mit-
tal et al. [7] explored the classification of texture information
in images through the use of multi-layer perceptron (MLP)
neural networks and support vector machines (SVM),
incorporating Canyon edge detection and Hough transform
despite facing challenges with the latter’s practical appli-
cation. Moradi [8] delved into the analysis of color and
texture characteristics in underwater fish videos to enable
unrestricted environmental fish number calculation and
detection. Moreover, Huang et al. [9] proposed an innovative
automatic active contour detection method, capitalizing
on color image information and overcoming detection
hurdles posed by lighting conditions and object shadows
through the integration of a visual attention mechanism
and an optimal area selection strategy for initialization,
thus expediting algorithm convergence. Xu et al. [10]
proposed a vision-based underwater positioning technology,
adopting a novel approach in the image preprocessing stage
with weighted and correlation coefficients, alongside an
image color segmentation method, to address the robust-
ness issues associated with traditional template matching
techniques under varying lighting conditions and affine
transformations.

Despite the simplicity and minimal data requirements of
traditional underwater target detection methods, they often
falter in practical application due to two main drawbacks:
the non-targeted nature and high computational complexity
of the sliding window mechanism for area selection,leading
to inefficiencies; and the poor robustness and low identifi-
cation accuracy of artificially designed feature algorithms
when contending with scale changes, occlusions, and other
interference factors. Conversely, recent years have seen
a paradigm shift towards deep learning solutions, which,
by constructing deep machine learning models and utilizing
extensive training datasets, can autonomously extract more
critical and comprehensive feature representations. This shift
has significantly improved the accuracy of classification

and detection tasks in underwater environments. Notably,
Han et al. [11] combined max-RGB and grayscale trans-
formation techniques to enhance underwater image quality
before employing an innovative deep convolutional neu-
ral network architecture for target detection, showcasing
superior performance over models like YOLOv3 and Faster
RCNN. Lin et al. [12] introduced the RoIMix image enhance-
ment algorithm to better simulate target overlap, occlusion,
and blur, thereby generating a detection model with enhanced
generalizability across various scenes. Li et al. [13] designed
a convolutional neural network tailored for underwater image
enhancement to construct a high-quality underwater image
training set, demonstrating robust performance across diverse
underwater scenes. Ren et al. [14] applied theYOLOv5 detec-
tion algorithm to underwater target detection, innovatively
integrating a Swin Transformer into the detection framework,
which exhibited exceptional effectiveness in complex under-
water scenarios. Islam et al. [15] employed a supervised
adversarial training approach, using generative adversarial
networks to improve the quality of underwater original
images, thereby enhancing the subsequent target detection
dataset’s overall performance. Finally, Bochkovskiy et al.
[16] developed a network structure—Sample-Weighted
hyPEr Network (SWIPENet)—specifically for detecting
small underwater sample targets. The network’s novel
weighted loss function, Invert Multi-Class Adaboost (IMA),
significantly mitigated the impact of noise on SWIPENet’s
performance, as evidenced by experimental results on
URPC2017 and URPC2018, two authoritative underwater
robot competition datasets, underscoring SWIPENet and
IMA’s substantial superiority over existing underwater target
detection algorithms.

In terms of above research background, this topic focuses
on the underwater seafood in the underwater environ-
ment, including image blurred, overlapping target, small
target number of realisticchallenges. We plan to propose
and design a underwater target detection scheme based
on YOLOV7algorithm. The innovation from several key
technology links, include network structure design and loss
function refinement optimization to build a real-time and
accurate identification in underwater target model. Through
this method, the existing technical bottlenecks are expected
to be overcome, significantly enhancing the accuracy and
efficiency of underwater target detection. This will provide
robust technical support and practical value, advancing
the modernization and intelligent processes of marine
fisheries.

This study focuses on the core issue of improving the
accuracy and efficiency of underwater object detection,
employing deep convolutional neural networks as the
foundational architecture. Through the introduction of the
Bifusion Neck mechanism and a novel bounding box loss
function, MPDIoU, the YOLOv7 object detection algorithm
has been innovatively improved. The contributions of this
research are primarily reflected in the following three
aspects:

105166 VOLUME 12, 2024



J. Ou, Y. Shen: Underwater Target Detection Based on Improved YOLOv7 Algorithm

1. This study proposes an improved YOLOv7 algorithm
for deep-sea fish detection.

2. The introduction of the Bifusion Neck mechanism
enhances feature fusion efficiency, boosting the model’s
ability to recognize target features in complex underwa-
ter environments.

3. A novel MPDIoU loss function is proposed, which
significantly improves the precision and speed of bound-
ing box localization while maintaining computational
efficiency.

