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ABSTRACT To alleviate the substantial local training burden on clients in the federated learning (FL)
process, this paper proposes a more efficient approach based on hybrid federated and centralized learning
(HFCL), leveraging the Mobile Edge Computing (MEC) environment within wireless communication
networks. Considering the existence of heterogeneous data types with different privacy levels -such as
1) sensitive data, which can not be exposed, and 2) less-sensitive data, which can be exposed for centralized
learning (CL)-we formulate an optimization problem aimed at achieving a balance between 1) total latency,
including computation and communication, and 2) the training burden on the MEC server. This balance is
achieved by adjusting the set of participants in FL, taking into account client selection under different privacy
levels. A multi-objective optimization problem is designed using mixed-integer nonlinear programming,
which is generally recognized as NP-hard. We employ relaxation techniques in combination with the Mutas
& Simulated Annealing Heuristic algorithm to develop a near-optimal yet practical algorithm. Our numerical
and simulation results reveal that the proposed scheme effectively achieves a global model by striking a
balance between the total time required for model convergence and the computational load on the MEC
server. Furthermore, experimental results on three well-known real-world datasets demonstrate that the
proposed scheme maintains an acceptable level of accuracy and loss.

INDEX TERMS Federated learning, centralized learning, mobile edge computing.

I. INTRODUCTION
The proliferation of training data sourced from diverse
Internet of Things (IoT) devices, such as wearable gadgets
like Google Glass, Samsung Watch, and Apple Watch,
which capture sensitive user activity data [1], has led
to an unprecedented surge in data volumes. Projections
indicate that by 2023, there will be an estimated 30 billion
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network devices generating a staggering 100 zettabytes of
distributed data [2], [3], [4]. This exponential growth has
raised concerns about the scalability of centralized training
methods and the associated privacy risks resulting from data
exposure. To address these challenges, federated learning
(FL) has emerged as an innovative and distributed learning
paradigm [5]. FL adopts a more generic approach by
‘‘bringing the code to the data’’ rather than the traditional
method of transferring data to Mobile Edge Computing
(MEC) servers [6]. However, FL encounters significant
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challenges due to the inherent heterogeneity among clients,
encompassing differences in computing capabilities, network
conditions, dataset sizes, and data distributions. In this
context, it is challenging to achieve optimal FL performance
in terms of convergence speed and accuracy [7].

Addressing this challenge has prompted extensive research
efforts in the literature, all aimed at optimizing FL operations.
Notably, one prevalent approach involves the integration of
MEC to assist FL by harnessing the computing capabilities
available at the network edge and reducing the physical
distance to MEC servers, which has gained significant
attention [8]. Within this context, various optimization
techniques have been explored to enhance accuracy and
convergence speed. These optimizations encompass the
control of hyperparameters related to FL clients such as client
selection, clustering as well as the management of radio
and computation resources (including CPU/GPU usage) [9],
[10], [11], [12], [13], [14], [15]. Furthermore, recognizing
the substantial computational resources demanded by FL
for local training on clients, there has been a recent surge
of interest in hybrid federated and centralized learning
(HFCL), which leverages centralized learning (CL) to boost
FL performance. More specifically, in HFCL, clients with
limited computational power send their raw data to a
centralized server for CL, whereas clients with greater
computational capability train their models locally, adhering
to the FL process.

To date, there have been relatively few works within this
HFCL field, mainly because it represents a relatively new
and evolving field [16]. Additionally, integrating CL with
FL poses challenges, primarily due to privacy concerns that
make the coexistence of these two approaches intricate.
Nonetheless, by making the assumption that clients possess
less-privacy-sensitive data, which can be suitable for either
FL or CL, we can harness both the computing power of a
MEC server and the distributed computing resources offered
by clients participating at FL in the context of HFCL. To the
best of our knowledge, the majority of prior research in this
field has primarily assumed uniform privacy levels for all
data, which represents a limitation of previous approaches.
In this context, the recent work presented in [17] proposed
an optimization problem based on HFCL for client selection
in FL or CL with the goal of minimizing total latency in
the presence of both privacy-sensitive and privacy-insensitive
clients over wireless networks. This work closely aligns with
our own research. However, it does not account for striking
a balance between total latency and the computational load
imposed on the MEC server. Moreover, the optimization
involving integer values can be further enhanced during
the transition from continuous to binary representation by
leveraging sophisticated heuristics.

To address this limitation and optimize HFCL perfor-
mance, our study considers the presence of heterogeneous
data types characterized by different privacy levels. Corre-
spondingly, we categorize data into two types: i) sensitive
data suitable for FL and ii) less-sensitive data suitable for

either FL or CL. In this context, we formulate an optimization
problem aimed at striking a balance between i) total latency,
encompassing both computation and communication, and
ii) the training burden placed on the MEC server, all achieved
by adjusting the set of participants in FL. The detailed
contributions of this article are summarized as follows:
• Under the HFCL by taking into account varying
privacy levels of datasets across clients, we introduce a
multi-objective optimization problem to strike a balance
between two key factors: i) total latency, encompassing
both computation and communication times, and ii) the
training load imposed on the MEC server. It is achieved
through the dynamic adjustment of participants in FL,
and taking into account client selection under different
privacy levels.

• Specifically, rigorous analytical models for deriving
the total latency over HFCL with respect to the FL
participation of clients are provided, which include both
computation and communication times required in the
FL and CL process.

• Utilizing these analytical models, we formulate the
optimization problem using mixed-integer nonlinear
programming—a widely recognized NP-hard problem.
To address this challenge, we employ an optimization
technique, transforming the problem into a linear
programming form. For additional enhancements in
optimizing the continuous-discrete mapping, we adopt
the Mutas & Simulated Annealing Heuristic algorithm.
By combining these approaches, the proposed scheme,
which is named HFCLX, offers a near-optimal yet
practical solution.

