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ABSTRACT Visual localization is a significant problem in computer vision and robotics, involving
estimating the six degrees of freedom pose of a camera relative to a known environment based on captured
images. Most DL-based visual localization methods exhibit poor generalization capabilities. While some
scene-independent visual localization methods demonstrate satisfactory generalization, they often suffer
from low localization accuracy. To address the issue of low accuracy in scene-independent methods and the
indiscriminate fusion of channel and spatial information when using neural networks for feature extraction,
we propose a visual localization method ST-PixLoc, which effectively leverages image edge gradient
information using the PixLoc framework. Firstly, we optimize the gradients of input images to enhance
the weighting of gradient values within the image. Secondly, we employ ResNet50 as the feature extraction
network’s downsampling layers to enhance feature extraction capability, while introducing channel attention
mechanisms in the upsampling layers of the feature extraction network. Notably, this mechanism focuses
on relevant information and resolves the aforementioned indiscriminate fusion problem. Lastly, based on
the feature maps of the considered images, we compute feature residuals and optimize the initial pose
using optimization algorithms. Additionally, we optimize the loss function to improve the model’s accuracy
in complex scenes. Experimental results demonstrate that the proposed method achieves high-precision
localization. The average rotation and translation errors on the indoor 7-Scenes dataset increased by 6.9%
and 9.7%, respectively, while those on the outdoor Cambridge Landmarks dataset increased by 16.7% and
28.2%, validating the effectiveness of the proposed approach.

INDEX TERMS Visual localization, deep learning, residual network, channel attention mechanism, camera
localization.

I. INTRODUCTION
The goal of visual localization is to estimate the six-degrees-
of-freedom pose of a camera relative to a known environment.
This involves determining the camera’s position coordinates
and angular deviations around the three coordinate axes.
It is a critical problem in the fields of computer vision and
robotics; solving this problem is essential for achieving truly
autonomous robots, such as mobile robots and self-driving
cars. This is crucial for applications in the field of SLAM [1],
and it is also a prerequisite for augmented reality and virtual
reality systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

Existing visual localization methods can be categorized
into two main types: traditional geometric and deep learn-
ing (DL) methods. Traditional geometric methods rely on
matching local features in images [2], [3], [4], [5]; they
match feature points in a query image with a sparse three-
dimensional (3D) point [6], [7], [8] cloud in the scene and
then use obtained correspondences to recover the precise
camera pose. However, they are in-adequate in cases of
changing scene illumination, blurry image pixels, and weak
image textures, resulting in low localization accuracy or even
failure. Thus, DL has been employed for the automatic and
efficient extraction of high-quality image features [9], [10]
for visual localization.

DL-based visual localization methods can be catego-
rized based on the processing pipeline from input to output
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into end-to-end and non-end-to-end methods. End-to-end
methods involve convolutional neural networks (CNNs) that
directly output predictions for camera poses, including abso-
lute and relative pose regressions. Absolute pose regression,
exemplified by PoseNet [11], uses neural networks (NNs)
to extract features and then directly regresses the camera
pose based on the feature vectors. Existing absolute pose
regression methods vary in terms of their NN architectures
[12], [13] and loss functions [14], [15]. Meanwhile, relative
pose regression employs NNs to predict the pose of a query
image relative to one or more reference images [16], where
the reference images are obtained through implicit image
retrieval using NNs. Compared with absolute pose regres-
sion methods, relative pose regression methods exhibit higher
adaptability, higher generalization, and improved localization
accuracy.

Although end-to-end methods are simple and efficient,
they often underperform traditional geometric methods in
terms localization accuracy. Consequently, non-end-to-end
methods, such as scene coordinate regression, have been
proposed. They do not directly regress camera poses using
CNNs; instead, they regress 3D scene coordinates. Brach-
mann et al. [17] employed CNNs for feature extraction (FE)
and feature matching to obtain 3D scene coordinates. They
subsequently calculated the camera pose using the traditional
perspective-n-point method—a local learning approach that
combines the advantages of DL and traditional methods—
and achieved localization accuracy comparable to that of
traditional methods. However, non-end-to-end methods may
encounter localization failures in outdoor large-scale scenes
due to limited model capacity. Further, their models require
training or fi-ne-tuning for each scene, indicating poor gen-
eralization ability to unseen scenes.