4. A new attention mechanism, LSKA, is incorpo-
rated into the backbone network, enhancing fea-
ture extraction capabilities and improving detection
accuracy.

5. Extensive experiments demonstrate that the improved
YOLOv7 algorithm significantly outperforms the orig-
inal algorithm in underwater object detection tasks,
particularly in low-light conditions.

The paper is composed of five sections. The first section
introduces the background and current research status of
marine fish detection. The second section presents the
structure of YOLOv7. The third section discusses the
improved methods used in this study and the issues they
address. The fourth section conducts extensive experiments
to demonstrate the effectiveness and advancement of the
proposed improvement algorithms. The fifth section provides
a summary of the content and offers further prospects for
future research.

II. PREPARATIONYOLOV7 THE DETECTION ALGORITHM
AND ITS IMPROVEMENTS
As the latest iteration of the YOLO series algorithms,
YOLOv7 has exhibited unprecedented efficiency and pre-
cision in object detection under conventional environments.
However, when addressing the unique challenges of under-
water environments, such as complex target characteris-
tics, light scattering, and image distortion, the original
detection performance of YOLOv7 is limited and cannot
achieve the desired recognition effect. To solve this prob-
lem, this study specifically investigates underwater object
detection and makes key improvements to the YOLOv7
model. Innovatively, it introduces a Bifusion mechanism
that integrates multi-level and multi-dimensional feature
information, effectively enhancing the model’s ability to
capture subtle features of underwater targets. It also uti-
lizes an improved multi-point IoU (mpDIoU) bounding
box loss function, which can more finely assess the
overlap between predicted and real bounding boxes. This
is particularly suitable for handling underwater targets of
varying sizes and shapes, thereby significantly improving
the model’s accuracy and stability in locating underwater
targets. These improvements make YOLOv7 more suited to
the needs of underwater object detection in terms of network
structure and optimization strategies, and are expected to
significantly enhance the performance of underwater object
detection.

A. THE YOLOV7 DETECTION ALGORITHM
YOLOv7 is a basic network model in the YOLO series,
with its most notable feature being its high-speed detection
capability. To enhance the accuracy and robustness of object
detection, YOLOv7 incorporates new feature fusion and
context information capturing techniques. These techniques
enable YOLOv7 to demonstrate an outstanding performance
balance across various detection metrics. Compared to other
known detection networks, YOLOv7 shows higher levels of
speed and accuracy within the range of 5-160 frames per
second, making it widely applicable in different scenarios.
Additionally, YOLOv7 supports deployment on various
hardware platforms, including edge GPUs, standard GPUs,
and cloud GPUs, allowing users to select different network
models based on their needs (YOLOv7-tiny, YOLOv7, and
YOLOv7-w6). The detection approach of YOLOv7 is similar
to that of YOLOv4 and YOLOv5. The YOLOv7 network
structure is illustrated in Figure 1. The network is primarily
composed of three parts: the Backbone (main network), Neck,
and Head.

FIGURE 1. YOLOv7 structure diagram of the network.

Backbone: The backbone of YOLOv7 is responsible for
extracting features from input images, and its design signif-
icantly influences the model’s performance and efficiency.
YOLOv7 utilizes CSPDarknet53 as its backbone, comprising
CBS, MPconv, and ELAN structures. The CBS module
combines CONV, BN, and Silu activation function to extract
feature information from the image through convolution.
ELAN integrates the design principles of VoVNet and
CSPNet to enhance gradient lengths by optimizing the
stacking structure of computational blocks. Its purpose is to
optimize feature extraction, gradient flow, and improve object
detection performance. MPconv primarily reduces channel
numbers of feature maps while preserving resolution, effec-
tively reducing computational cost and enhancing network
efficiency.

Neck: The neck component of YOLOv7 primarily consists
of SPPCSP modules and optimized PAN modules. These
modules further integrate and process the features extracted
by the backbone, facilitating more accurate object detection
in the subsequent Head section. The SPPCSP module
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enhances feature information by incorporating the concat
operation with the feature maps before the SPP module,
based on the SPP (Spatial Pyramid Pooling) module. The
optimized PAN module manages information flow between
feature maps of different scales, leading to more efficient
feature fusion and improved utilization efficiency, ultimately
enhancing the accuracy of object detection.

Head: The head section of YOLOv7 serves the crucial
role of generating the final prediction output by process-
ing the features forwarded from the backbone and neck
components to determine class and position information for
the targets.