• Our numerical and simulation findings demonstrate that
our HFCLX scheme effectively obtains a global model.
It strikes a balance between the total time required for
model convergence and the computational latency on
the MEC server. Moreover, our experiments conducted
on three widely recognized real-world datasets validate
the effectiveness of the HFCLX scheme. These exper-
iments considered both Independent and Identically
Distributed (IID) and non-IID data scenarios. This is
notably noticeable in the MNIST dataset, Fashion-
MNIST dataset, and CIFAR-10 dataset for 500 rounds
of training. The accuracy reached impressive levels for
both IID and non-IID data pairs in each respective
dataset. Additionally, we leverage Differential Privacy
(DP) to enhance privacy protection in our HFCLX
scheme. By adding Gaussian noise to the less sensitive
raw data in CL scenario before it is sent to the centralized
server to ensure the client privacy protection. Our
theoretical analysis and empirical results show that
applying DP effectively balances privacy protection and
model accuracy.

The remainder of this article is organized as follows:
In Section II, we discuss related studies. In Section III,
we present the system model for our proposed HFCLX.
Section IV outlines the problem formulation that seeks
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to strike a balance between minimizing total latency and
managing the training load imposed on the MEC server.
We also discuss the corresponding algorithm. In Section V,
we conduct an in-depth performance evaluation of the
proposed HFCLX, comparing it with existing works to
demonstrate its effectiveness. Finally, in Section VI, we offer
concluding remarks on our research. Table 2 provides a
compilation of essential symbols defined and employed in
this paper.

II. RELATED WORKS
In this section, we present a brief overview of the existing
literature concerning CL, FL, and HFCL. Classical CL faces
significant privacy threats related to sensitive information and
scalability issues. To address these challenges, FL has gained
widespread attention in the literature for its emphasis on
distributed learning over clients. However, it’s worth noting
that FL can impose a substantial computational burden on
clients during the local training process.

A. THE FUNDAMENTAL BACKGROUND AND CONCEPT OF
FL
CL also known as centralized machine learning (ML),
is a traditional approach where data from various sources
is collected and stored in a centralized location, often a
single MEC server or data center. In this setup, a single
model is trained on the entire dataset, and the resulting
model is then deployed to make predictions or decisions.
CL offers advantages in terms of ease of implementation,
model quality control, and efficient resource utilization.
However, it requires aggregating data into a centralized
location. This can raise concerns about data privacy and
security. Additionally, it may create potential computing and
networking bottlenecks at the MEC server when dealing with
large datasets. In this regard, FL is a more recent approach
that aims to address some of the privacy and scalability
challenges associated with CL. In FL, multiple devices or
edge nodes as clients are participating FL process have their
own local datasets. Instead of sending all the data to a MEC
server [5], the global model is initially sent to the clients.
The clients then perform local training using their own local
dataset. Then, only the updated local model parameters are
sent back to the MEC server. The MEC server aggregates
these updates to improve the global model [18]. In FL, the raw
data remains on the clients, enhancing privacy and reducing
the need to transfer massive amounts of data.

B. EFFICIENT FL MANAGEMENT
There are several existing studies for efficient FL manage-
ment including local model personalization [19], computing
resource allocation [20], [21], [22], [23], [24], radio resource
allocation [25], [26], [27], privacy-preserving [2], [19],
latency minimization [1], [2], [10], [28], [29], and clustering
clients [11], [30], [31]. Specifically, the work in [19]
introduced the concept of the Privacy-preserving Federated
Adaptation (PFA) as a privacy-preserving personalization

technique limited to a single device. The idea behind the
PFA method is to leverage the sparsity of neural networks
(NNs) to create a privacy-preserving mechanism. This
mechanism can be used to replace the raw data for the group
of clients during the adaptation process. In [28], a joint
communication and computation optimization problem aims
to minimize the delay for the FL approach. The authors
in [29] proposed a novel mechanism that optimizes commu-
nication, computation, and caching configurations in MEC
servers. This mechanism aims to minimize the mean latency
experienced by mobile devices. In [32], authors proposed a
joint mathematical optimization model for client selection
and computing resource allocation to perform model training
in every iteration. They used 5G slicing services to transform
the non-convex optimization problem to convex and then they
solved the problem into a convex one. The problem was then
solved using the successive convex approximation (SCA)
method where 5G slicing services refer to the ability of 5G
networks to create customized, virtualized network slices to
cater to specific requirements of different applications, users,
or services. The work presented in [11] proposed the FedGM,
a method that jointly optimizes the creation of groups among
MEC servers and the subsequent group associations based on
clustering. This approach aims to enhance the convergence
time during the FL process, particularly for generatingmobile
traffic prediction models. The authors employ a genetic
algorithm to address this non-convex problem. While recent
advancements in privacy-preserving and trust mechanisms
for federated learning have made significant strides, there
remain distinct gaps that our proposed HFCLX scheme aims
to address. The PPRU scheme [33], focusing on vehicular
networks, leverages cryptographic techniques to ensure data
privacy and manage reputations, emphasizing the importance
of privacy in networked systems. However, it does not
tackle the challenges of optimizing client selection and
computational load balancing in mobile edge computing
environments. Similarly, TFL-DT [34] introduces a trust
evaluation framework for federated learning within digital
twin environments, ensuring the reliability of data and
model updates. Despite its focus on trust, it does not
explicitly address the varying privacy levels of data and the
optimization needed to balance latency and computational
load. Furthermore, methods aimed at preventing backdoor
attacks in federated learning primarily enhance security but
do not inherently solve the latency and load balancing
challenges crucial for efficient federated learning [35].

C. THE COMPARISON WITH STATE OF THE ART
An in-depth analysis of CL, FL, andHFCL is provided below:

• CL: In CL, the clients transfer the raw data to the
centralized server for non-parallel centralized training.
Then the centralized server aggregates the raw data to
update the globalmodel. In this scenario, transferring the
raw data to the centralized server causes privacy issues
in sensitive data.
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TABLE 1. Comparison of CL, FL, HFCL, and Proposed HFCLX.

• FL: Unlike CL, FL is the distributed training that
should handle the heterogeneous clients’ issue who
train their datasets locally in parallel, and transmit their
updated local models to the centralized server for model
aggregation and updating the global model. However,
there is room to discuss related to heterogeneous clients
as well as client selection issues.

• HFCL: To address the above issues, despite CL and FL,
in HFCL, the heterogeneous clients can train centralized
as well as distributed training by considering the idea
of both CL and FL where some clients with low
computational capability transmit the raw data to the
centralized server for server training. While the other
clients with high computational capability, train based
on FL scenario. Finally, the centralized server trains the
raw data and updates the global model by using the
aggregated local models that are received from clients
and the trained model. However, there is room to discuss
about balancing the total latency and workload on the
centralized server.