B. YOLOV7 IMPROVEMENT
1) WHOLE FRAME
This section presents several improvement strategies imple-
mented in this study. An object detection algorithm named
BFD-YOLO is proposed based on YOLOv7. BFD-YOLO
enhances the evaluation of detection accuracy for small
targets by utilizing MPDIOU, and it also conducts a more
comprehensive assessment of detection accuracy for objects
of different sizes. By effectively handling objects of various
sizes, MPDIOU improves the model’s ability to generalize in
practical applications. Moreover, the problem of imbalanced
feature hierarchy is addressed through the incorporation of
bifusion neck, which enhances the representation capability
of features. In addition, the LSKA attention mechanism
is added after SPPCSPC to enhance the feature extraction
capability. The structure of BFD-YOLO is depicted in
Figure 2.

FIGURE 2. BFD-YOLO structure diagram of the network.

2) IMPROVEMENT OF THE LOSS FUNCTION
The purpose of border regression is to approach the true
detection window by fine-tuning the detection window of the
detector output. IoU (Intersection over Union) has become
the mainstream standard for evaluating the loss of the
predictive box in the detection field since it was proposed.
The IoU formula is shown in Equation (1).

IoU (pbb, gbb) =
Area(pbb ∩ gbb)
Area(pbb ∪ gbb)

(1)

In formula 1, pbb represents the predicted bounding box, and
pbb denotes the ground truth bounding box.
The IOU function, however, exhibits several issues that

affect its convergence speed and accuracy. Firstly, the
IOU loss function can yield identical values for differ-
ent predicted results, thereby diminishing the convergence
speed and accuracy of bounding box regression.Different
predicted bounding boxes (i.e., prediction results) can achieve
the same IOU (Intersection Over Union) value, meaning
these distinct predictions are treated as equivalent during
the optimization process. Since different prediction results
receive the same loss value, the model cannot differentiate
between these predictions, which hinders the optimization
process from correctly adjusting the model parameters.
More precise localization: Secondly, it may result in unfair
treatment towards objects of different sizes, as the function
solely considers the overlapping region and disregards
the size of the objects. Furthermore, a gradient vanishing
problem may arise in certain scenarios, particularly when
there is no overlap between the predicted box and the
ground truth box. Lastly, the computational complexity
of the IOU loss function becomes notably high when
handling multiple overlapping objects or densely packed
scenes.

To address the aforementioned issues, MPDIoU is used as
the loss function for YOLOv7. MPDIoU Is improved by the
IOU. The MPDIoU loss function aims to further optimize
the quality of the bounding box regression by introducing
the concept of minimum point distance, especially when the
object has a complex geometry. MPDIoU All four corners
of the bounding box are considered, and the distance of the
furthest point pair between the prediction box and the real box
is calculated, and included in the design of the loss function
to facilitate the refined adjustment of the model to the edge
position of the bounding box during training. MPDIoU The
calculation is shown in equation (2):

d21 =

(
xB1 − xA1

)2
+

(
yB1 − yA1

)2
d22 =

(
xB2 − xA2

)2
+

(
yB2 − yA2

)2
MPDIOU =

A ∩ B
A ∪ B

−
d21

w2 + h2
−

d22
w2 + h2

(2)

In the formula 2 A,B—Represents two arbitrary convex
shapes, respectively w, h—Enter the width and height of the
image;

(
xA1 , yA1

)
,
(
xA2 , yA2

)
—Represents the upper left and

lower right point coordinates of A, respectively; d21 , d22—
The square of the Euclidean distance between the upper left
and the distance between the points of A and right of B,
respectively.

The MPDIoU loss function simplifies the similarity
comparison between two bounding boxes by using more
geometric constraint information, and helps to adjust
the position and size of the bounding boxes with less
training samples, thus improving the accuracy of target
detection.
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In summary, IoU (Intersection Over Union) calculation
requires finding the intersection and union areas of two
bounding boxes, which involves complex geometric com-
putations, especially when the bounding boxes partially
overlap. MPDIoU (Minimum Pairwise Distance Intersection
Over Union) simplifies this process by calculating the
distance between the center points of the bounding boxes,
eliminating the need to directly compute the intersection and
union areas. This significantly reduces the computational
load, particularly when dealing with a large number of
bounding boxes. MPDIoU introduces the pairwise distance
between the center points of the bounding boxes, which
more accurately reflects the relative positional relationship
between the two boxes. This approach offers higher detection
accuracy in scenarios where the bounding boxes are very
close in position but do not completely overlap in shape.
Traditional IoU has a higher computational complexity,
especially in high-resolution images and scenes with many
objects. By using simpler distance calculations and weighting
methods, MPDIoU lowers the overall computational com-
plexity and improves processing speed.Traditional IoU is
sensitive to cases where bounding boxes partially overlap
but differ significantly in area, which can lead to substan-
tial errors. MPDIoU considers the shapes and positions
of the bounding boxes during its calculation, reducing
this type of error to some extent and enhancing overall
robustness.

3) NECK IMPROVEMENTS
Object detection methods based on deep learning have
made significant progress, with detection networks becoming
increasingly powerful in terms of architecture design and
training strategies. However, most research still relies on
superior backbone designs, leading to insufficient informa-
tion exchange between high-level and low-level features.
Therefore, a design paradigm based on a light backbone
and a heavy neck holds equal importance in detection
tasks.

In recent years, the primary research direction for the
Neck has been the utilization of pyramid strategies, including
image pyramids and feature pyramids. The image pyramid
strategy detects instances by scaling images. Unlike the
image pyramid method, the feature pyramid method inte-
grates pyramid representations of different scales and seman-
tic information layers. The Feature Pyramid Network (FPN)
was proposed to aggregate high-level semantic features and
low-level features through a top-down pathway, providing
more accurate localization, but such networks tend to lose
underlying positional information. Subsequently, to enhance
the capability of hierarchical feature representation, new
works emerged on bidirectional FPNs, such as Wang et al.
[17] Wang added an additional bottom-up pathway on
top of FPN to enhance the feature hierarchy at the top
of the feature pyramid network, shorten the information
path between low-level and top-level features, and help

propagate accurate signals from low-level features. However,
Zhang’s bidirectional fusion is relatively simple and has
some disadvantages. Zhang et al. [18] introduced a novel
feature fusion method by repetitively applying weighted
bidirectional feature pyramid networks, using bidirectional
pathways for multiple extractions of the same layer’s features
to achieve higher-level integration and introducing learnable
weights for different input features, simplifying Zhang to
achieve better performance and efficiency. Zhu [19] was
proposed to preserve high-quality features for accurate local-
ization through a parallel FPN structure with bidirectional
fusion and related improvements. Moreover, Luo et al. [20]
utilizes neural architecture search to explore the topology
of feature pyramid networks. Different from the afore-
mentioned Necks, Slim-Neck, as a new lightweight design
paradigm, introduces GSConv to reduce model complexity
while maintaining accuracy, using a one-time aggregation
method to design cross-level part networks (GSCSP)modules
VoV-GSCSP, which lowers the computation and structural
complexity while maintaining sufficient accuracy. Learning
scale features to identify targets is key to localizing objects.
To exchange multi-scale information effectively and fully,
a new structure that enhances Zhang, the Bifusion Neck,
is used. It integrates features from three adjacent layers
output by the backbone network using a Bidirectional
Cascading (BiC) module. This process can preserve more
precise localization information, which is highly beneficial
to the detection process as more accurate localization
information leads to improved detection. The node diagrams
for FPN, Zhang, Wang, and Bifusion Neck are illustrated
in Figure 3.

FIGURE 3. Node diagram.

The architecture of FPN+PAN introduces potential draw-
backs as it involves multiple upsampling and downsampling
operations on the feature maps, which may result in the loss
of original feature information. Consequently, the detection
success rate of the model can be compromised. Additionally,
lower-level feature maps, characterized by higher resolution
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and richer detailed information, prove advantageous for
detecting small targets. Nonetheless, the fusion of these
lower-level feature maps in FPN+PAN contributes to a sig-
nificant increase in parameters, leading to model redundancy
and a decrease in detection speed. To mitigate these issues,
it is crucial to incorporate even lower-level features without
incurring additional parameter costs.

The structure of four types of Necks presented in the
form of a node diagram makes it easier to discern the
structure of each Neck. In the diagram, P3, P4, and P5
represent three different feature layers of the backbone
network, with nodes indicating the feature maps output
from each feature layer. The Bifusion Neck, compared
to the other three Necks, includes an additional output
from the P2 feature layer. As a lower-layer feature layer,
P2 retains more shallow feature information. Taking the
second output node of P3 as an example, it merges
information from the P2, P3, and P4 feature layers,
achieving a thorough fusion of low-level features with high-
level features, which enhances the accuracy of localization
information.

FIGURE 4. The Bifusion neck structure diagram.

The structure of the Bifusion Neck is shown in Figure 4. Its
fusion principle involves using 1 × 1 convolutions to reduce
the dimensionality of feature maps of the same scale; for
larger scale feature maps, first applying 1 × 1 convolution
to reduce dimensionality, followed by 3×3 convolution with
a stride of 2 for downsampling; and for smaller scale feature
maps, using 2 × 2 transposed convolutions for upsampling.
Then, the feature maps obtained from these three parts are
concatenated and further reduced in dimensionality through