Consequently, in an effort to harness the advantages of
both FL and CL while mitigating privacy concerns, HFCL
has emerged as a promising approach, which utilizes both
CL and FL by considering the clients - in this scenario based
on data sensitivity- as active or inactive, depends on their
computational capability [36]. Table 1 presents a comparison
of CL, FL, HFCL, and proposed HFCLX. Notably, the
proposed HFCLX demonstrates a superior ability to balance
total latency and workload on the MEC server.

HFCL is a machine learning and data analysis approach
that combines elements of both FL and CL to optimize
model training and data processing. It recognizes that while
FL addresses data privacy and distribution challenges, there
might still be benefits to centralizing some aspects of the
learning process. In [10], the edge-assisted FL (EAFL)
framework was introduced. The framework demonstrated
its effectiveness through integrated design and latency
minimization by offloading data, and it showed adapt-
ability across diverse scenarios. The hyperparameter-based
offloading strategies were formulated to mitigate acceptable
latency within the EAFL framework. Nonetheless, when
data is offloaded across all clients without considering
data sensitivity, it can lead to data leakage and increased
latency due to limited bandwidth. Furthermore, in [37]
the HFCL framework was presented for collaborative edge

device-based model training. To address latency challenges,
the Sequential Dataset Transmission (SDT) approach was
proposed, enhancing performance over FL while maintaining
lower communication overhead than CL.Moreover, the study
presented in [38] designed a novel HFCL framework over
all MEC systems. This framework effectively balances com-
putation efficiency and communication cost and enhances
model accuracy. Additionally, the recent study presented
in [17] introduced an optimization problem based on HFCL
for client selection in FL or CL with the goal of minimizing
total latency in scenarios involving both privacy-sensitive
and privacy-insensitive clients across wireless networks. The
work in [39] investigated the cost of centralized versus
distributed learning in terms of transmission and processing
delay. Based on this analysis, they also proposed a hybrid
approach tailored to satellite networks equipped with cloud-
centralized servers. This approach leverages both centralized
and distributed methods, adapting to device scenarios to
optimize learning strategies with a focus on minimizing
transmission delay, achieved through the utilization of Deep
Q-Networks (DQN). Our HFCLX scheme fills these gaps
by integrating hybrid federated and centralized learning,
optimizing client selection based on heterogeneous privacy
levels, and employing advanced optimization techniques
to reduce latency and balance the computational burden
on MEC servers, thus providing a comprehensive solu-
tion that enhances both efficiency and security in MEC
system.

III. SYSTEM MODEL
As depicted in Fig. 1, there is a set of clients denoted as K,
where |K| = K denotes the total number of clients. Each
client is directly linked to the base station (BSs) associated
with a MEC server through a wireless network. For each
k ∈ K, each client k has its own local dataset denoted
as Dk where the size of local dataset |Dk | is Dk . In the
dataset, a data sample i usually consists of the input vector
xi (e.g. the pixels of an image) and the output scalar yi (e.g.
the label of the image). In the proposed framework, clients
with sensitive data perform FL, while the remaining clients
with less sensitive data may participate in either FL or CL.
This decision is determined by the HFCLX scheme module,
aiming to strike a balance between the total latency required
for model convergence and the computational load imposed
on the MEC server. To deal with latency minimization and
alleviate the burden on the MEC server problems, MEC-
based FL has been proposed for data training with low
latency by exploiting resources at the network edge near
the data sources. In the HFCLX scheme, the reduction of
convergence total time is addressed by defining the FL
client selection problem, which takes into account various
groups of clients characterized by distinct privacy concerns.
The specific steps of the proposed HFCLX are outlined as
follows:
• Step 1: Group Selection- The initial step involves
dividing clients into two distinct groups based on the
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FIGURE 1. HFCLX scheme.

sensitivity of their data: i) clients with sensitive data
suitable for FL and ii) clients with less sensitive data
suitable for either FL or CL. Within the less sensitive
group, we formulate a multi-objective optimization
problem that seeks to strike a balance between i) total
latency, including computation and communication, and
ii) the training burden on the MEC server, achieved
by adjusting the set of participants in FL, taking
into account client selection under different privacy
levels. In this context, we introduce the variable αk
as a binary indicator to represent data sensitivity.
Specifically, if αk = 1, it denotes clients with
sensitive data; conversely, αk = 0 represents clients
with less-sensitive data. Notably, we assume that all
clients reveal their data sensitivity by providing their
αk values to the MEC server. Consequently, with
given values of αk for all clients, we can determine
the participation of clients with less-sensitive data in
the FL approach using the binary variable βk , which
requires optimization. This optimization is conducted
by our proposed HFCLX scheme. The HFCLX group
selection module within the MEC server manages this
role.

• Step 2: CL Approach- In this step, clients categorized
under the CL group participate by transmitting their raw
datasets to the MEC server as their data falls within the
category of less sensitive data.

• Step 3: FL Approach andMEC Server- Following the
data transfer from the CL clients to the MEC server,
FL clients execute local training. Here, the total loss
function at client k participating in FL process is as

follows

Fk (wk ) =
1
Dk

∑
i∈Dk

fi(wk ). (1)

where wk denotes the current local model parameter for
client k , and fi(wk ) is the local loss function for client k at
data sample i. Simultaneously, the MEC server conducts
training using the raw data it has received from the CL
clients. Here, the total loss function at MEC server is as
follows

Fs(ws) =
1
|Ds|

∑
i∈Ds

fi(ws), (2)

whereDs denotes the aggregated dataset received by CL
clients, and ws is the local model parameter for MEC
server. fi(ws) is the local loss function for MEC server at
data sample i. In this context, |Ds| =

∑K
k=1(1−αk )(1−

βk )Dk . Here, the term (1 − αk )(1 − βk )Dk represents
the amount of dataset of client k for transferring the raw
data to the MEC server for training, and it depends on
the binary variables αk and βk . To clarify, when a client
k participates in the CL approach, this term simplifies to
Dk when both αk and βk are set to 0.

• Step 4:ParameterUpdate- Upon completing their local
training, FL clients transmit their updated parameters in
the form of local models back to the MEC server during
this phase.