1 × 1 convolution. The result after concatenation is sent into
a dashed-line box, whose structure is the same as that of
Zhang, which first goes through an upsampling pathway and
then a downsampling pathway, delivering the three output
feature maps to the detection head. The node diagram form
of presenting the structure of four types of Necks facilitates
an easier understanding of each Neck’s structure. In the
diagram, P3, P4, and P5 represent three different feature
layers of the backbone network, with nodes indicating the
feature maps output from each feature layer. The Bifusion
Neck, in comparison to the other three Necks, includes an
additional output from the P2 feature layer, which, being
a lower-layer feature layer, retains more shallow feature
information. For instance, the second output node of P3
merges information from the P2, P3, and P4 feature layers,
enabling a comprehensive fusion of low-level features with
high-level features for more precise localization information.
The ‘‘Bifusion’’ fusion method is specifically designed to
address potential issues with single-scale feature fusion, such
as insufficient cross-layer feature interaction and inadequate
multi-scale feature fusion. This improvement likely employs
bi-directional feature fusion technology, not only fusing high-
level abstract features and low-level detail features from the
bottom up but also possibly integrating high-level global
information with low-level local information from the top
down, to construct a more rich and comprehensive feature
representation.

4) LARGE SEPARABLE KERNEL ATTENTION
Attention mechanisms have emerged as one of the ways
to enhance neural representations, particularly with the
continuous development of deep learning. These mecha-
nisms encompass various types, including channel attention
mechanisms (e.g., SE), spatial attention mechanisms (e.g.,
GeNet, GcNet, and SGE), selection attention mechanisms,
and hybrid attention mechanisms (e.g., CBAM and BAM).
Selection attention technique, in particular, proves effective
in improving the ability to focus on contextual regions.
For instance, Condconv and Dynamic convolution employ
parallel adaptive kernels to aggregate feature information
from multiple convolution kernels. Meanwhile, SKNet
introduces diverse convolution kernels and aggregates
the information from these kernels along the channel
dimension.

This study investigates the challenge of large-scale
variations in fish species within the ocean and proposes
a methodology called Large Separable Kernel Attention
(LSKA). LSKA is an extension of LKA, and their structures
are depicted in Figure 5. By breaking down the 2D
convolution kernel into cascaded horizontal and vertical
1-D kernels, LSKA overcomes the issue of quadratic
growth observed in deep convolution layers of traditional
LKA modules. In contrast to LKA, LSKA’s decomposition
enables the direct utilization of deep convolution layers
with larger kernels within the attention module, eliminating
the need for additional modules. Decomposing the large
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2D convolution kernel into smaller 1D convolution ker-
nels considerably reduces the number of parameters and
computational requirements, thereby enhancing the model’s
efficiency in processing large-sized inputs. The design of
LSKA emphasizes shape recognition over texture in visual
tasks, a distinction particularly evident with increasing kernel
size, further enhancing the model’s resilience to shape
variations.

FIGURE 5. Structures of LKA and LSKA. (a): Diagram of LKA structure; (b):
Diagram of LSKA structure.

III. DESIGN OF THE EXPERIMENTS AND ANALYSIS OF
THE RESULTS
A. DESIGN OF THE TEST INTERFACE
First, determine the main functions and layout of the
interface, including toolbars, before and after detection
images, and results statistics.

Based on the requirements analysis, select the appropriate
development tools and framework, such as PySide6. Using
the selected development tools and framework, create a
new project and define the main window with its size
and title. Add a horizontal layout to the main window
to place the toolbar and detect the two vertical layouts
of the front and rear screens. In the vertical layout of
the toolbar, add buttons or sliders such as import files,
import modules, export results, adjust confidence, adjust
intersection and ratio, and current model weights. In the
vertical layout of the screen before and after detection, two
image views are added to display the images before and
after detection respectively. In the results statistics area, add
a text editor or other control to display the statistics of
the test results. Finally, the corresponding event processing
function is added to each button or slider to implement
their functionality. The detection interface map is shown
in Figure 6.

FIGURE 6. Test interface diagram.

B. EXPERIMENTAL PROCESS FLOW
1) INTRODUCTION AND PROCESSING OF DATA SETS
To curate the necessary dataset for our model, we employed
internet search techniques and web crawlers to extensively
gather a diverse collection of images encompassing both
deep-sea and shallow-water fish species. Our primary
objective was to amass samples captured across a range
of water depths and lighting conditions, including natural
illumination, bioluminescence emitted by deep-sea organ-
isms, and artificial light sources. By replicating complex
and varied marine ecological environments, we aimed to
enhance the generalization capabilities of our constructed
model. Ultimately, a total of 5780 images were meticulously
collected, serving as a comprehensive resource for model
training and validation purposes.

By using the open source image annotation tool LabelImg,
we manually annotate each fish picture collected in detail,
includingmulti-dimensional information such as fish species,
position and posture, thus ensuring the high accuracy and
completeness of the data set. The sample plots in the dataset
(Figure 7) clearly show carefully labeled images of various
types of fish, reflecting our rigorous and meticulous work
during the data preparation phase.