• Step 5: Aggregated Model Update- The MEC server
plays an important role in this step by actively participat-
ing in model computation. It collects the model trained
using raw data received from CL clients and all local
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TABLE 2. Variables and functions table.

models generated by FL clients. Subsequently, it updates
the aggregated model, integrating insights from both
centralized and distributed data sources. According to
the FedAvg algorithm defined in [5], the global model
parameter w is as follows

w =
1∑

k∈K Dk
(
∑
k∈K

(αk + (1− αk )βk )Dkwk

+ |Ds|ws). (3)

The term (αk + (1− αk )βk )Dk represents the amount of
dataset of client k for local training, and it depends on

the binary variables αk and βk . To clarify, when a client
k participates in the FL approach, this term simplifies to
Dk when either αk is set to 1, or when αk is set to 0 and
βk is set to 1.

A. ANALYTICAL MODELS
1) COMPUTATION AND COMMUNICATION TIME FOR FL
Let Wk denote the computational workload on the client k
for local training in FL. According to the mini-batch gradient
descent algorithm in [5] and [10], Wk can be defined with
respect to the size of the dataset. To model theWk , we define
Hk as the iteration number (mini-batch number) in one epoch
for client k , which is given by

Hk =
(αk + (1− αk )βk )Dk

Hs
, (4)

where, Hs is the mini-batch size (training data size of one
iteration). Then,Wk is given by

Wk = τHkGHs = τ (
(αk + (1− αk )βk )Dk

Hs
)GHs

= τG(αk + (1− αk )βk )Dk , (5)

where τ is the epoch number per round and the constant G
denotes the number of CPU cycles required for training 1-bit
data according to [10]. Finally, the computation time for one
round per each k client has defined as tFLcomp,k , which is given
by

tFLcomp,k =
Wk

ek
, (6)

where ek is the CPU’s frequency of client k .
To simplify the communication time during FL, we assume

that the fixed amount of time slot tw is required for the local
upload of the model and the global download of the model
to / from the MEC server in each round as in [2]. Then,
the communication time for one round at each k client tFLcomm
is

tFLcomm = tw. (7)

2) COMPUTATION AND COMMUNICATION TIME FOR CL
We defineWs as the total computational workload, measured
in CPU cycles, for the MEC server during the model
training phase, where the MEC server operates at a CPU
frequency denoted es for training purposes. Then, Hser is
the iteration number (mini-batch number) in one epoch at
MEC server for CL clients’ aggregated dataset, which is given
by.

Hser =

∑K
k=1(1− αk )(1− βk )Dk

Hs
. (8)

Finally,Ws is formulated as

Ws = τHserGHs = τ (

∑K
k=1(1− αk )(1− βk )Dk

Hs
)GHs

= τG
K∑
k=1

(1− αk )(1− βk )Dk
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FIGURE 2. HFCLX time diagram.

= τG
K∑
k=1

(1− αk )(1− βk )Dk . (9)

Then, the computation time for centralized training over
selected clients for the CL has been denoted as tScomp in (10),
which is given by

tScomp =
Ws

es
. (10)

The communication time for each k client to upload theDk
amount of its local dataset to the MEC server via the wireless
link, denoted as tCLcomm,k , is given by

tCLcomm,k =
(1− αk )(1− βk )Dk
B log2(1+ pkgk )

, (11)

where B denotes the total bandwidth and pk is the transmis-
sion power of client k , and gk denotes client k’s channel gain
according to [10]. In this context, if αk is set to 1 (indicating
clients with sensitive data) or if αk is set to 0 and βk is set
to 1 (indicating clients with less sensitive data participating
in FL), clients are engaged in the FL approach, which does
not require tCLcomm,k . Conversely, when αk is 0 and βk is 1
(indicating clients with less sensitive data participating in
CL), they are required to transmit their raw data Dk to the
server for the CL approach.

3) TOTAL LATENCY FOR HFCLX
Based on analytical models defined in previous subsections,
the total latency for the proposed HFCLX can be formulated.
As shown in Fig. 2, at Round 0, to send all local data from
selected clients for CL (βk=0) with less-sensitive data (αk=0),
the required time during Round 0 is given by

TCLcomm = max
k∈K

[tCLcomm,k ] (12)

From Round 1 to model convergence, FL process is
conducted including i) parallel training process over clients
and MEC server and ii) model upload and download as
depicted in Fig. 2. To formulate the total latency over entire
FL process, we firstly define TFL as the total latency for one
round of FL process, which is given by

TFL = max
k∈K

[tFLcomp,k , t
S
comp]+ t

FL
comm (13)

Finally, as defined in [10], r(ϵ) is the total required rounds
in FL for obtaining the specific training loss ϵ. Then, based
on (10) and (11), the total latency T required for achieving a
specific training loss ϵ is obtained by

T = TCLcomm + r(ϵ)TFL (14)

IV. PROPOSED HFCLX SCHEME
In this section, we introduce a novel HFCLX scheme
designed to optimize client selection. The primary goal is to
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strike a balance between two key factors i) total latency (T ),
encompassing both computation and communication time,
and ii) the training load on the MEC server, quantified by
the number of CL participants. Subsequently, we outline the
algorithm used to address this optimization problem, which
is formulated as a non-convex problem, which leverages
a combination of relaxation techniques and heuristics to
provide a solution.

A. PROBLEM FORMULATION
As previously discussed, the design of the cost function
C takes into account two crucial factors. The first factor
represents the total latency T as a penalty component, while
the second factor represents the number of clients with less
sensitive data participating in FL as a positive contribution.
The rationale behind the second term is that as the number
of clients participating in FL increases, there is a reduction
in the computational burden on the MEC server due to the
benefits of distributed training. Therefore, the design of the
cost function C is intended to strike a balance in the trade-off
between total latency and MEC server overload by managing
the client selection variable, βk . As in [40] and [41], we adopt
a weighted linear sum method to define the cost function C ,
which is formulated by

C = T − γ

K∑
k=1

βk , (15)

where γ ≥ 0 is the weighting factor of computational load on
the MEC server, representing a preference for computational
load reduction on theMEC server. A higher value of γ reflects
a stronger preference for reducing the computational load
on the MEC server. Conversely, when γ is set to a smaller
value, the emphasis shifts towards prioritizing the reduction
of total latency over concerns about overloading the MEC
server. Using the intertwined cost function defined in (15),
we can formulate the multi-objective optimization problem
P1 as follows:

P1 : min
βk

C = T − γ

K∑
k=1

βk

= [max
k∈K

[
(1− αk )(1− βk )Dk
B log2(1+ pkgk )

]

+ r(ϵ) max
k∈K

[(τG(αk

+ (1− αk )βk )
Dk
ek

, τG
K∑
k=1

(1− αk )(1− βk )
Dk
es

]

+ r(ϵ)tw]− γ

K∑
k=1

βk , (16a)

s.t. C1 : βK ∈ {0, 1}, ∀k ∈ K. (16b)

The P1 is classified as a non-convex mixed-integer nonlinear
programming (MINLP) problem since it combines the com-
plexity of optimizing integer variables (specifically, βk in our
case) with the challenge of dealing with nonlinear functions

Algorithm 1 Proposed HCFLX scheme

Input: k , βk , β̃k , pk , B, Dk , t1, t2, T , θc, ek , es, gk
Dividing problem P2 to sub-problems P(sub)2−1 , P

(sub)
2−2 , and P

(sub)
2−3

Initialize: t1, t2, and β̃k are normally initialized within the
constraints in P(sub)2−1
Output: β̃k , t1, t2
1: while True do
2: updating t1 ← maxk∈K[

(1−αk )(1−β̃k )Dk
B log2(1+pkgk )

] via lower

bound from P(sub)2−2
3: updating t2 ← maxk∈K[(τG(αk + (1 −

αk )β̃k )
Dk
ek

, τG
∑K

k=1(1 − αk )(1 − β̃k )
Dk
es
]

through the lower bound of P(sub)2−3
4: updating β̃k ← sub-problem P(sub)2−1 via Simplex

Algorithm
5: Ci← C(β̃k , t1, t2)
6: if |Ci − Ci−1| < θc then
7: break
8: end if
9: i = i + 1
10: end while
11: return β̃k , t1, t2

(specifically, including the non-differentiable max(.) function
in the objective function in our case). Typically, for such
MINLP problems, relaxation techniques are employed to find
solutions that are near-optimal. Therefore, in the subsequent
subsections, we will apply various relaxation techniques
and heuristics to efficiently address and solve this MINLP
problem.

B. PROPOSED SCHEME
To make the problem P1 into the convex problem, the binary
variable of βk is relaxed into a continuous value, denoted
as β̃k . Moreover, this problem P1 still has the form max(.)
in the objective function, which is not differentiable. Hence,
we convert max(.) into an affine function by introducing an
additional variables t1 and t2, and letting

t1 = max
k∈K

[
(1− αk )(1− βk )Dk
B log2(1+ pkgk )

], (17a)

t2 = max
k∈K

[τG(αk + (1− αk )βk )
Dk
ek

,

τG
K∑
k=1

(1− αk )(1− βk )
Dk
es

]. (17b)

The new variables t1 and t2 include some additional
constraints

(1− αk )(1− β̃k )Dk
B log2(1+ pkgk )

≤ t1, (18a)

τG(αk + (1− αk )β̃k )
Dk
ek
≤ t2, (18b)

τG
K∑
k=1

(1− αk )(1− β̃k )
Dk
es
≤ t2. (18c)
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Using the additional constraints with the new variables
t1 and t2, we can rewrite the problem P2 as given by

P2 : min
β̃k ,t1,t2

C = [t1 + r(ϵ)t2 + r(ϵ)tw]− γ

K∑
k=1

β̃k ,

(19a)

s.t. C1 : 0 ≤ β̃k ≤ 1, ∀k ∈ K, (19b)

C2 :
(1− αk )(1− β̃k )Dk
B log2(1+ pkgk )

≤ t1, (19c)

C3 : τG(αk + (1− αk )β̃k )
Dk
ek
≤ t2, (19d)

C4 : τG
K∑
k=1

(1− αk )(1− β̃k )
Dk
es
≤ t2. (19e)

Then, the relaxed version of problem P2 can be solved
by decomposing it into three sub-problems: P(sub)2−1 , P

(sub)
2−2 ,

and P(sub)2−3 , with each sub-problem associated with specific
optimization variables—β̃k , t1, and t2, respectively. Then, the
sub-problem P(sub)2−1 is given by

P(sub)2−1 : min
β̃k

−γ

K∑
k=1

β̃k , (20a)

s.t. C1 : 0 ≤ β̃k ≤ 1, ∀k ∈ K, (20b)

C2 :
(1− αk )(1− β̃k )Dk
B log2(1+ pkgk )

≤ t1, (20c)

C3 : (τG(αk + (1− αk )β̃k )
Dk
ek
≤ t2, (20d)

C4 : τG
K∑
k=1

(1− αk )(1− β̃k )
Dk
es
≤ t2.

(20e)

Lemma 1: P(sub)2−1 is a linear program (LP) with respect to
optimization variables (β̃k ).
First, the objective function is linear with respect to β̃k .

In addition, the inequality constraints are affine with respect
to the optimization variables (β̃k ). Correspondingly, since the
objective and inequality constraint functions are affine, the
problem a LP with respect to the optimization variables (β̃k ).

Then, sub-problem P(sub)2−2 and sub-problem P(sub)2−3 are
defined as

P(sub)2−2 : min
t2

r(ϵ)t2, (21a)

s.t. C2 :
(1− αk )(1− β̃k )Dk
B log2(1+ pkgk )

≤ t1,

∀k ∈ K, (21b)

C4 : τG
K∑
k=1

(1− αk )(1− β̃k )
Dk
es
≤ t2.

(21c)

and,

P(sub)2−3 : min
t2

r(ϵ)t2, (22a)

s.t. C3 : τG(αk + (1− αk )β̃k )
Dk
ek
≤ t2, (22b)

Lemma 2: The subproblems of P(sub)2−2 and P(sub)2−3 are
a strictly increasing function with respect to optimiza-
tion variables t1 and t2, respectively. Thus, t∗1 =

maxk∈K[
(1−αk )(1−β̃∗k )Dk
B log2(1+pkgk )

] and t∗2 = maxk∈K[(τG(αk + (1 −

αk )β̃∗k )
Dk
ek

, τG
∑K

k=1(1− αk )(1− β̃∗k )
Dk
es
].