FIGURE 7. Data set sample display Fig.

To further optimize themodel training process and evaluate
its performance, a 7:2:1 ratio is carefully divided for training,
validation, and test set. The table of data quantity allocation
for each part is shown in Table 1 which helps to effectively
monitor the fitting degree during model training and obtain
reliable and representative model performance evaluation
results in the final stage.
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TABLE 1. Allocation of data quantity for each part.

2) CONFIGURATION AND TRAINING OF EXPERIMENTA-L
PARAMETERS
All experiments in this study were conducted within the
Pycharm environment and under the Pytorch 1.11.0 frame-
work, with the compiler version being Python 3.8 and
the operating system being Windows 10. The hardware
configuration for the experiments included an AMD Ryzen 5
5600 6-Core Processor and anNVIDIAGeForce RTX2080Ti
GPU, the latter being used for computational acceleration.
During the experimental process, we ensured that all involved
training hyperparameters remained unchanged. Specifically,
the input size of the images was set to 640 × 640,
and the initial learning rate was set to 0.001. We used
Adam as the optimizer, and the entire training process
included 200 epochs. The batch size was set to 32.
In addition, to further enhance the data, we also employed
the mosaic data augmentation technique. The specific
experimental environment and hyperparameters are shown
in Table 2.

TABLE 2. Experimental environment and hyperparameters.

C. ABLATION EXPERIMENTS
This study is based on the YOLOv7 algorithm and incor-
porates several improvement strategies. These strategies
include using MPDIoU as the loss function and adopting
the BIfusion neck as a novel neck structure. By employ-
ing the Bifusion mechanism, the study effectively inte-
grates multi-level and multi-dimensional feature information,
significantly enhancing the model’s ability to capture
subtle characteristics of underwater targets. Furthermore,
an improved multi-point IoU (mpDIoU) bounding box loss
function is introduced to enable a more precise evalua-
tion of the overlap between predicted and ground truth
bounding boxes. This approach proves to be particularly
suitable for handling underwater targets of different sizes
and shapes, resulting in a significant improvement in
the accuracy and stability of the model for underwater
target localization. To validate the specific impact of each

improvement strategy on the algorithm, the study conducted
training while keeping the parameters unchanged. Ablation
experiments were conducted using YOLOv7 as the baseline
model, and the specific experimental results are presented
in Table 3.

TABLE 3. Allocation of data quantity for each part.

The symbol ‘‘
√
’’ denotes the adoption of specific

strategies. According to the results presented in Table 3,
when MPDiou is utilized, the parameters and computational
complexity of YOLOv7 remain unchanged. However, there
is a significant improvement in the average detection
accuracy, with mAP50 reaching 82.3%. This represents a 9%
enhancement compared to the baseline YOLOv7 model, and
the detection speed has been improved, with FPS up to 120.
When employing the BIfusion neck as the neck structure,
the model experiences a slight reduction in parameter size
to 37.1M, while the computational complexity slightly
increases to 105.3Gflops. Concurrently, the model achieves
an average detection accuracy of 82.8%, demonstrating
a 9.5% improvement compared to the baseline YOLOv7
model. When the LSKA attention mechanism is added
to the model, the number of parameters and computation
are slightly improved, but the detection accuracy and F1-
sore are significantly improved, reaching 82.1% and 0.77,
respectively.When using MPDiou and LSKA, the model’s
parameters and computational cost slightly increase to
37.46M and 105.3 GFLOPs, respectively. Despite this,
detection accuracy significantly improves, with mAP50
reaching 82.7%. When BIfusionneck and LSKA are used
together, the model’s parameter count is 37.37M, and the
average detection accuracy (mAP50) rises to 83.0%.The
highest average detection accuracy, with a mAP50 of
84.8%, was achieved when BIfusion neck, MPDIou and
LSKA attention were used simultaneously. In addition, the
F1 score reached 0.77, an improvement of 11.5% and
0.07 compared to the YOLOv7 model, respectively. And
the detection speed is improved compared to the original
model, with an FPS of 117, an increase of 5. compared
to YOLOv7.In conclusion, the application of any of these
improvement strategies enhances the model’s detection accu-
racy and F1-score, thereby establishing the efficacy of these
strategies in improving the model’s detection accuracy and
stability.
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D. COMPARISON OF DIFFERENT LOSS FUNCTIONS
In order to validate the superior performance of the
MPDIou employed in this study, comparative experiments
were conducted, contrasting it with the mainstream loss
functions, namely DIOU, GIOU, and CIOU. The specific
experimental results are presented in Table 4. All experiments
were executed using identical hyperparameters on the same
dataset.

TABLE 4. Comparison of different loss functions.