As the sub-problems of P(sub)2−2 and P(sub)2−3 have the form of
t1 and t2 in the objective function, respectively, it is clear
that the objection functions of P(sub)2−2 and P(sub)2−3 are strictly
increasing functions with respect to t1 and t2, respectively.
Correspondingly, the optimal point of t1 and t2 (t∗) are at
the lower bound of constraints. Thus, we can conclude that

t∗1 = maxk∈K[
(1−αk )(1−β̃∗k )Dk
B log2(1+pkgk )

] and t∗2 = maxk∈K[τG(αk +

(1− αk )β̃∗k )
Dk
ek

, τG
∑K

k=1(1− αk )(1− β̃∗k )
Dk
es
].

Lemmas 1 and 2 lay the foundation for solving P2 through
the block coordinate descent method (BCD) [42]. Specif-
ically, given fixed values of t1 and t2, we can effi-
ciently determine the optimal values of β̃k using the
Simplex algorithm (SA). This process is executed based
on the block coordinate descent method. The algorith-
mic steps are summarized in Algorithm 1 is given
by
• Initialization: The algorithm begins by initializing

βk , t1, and t2 normally within the constraints in the
Lemma 1.

• Updating Lower Bounds Loop:Within the client loop,
in each iteration, the algorithm updating the lower bound
for t1, t2, and β̃k using the Simplex algorithm (SA)
according to Lemma 2 in lines 1-10.

• Acceptance or Rejection: Subsequently, t1 and t2 are
iteratively refined, with each one being fixed while the
other varies until the cost function converges (i.e., the
difference between the current and previous cost values
falls below the convergence threshold θc).

• Return Optimal Values:After iterating over all clients,
the algorithm returns the values of β̃k , t1, and t2 in
line 11 to use in Algorithm 2.

Once we obtain the optimal value β̃k
∗
, which is a relaxed

variable of βk , fromAlgorithm 1, it needs to be converted into
binary values. The simplest approach for conversion involves
using a threshold value, typically 0.5. However, in this paper,
instead of relying on such a straightforward mechanism,
which can sometimes yield suboptimal results, we employ
the Mutas & Simulated Annealing heuristic algorithm for
continuous-to-discrete mapping, as outlined in Algorithm 2.
This approach aims to achieve a near-optimal conversion of
βk , as demonstrated in [43]. The details of Mutas & Sim-
ulated Annealing heuristic algorithm in Algorithm 2 are as
follows:
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Algorithm 2 Proposed HCFLX Scheme With Mutas &
Simulated Annealing Heuristic Akgorithm

Input: k , βk , β̃k , pk , B, Dk , t1, t2, T , θc, ek , es, gk
Dividing problem P2 to sub-problems P(sub)2−1 , P

(sub)
2−2 , and P

(sub)
2−3

Initialize: t1, t2, and β̃k are normally initialized within the
constraints in P(sub)2−1
Output: Optimal β∗k , T

∗

1: βoldk , told1 , told2 ← Mutas(β̃oldk )
2: f ← D(told1 , told2 ) & T ← Tmax
3: for k ← 1 to K do
4: while T > Tmin do
5: randomly generates a new assignment β̃newk in the

neighbourhood of β̃oldk
6: βnewk , tnew1 , tnew2 ← Mutas(β̃newk )
7: f ′← D(told1 , told2 ) & 1d = f − f ′

8: if 1d ≤ 0 then
9: βoldk ← βnewk & f ← f ′

10: else if Rand(0, 1) < exp(−1d
T ) then

11: βoldk ← βnewk & f ← f ′

12: end if
13: end while
14: end for
15: β∗k ← β̃k return β∗k , T

∗

• Initialization: The algorithm begins by initializing βk ,
t1, and t2 considered as βoldk , told1 , and told2 using the
Mutas function applied to β̃oldk . It also calculates the
function value f based on the current values of told1 and
told2 and sets an initial temperature T to its maximum
value (Tmax) in lines 1-2.

• Loop Over Clients (k): The algorithm iterates over all
clients, denoted by the variable k in lines 3-14.

• Simulated Annealing Loop: Within the client loop,
there is a Simulated Annealing loop. This loop continues
until the T reaches a minimum threshold Tmin in
lines 4-13.

• Neighborhood Exploration: In each iteration of the
Simulated Annealing loop, a new assignment β̃newk is
randomly generated in the neighborhood of the current
β̃oldk in line 5.

• Mutation (Mutas): The algorithm applies the Mutas
function to β̃newk , resulting in updated values for βnewk ,
tnew1 , and tnew2 in line 6.

• Objective Function Evaluation: It calculates f ′ based
on the current values of told1 and told2 and computes 1d
as the difference between the previous function value f
and the new function value f ′ in lines 7-9.

• Acceptance or Rejection: If 1d ≤ 0, the new
assignment βnewk is accepted, and f is updated to f ′.
Otherwise, there is a probability-based acceptance of the
new assignment, based on the temperature T and the
difference 1d in lines 10-12.

• Client Loop End: Once the temperature T reaches the
minimum threshold, the Simulated Annealing loop for
client k ends in line 14.

• Return Optimal Values:After iterating over all clients,
the algorithm returns the optimal values of β∗k and T ∗ in
line 15.

C. THEORETICAL ANALYSIS OF PRIVACY PROTECTION
USING DIFFERENTIAL PRIVACY (DP) IN PROPOSED HFCLX
To ensure privacy in our proposedHFCLX,we leverageDP as
described in [44], a robust framework that introduces random
noise to the data to obscure individual entries. Here, we detail
the theoretical analysis of howDP can be applied to CLwithin
a HFCL environment. In the proposed HFCLX, clients are
categorized based on the sensitivity of their data:
• FL Clients: Clients with sensitive data that should not
be exposed. These clients participate in FL, where only
model updates (not raw data) are shared.

• CL Clients: Clients with less sensitive data. These
clients send raw data to a centralized server for training.

Even though CL clients have less sensitive data that can be
expected, additional measures can be taken to further protect
their privacy. That is, we can also apply DP to the data before
it is sent to the centralized server. To this aim, we add noise
to less sensitive raw data as follows:
• Data Perturbation: Each client’s raw data is perturbed
by adding Gaussian noise. This noise is calibrated to
ensure a balance between privacy protection and model
accuracy.

• Mathematical Representation: For a given datasetDk ,
each data point xi is transformed to xi+N (0, σ 2), where
N (0, σ 2) represents Gaussian noise with mean 0 and
variance σ 2.

Furthermore, we assume the privacy and noise analysis
parameters. According to [45], the standard deviation σ

of the Gaussian noise is given σ =
1f
√
2 log(1.25/δ)

ϵ
, and

then, we rearrange the formula to solve for ϵ is given ϵ =
1f
√
2 log(1.25/δ)

σ
, where ϵ represents a measure of privacy loss.

Smaller values of ϵ indicate stronger privacy (1/ϵ). δ is the
probability of the privacy guarantee being violated. Smaller
values of δ indicate stronger privacy and 1f is the sensitivity
of the function.

V. PERFORMANCE EVALUATION
This section presents the numerical and simulation results
that validate the effectiveness of the proposed HCFLX
scheme under various parameter settings.

A. EXPERIMENTAL SETUP
In order to analyze the performance of the proposed HFCLX
scheme, various benchmarks are analyzed as follows.
It should be noted that the key distinction between these
benchmarks and our proposed scheme lies in their treatment
of clients with less sensitive data, as we made the assumption
that clients with sensitive data should actively participate in
the FL process.
• Benchmark 1: This benchmark employs the CL
approach for all clients with less sensitive data.
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FIGURE 3. (a) Total cost (C) with respect to the sum of clients with less
sensitive data and sensitive data. (b) Total latency (T) with respect to the
sum of clients with less sensitive data and sensitive data. (c) The number
of FL participants with respect to the sum of clients with less sensitive
data and sensitive data for 20 clients.

• Benchmark 2: In contrast, Benchmark 2 adopts the FL
approach for all clients with less sensitive data according
to the FedAvg algorithm [5].

FIGURE 4. Total cost (C) with respect to the ratio between clients with
sensitive data and overall clients.

TABLE 3. Complete set of information about the model architectures and
hyperparameters used in our experiments.

• Proposed HFCLX scheme: Our HFCLX scheme focuses
on optimizing client selection for FL. It aims to strike
a balance between reducing total latency and managing
the computational load on the MEC server.

B. EVALUATION OF PROPOSED COST FUNCTION
We consider a network environment comprising a total of K
number of clients, where some of the clients possess sensitive
data while others retain the less sensitive data. Specifically,
clients obtaining sensitive data adhere to the FL approach,
while for clients with less sensitive data, we introduce and
employ our proposed HFCLX scheme. This dual approach
results in the formation of two distinct client groups, each
adhering to either the FL or CL approach to aim to make
a balance between reducing total latency and managing the
computational load on the MEC server. Table 3 provides the
complete set of information about themodel architectures and
hyperparameters used in our experiments.

In Fig. 3 (a), we illustrate the total cost (C) with respect
to the number of clients, including those with less sensitive
and sensitive data. It is evident that the total cost (C)
increases as the number of clients increases. This increase
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FIGURE 5. IID data on MNIST dataset for 100 clients: (a) Accuracy (b) Loss.

is a direct consequence of the findings depicted in Fig. 3
(b), which show that the total latency (T) also increases
as the number of clients increases. In contrast, Fig. 3 (c)
demonstrates that the number of FL clients also increases
with the increasing number of clients, thereby reducing the
burden on the MEC server. Specifically, in Benchmark 1,
only sensitive clients participate in the FL approach, while
Benchmark 2 incorporates all clients, regardless of data
sensitivity, in the FL approach. Consequently, Fig. 3 (a)
represents a weighted sum of the total latency (T) and the
negative count of FL clients. In our scenario with γ set to 10,
this results in an overall increasing trend in the total cost (C).
Notably, our proposed scheme outperforms all benchmarks
by striking a balance between total latency (T) and the
computational burden on the MEC server, thereby achieving
the minimum cost (C) across a wide range of total client
counts.

Furthermore, in Fig. 4, we present an analysis of the
total cost (C) in relation to the proportion of clients with
sensitive data in comparison to the total number of clients.
As illustrated in Fig. 4, the proposed scheme demonstrates

FIGURE 6. Non-IID data on MNIST dataset for 100 clients: (a) Accuracy
(b) Loss.

superior performance when striking a balance between
two key factors: i) the overall latency, encompassing both
computation and communication, and ii) the training load
on the MEC server. As the ratio equals to 1, all clients
should participate in FL process showing that the total
cost becomes same across all benchmarks and the proposed
scheme.

C. EVALUATION OF ACCURACY
In this subsection, the evaluation of accuracy is conducted,
encompassing the relationship between communication
rounds and the accuracy of the proposed HFCLX scheme.
The proposed HFCLX scheme was implemented based on a
part EAFL scheme [10], which is the latest implementation
adopted for the edge computing field. The main difference
between these two works is that the offloading method was
used in EAFL, while the HFCL approach is used in the
proposed HFCLX scheme. To evaluate the performance of
the proposed HFCLX scheme, we conducted experiments
on three well-known datasets: MNIST, Fashion MNIST, and
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FIGURE 7. IID data on Fashion MNIST dataset for 100 clients: (a) Accuracy
(b) Loss.

CIFAR-10, with a focus on both Independent and IID and
non-IID data settings, which are widely used in FL and ML
evaluations [46], [47], [48]. It is noticeable that to make the
non-IID data setting in each mentioned dataset, we consider
class imbalance by assigning different proportions of classes
to different clients.

In Fig. 5 (a) the accuracy curve, demonstrates an impres-
sive accuracy rate of nearly 98 percent for IID data. This
signifies the effectiveness of the proposed HFCLX scheme.
In Fig. 5 (b), the loss curve illustrates the convergence of
the model during training, showing that the proposed scheme
is 0.08 percent lower than the Benchmarks. Furthermore,
Fig. 6 (a) shows the accuracy reaches nearly 95 percent
for the non-IID data setting, and in Fig. 6 (b) displays the
convergence of the loss, that the proposed scheme is 0.96 and
near to 0.005 percent lower than the Benchmark 1 and
Benchmark 2, respectively. Here, we present the CL graph
as the upper bound, illustrating the disparity between the CL
and the proposed scheme, as well as other benchmarks, within
the non-IID setting. Thus, from this empirical study, for both
IID and non-IID settings in the MNIST dataset, the test

FIGURE 8. Non-IID data on Fashion MNIST dataset for 100 clients:
(a) Accuracy (b) Loss.

accuracy gap between the proposed scheme and benchmarks
is negligible while it achieving the balance between the total
latency and computational load on the MEC server.