As shown in Table 4, when employing MPDIOU,
the algorithm attains the highest mAP50 and mAP50-
95, reaching 82.3% and 50.1% respectively. Conversely,
utilizing DIOU as the loss function results in the model
exhibiting the lowest average detection accuracy of 71.2%,
which is lower than when CIOU is employed. To visually
illustrate the superior performance of MPDIOU, the losses
and mAP for different IOUs have been visualized and
are depicted in Figure 8. As shown in Figure 8, using
MPDIoU results in a faster decrease in model loss, leading
to an accelerated convergence rate. Additionally, the model’s
detection accuracy improves more rapidly compared to other
loss functions, and it also demonstrates superior detection
accuracy overall.

As depicted in Figure 8, the loss curve of MPDIou
consistently remains lower than that of other IOUs, sug-
gesting a faster convergence rate. Additionally, the average
detection accuracy curve for MPDIou surpasses all other
IOUs while demonstrating reduced fluctuations, indicating
enhanced stability. In conclusion, MPDIou exhibits superior
performance compared to other loss functions, outperforming
them in this particular scenario.

E. COMPARISON OF DIFFERENT ALGORITHMS
To validate the superior performance of the proposed model
in this study, comparative experiments were conducted using
the same dataset to compare the BFD-YOLO model with
various mainstream models. These models include two-stage
models like Faster-RCNN, one-stage models like SSD and
Centernet, as well as YOLOv3, YOLOv5, YOLOv6, and
YOLOv8 models. The experimental results are displayed in
Table 5.

Based on the findings presented in Table 5, the proposed
BFD-YOLO algorithm in this study attains the highest
mAP50 value (84.8%) and F1-score (0.79) among other
mainstream algorithms on the dataset. Faster-Rcnn, as a two-
stage detection algorithm, exhibits superior detection accu-
racy, surpassing all tested models except for BFD-YOLO,
YOLOv5, and YOLOv8, while achieving the highest recall
value (81.5%). Within the one-stage detection algorithms,

TABLE 5. Comparison of different loss functions.

SSD and Centernet demonstrate remarkable precision, with
Centernet achieving the highest precision (97.6%). However,
Centernet exhibits a lower recall rate, which is the lowest
among all testedmodels at 34.4%.Moreover, SSD, Centernet,
and Faster-Rcnn algorithms display reduced stability with
lower F1-scores compared to the YOLO series algorithms.
The YOLO series algorithms perform admirably in this sce-
nario, particularly YOLOv8, which demonstrates accuracy
and F1-score slightly below that of the proposed BFD-YOLO
algorithm in this study. While the precision of BFD-YOLO is
slightly lower than that of SSD and Centernet algorithms, and
the recall is slightly lower than that of Faster-Rcnn, it main-
tains an overall precision of 80.8% and recall of 76.5%,
achieving a better balance between the two and resulting
in an overall more stable model. Furthermore, compared to
Faster-Rcnn, SSD, Centernet, YOLOv7, YOLOv6, YOLOv3,
YOLOv5, and YOLOv8 algorithms, the proposed BFD-
YOLO algorithm achieves higher accuracy, with improve-
ments of 10.0%, 11.3%, 11.7%, 11.5%, 10.5%, 10.6%, 8.5%,
and 8.4% respectively. In conclusion, the proposed BFD-
YOLO algorithm outperforms the other tested models in
this scenario.

1) ALGORITHMSCOMPARISON OF DIFFERENT ALGORITHMS
ACROSS DIFFERENT DATASETS
The algorithm proposed in this study is validated to
exhibit strong generalization ability and versatility through
comparative experiments with different algorithms on
datasets from diverse domains. For evaluation purposes,
the PASCAL VOC 2007 dataset is chosen in this section.
This dataset is widely recognized as a standard in com-
puter vision, comprising 9,963 images and encompass-
ing twenty categories, including person, bus, and train.
The dataset is partitioned into training and validation
sets in an 8:2 ratio. Detailed experimental results are
provided in Table 6.

According to Table 6, the proposed BFD-YOLO algorithm
demonstrates the highest detection accuracy, achieving an
mAP50 of 76.3%. It surpasses other tested models, such as
YOLOv5s, YOLOv7, YOLOv8n, YOLOv8s, YOLOX, and
MOD-YOLOs, by margins of 15.7%, 12.7%, 28.3%, 14.5%,
8.9%, and 5.5%, respectively. Moreover, the BFD-YOLO
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FIGURE 8. Loss curves and mAP50 curves for different IOUs. (a): Loss curves; (b): mAP50 curves.

TABLE 6. Comparison of different algorithms for VOC dataset.

algorithm exhibits the highest precision in 16 out of the
20 categories. Overall, the performance of the BFD-YOLO
algorithm on the VOC2007 dataset outperforms that of the
other tested models.