Fig. 7 (a) shows the accuracy reaches approximately
91 percent for the IID data setting and in Fig. 5 (b) the
convergence of the loss, that the proposed scheme is 0.14 and
0.87 percent lower than Benchmark 1 and Benchmark 2,
respectively. In Fig. 8 (a), the accuracy is approximately
84 percent for the non-IID data setting, and in Fig. 8 (b) the
convergence of the loss, that the proposed scheme is 0.29 and
0.57 percent lower than Benchmark 1 and Benchmark 2,
respectively. Furthermore, Fig. 9 (a) shows the accuracy
reaches approximately 85 percent for the IID data setting, and
in Fig. 9 (b) the convergence of the loss, that the proposed
scheme is 0.07 and 0.14 percent lower than Benchmark
1 and Benchmark 2, respectively. Fig. 10 (a) shows the
accuracy is approximately 62 percent for the non-IID data
setting, and Fig. 10 (b) shows the convergence of the loss,
that the proposed scheme is 2.04 and 2.16 percent lower
than Benchmark 1 and Benchmark 2, respectively. Moreover,
in Fig. 10. the lower performance of the CIFAR-10 dataset
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FIGURE 9. IID data on CIFAR-10 dataset for 100 clients: (a) Accuracy
(b) Loss.

compared to MNIST and Fashion MNIST can be attributed
to several factors:
• Dataset Heterogeneity: CIFAR-10 is more complex,
with color images and ten distinct classes, while MNIST
and Fashion MNIST have grayscale images and fewer
classes. The increased complexity of CIFAR-10 can
pose challenges for the HFCLX scheme.

• Image Content: CIFAR-10 contains diverse objects,
backgrounds, and orientations, making it harder for the
model to generalize effectively, compared to the more
uniform content in MNIST and Fashion MNIST.

• Non-IID Data: If CIFAR-10 is used in a non-IID setting,
where data distribution among clients is uneven, biased
training can hinder convergence and affect performance.

• Model Complexity: The effectiveness of the HFCLX
scheme depends on its complexity and architecture.
It might struggle to handle the complexity of the
CIFAR-10 dataset optimally.

Fig. 11 (a) and (b) demonstrate applying the DP method on
the clients who participate in CL scenario to protect privacy

FIGURE 10. Non-IID data on CIFAR-10 dataset for 100 clients:
(a) Accuracy (b) Loss.

in the proposed HFCLX scheme and the impact of DP on the
accuracy of datasets, respectively. We assume δ = 10−5, σ

ranging from 0.1 to 0.4, and 1f = 1. In Fig. 11 (a), the
4 noise levels of σ from 0.1 to 0.4 show that by increasing
the amount of σ while keeping δ fixed, the Privacy protection
level (1/ϵ) increases. Furthermore, Fig. 11 (b) represents
that by adding DP, the accuracy of different datasets is
lower compared to the case without DP. Therefore, careful
DP management should be needed to balance the tradeoff
between accuracy and privacy, which is beyond scope of this
paper.

D. DISCUSSION
While our HFCLX scheme demonstrates promising results,
particularly with theMNIST, FashionMNIST, and CIFAR-10
datasets, the complexity of more intricate datasets like
CIFAR-100 presents a scalability challenge. CIFAR-100,
with its larger number of classes and increased data com-
plexity, demands more robust computational resources and
optimized algorithms. To handle the increased complexity of
datasets such as CIFAR-100, we propose several solutions:
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FIGURE 11. Relationship between noise level (σ ) and privacy (1/ϵ);
(b) Comparison of model accuracy with and without Differential Privacy
(DP) across different datasets.

joint optimization of computing and scaling, dynamic
resource allocation, distributed computing, and the use of
deeper neural network architectures tailored for complex
datasets. Additionally, we suggest hybrid training approaches
that combine the benefits of federated and centralized
learning, allowing for scalable and privacy-preserving
training.

Future work will focus on enhancing scalability and
addressing current limitations. This includes implementing
adaptive learning rates, developing cluster-based client selec-
tion methods, and investigating the application of differential
privacy directly to raw data in the centralized learning
process to further alleviate privacy concerns. Enhancing
privacy-aware federated learning techniques and exploring
reinforcement learning for client selection and meta-learning
approaches will also be prioritized. Applying the HFCLX
scheme to real-world scenarios in IoT, edge computing,
healthcare, and finance will demonstrate its effectiveness
in diverse and practical applications. These improvements
will ensure that our approach remains effective and relevant

in handling complex datasets and real-world challenges,
ultimately advancing the field of HFCL.

VI. CONCLUSION
In this paper, we have proposed the HFCLX scheme by
introducing a multi-objective optimization problem to seek
to strike a balance between i) total latency, including
computation and communication, and ii) the training burden
on the MEC server, achieved by adjusting the set of
participants in FL, taking into account client selection under
different privacy levels. Despite the mixed-integer nonlin-
ear programming problem, we have employed relaxation
techniques in combination with the Mutas & Simulated
Annealing Heuristic algorithm to develop a near-optimal
yet practical algorithm. Numerical and simulation results
have been provided to validate the efficiency and accuracy
of our proposed scheme and demonstrate the advantages
of the HFCLX scheme. The results demonstrate that our
proposed HFCLX scheme can mitigate the total cost (C) by
an average of 7 percent and nearly 5 percent compared to
Benchmarks 1 and 2, respectively. Moreover, experimental
results on three well-known real-world datasets demonstrate
that the proposed HFCLX scheme maintains an acceptable
level of accuracy and loss. This is particularly evident in
the MNIST dataset, Fashion-MNIST dataset, and CIFAR-10
dataset for 500 rounds of training for IID and non-IId data,
respectively. As part of future work, we can explore enhanced
algorithms, such as Reinforcement Learning (RL), to improve
energy efficiency in our system as online learning methods.
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