To conduct a comparative experiment using the publicly
available OZFish dataset, which is part of Australia’s
Research Data Sharing Data Discovery Program, aimed
at advancing machine learning research for automatic
fish detection from videos. Approximately 80,000 labeled
fish samples were extracted from videos, covering over
500 species, 200 genera, and 70 families. A unique fea-
ture of the OzFish dataset is that each image contains
numerous instances of various fish species and shapes.
On average, each captured frame in OzFish contains
25 fish objects, with many frames containing up to
80-120 fish objects. The dataset is divided into 80%
training and 20% testing sets, randomly stratified from each

habitat. Figure 9 shows some labeled samples from the
OZFish dataset.

FIGURE 9. Some labeled samples in the OZfish dataset.

To further verify the superior performance of the BFD-
YOLO algorithm, we compared its performance with
different models on the OZFish dataset, as shown in Table 7.
According to Table 7, the proposed BFD-YOLO algorithm
achieves the highest detection accuracy with an mAP50
of 76.3%. Compared to other object detection models,
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FIGURE 10. Experimental results diagram.(a): YOLOv7 detection (b):BFD-YOLO detection.

FIGURE 11. Comparison diagram of the effect before and after improvement under low
illumination. (a): YOLOv7 detection (b):BFD-YOLO detection.

YOLOv3, YOLO-fish, TOOD, ATSS, and YOLOV7,
the mAP50 is improved by 7.2%, 6%, 4.5%, 5.1%,
and 3.2%, respectively. Additionally, BFD-YOLO has
the highest precision and recall, at 84.3% and 74.5%,
respectively. In summary, the BFD-YOLO algorithm
outperforms other tested algorithms on the OZFish
dataset.

2) DETECTION VISUALIZATION ANALYSIS
To assess the efficacy of the introduced enhancements,
a set of random images were deliberately chosen for testing
purposes. The resulting experimental outcomes are presented
in Figure 10. The original YOLOv7 model exhibited a

substantial number of missed detections and false positives
in relation to small-scale and low-illumination targets.
In sharp contrast, the refined model, as proposed in this
paper, demonstrated commendable performance in both
scenarios, displaying an almost negligible occurrence of
missed detections. Moreover, the improved model exhibited
enhanced precision in target identification, as demonstrated
by bounding boxes that closely conformed to the actual
objects, along with higher confidence scores in comparison
to the original YOLOv7 model. In summary, the model
proposed in this paper showcases exceptional performance in
the specific domain of fish detection.

Further analysis reveals that when employing models
before and after training for inference testing, the differ-
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TABLE 7. Comparison of different algorithms on OZfish data set.

ence in target detection capabilities across models can be
visually observed through images. Particularly in low-light
environments, the improved detection model demonstrates a
significant enhancement in performance, especially for rela-
tively small targets. Specifically, the detection confidence for
the same target has also been significantly increased. These
experimental results fully demonstrate that the improved
YOLOv7 algorithm exhibits outstanding performance in the
detection of underwater fish species, especially in terms
of low-light conditions and the detection of small targets,
where its capability has been effectively enhanced.Moreover,
the model’s generalization ability has also been further
strengthened. For a comparison of the model’s performance
before and after improvements under low-light conditions,
refer to Figure 11.

IV. CONCLUSION
In this study, through in-depth exploration of underwater
fish detection projects, we implemented innovative improve-
ments to the YOLOv7 model by introducing the Bifusion
mechanism and the MPDIoU bounding box loss function,
significantly enhancing the model’s performance. The inte-
gration of the Bifusion mechanism has improved the model’s
ability to capture minute details and the overall form of fish,
greatly enhancing the precision in differentiating between
various species of fish in complex underwater environments.
Simultaneously, the application of the MPDIoU loss function
optimized the precise localization of fish by considering
the overlap area of bounding boxes, the distance between
centers, and the aspect ratio, thereby improving the precision
of predicted bounding boxes in matching the actual ones.
These improvements have elevated the model’s mAP50 value
from 73.3% to 84.8%, fully validating the effectiveness
and feasibility of these measures. Additionally, experimental
validation on diverse datasets demonstrated that the BFD-
YOLO algorithm outperforms other tested algorithms on the
VOC2007 dataset, highlighting its exceptional generalization
capability.

Despite significant progress, there remains much to be
explored and improved in the field of underwater fish
detection. Future research should focus on optimizing the
model structure, multimodal fusion, data augmentation, and
adaptive learning, as well as improving detection perfor-
mance for rare fish species or under extreme conditions.
This work will not only advance underwater fish detection

technology but also introduce new ideas and methods for
related fields of study.
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