Inspired by direct image alignment [18], Sarlin et al. [19]
introduced a scene-agnostic visual localization model called
PixLoc. PixLoc uses NNs solely to extract image features
and output multiscale feature maps. Subsequently, it employs
optimization algorithms to minimize the feature residuals
between query and reference im-ages to obtain an optimal
pose. PixLoc’s localization accuracy is comparable to those
of scene coordinate regression methods in most scenes; how-
ever, it performs poorly in complex scenes with repetitive
structures and low-texture regions.

In the field of camera localization algorithms, end-
to-end models should focus on issues related to feature
fusion and geometric information loss. Zhang et al. [20].
addressed the problem of alignment in motion change fea-
tures using a divide-and-conquer strategy and proposed
a video super-resolution method named LGDFNet. This
method decomposes the overall features into multiple local
features, with each local feature processed by a dedicated sub-
network, gradually merging from local to global features. The
model introduces a self-calibrating dynamic filtering module
to align features and utilizes a cross-attention feature fusion
module to merge features before and after dynamic filter-
ing. To address the loss of geometric information in voxel

models during downsampling, Kang et al. [21]. proposed a
new framework named PVB-SSD. This framework improves
accuracy and computational efficiency through innovative
use of Fourier embedding features, a global pre-module,
and dynamic fusion of spatial-semantic features, providing
a new technical pathway for practical applications such as
autonomous driving.

In summary, the current state of visual localization based
on DL shows that scene coordinate regression methods have
superior performance but suffer from poor generalization
ability, whereas models with better generalization ability
exhibit lower localization accuracy. To address these issues,
we propose an improved visual localization method. The
major contributions of this study are as follows.

(1) We designed and implemented a scene-independent
network model that performs localization by directly aligning
multi-scale image features. The network does not need to
regress the camera’s pose; instead, it focuses on extracting
appropriate image features to ensure themodel can accurately
generalize to other scenes. We use the UNet network as the
encoder structure for extracting multi-scale features, which
are then used to compute the optimal pose. To enhance the
robustness of multi-scale image features, we replaced the
FE components in the UNet network with ResNet50 and
combined it with ECA-Net to form a new ResUNet-E net-
work. This approach produces multi-scale feature maps of the
image. By calculating the feature residuals between the query
image and the reference image and using the LM algorithm,
the optimal pose is iteratively derived from the initial pose.

(2) Design an image edge extraction network to
enhance image feature gradients, To prevent the Levenberg-
Marquardt(LM) [22], [23] algorithm from falling into local
optima while iteratively minimizing the camera pose error.

(3) We employed ResNet50 in the downsampled part of
the FE network to enhance FE capabilities while improving
context aggregation and added channel attention mechanisms
in the upsampled part to amplify important information and
reduce the impact of less relevant information.

(4) We employed a joint loss function that combines pose
estimation and geometric reprojection errors for model train-
ing. This approach improved model accuracy in complex
scenes.

II. RELATED WORKS
In the following section, we discuss the main stream of
research for solving visual camera localization. We also dis-
cuss PixLoc.

A. SCENE COORDINATE REGRESSION
In terms of accuracy, scene coordinate regression methods
have shown significant improvement compared with end- to-
end methods. The concept of scene coordinate regression can
be traced back to 2013, when it was first applied to RGB-D
image localization. Shotton et al. [24] proposed the use of
random forests to predict two-dimensional–3D matches and
learn how pixels in an image patch map to scene coordinates
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FIGURE 1. Overall framework of PixLoc.

in the scene model. In 2017, Brachmann et al. [17] extended
this idea to predict scene coordinates using a visual geom-
etry group (VGG)-style architecture and proposed differen-
tiable RANSAC (DSAC) to learn a matching function that
optimizes pose quality. The model comprised two CNNs:
one directly regressed scene coordinates for all pixels in an
image and the other scored pose hypotheses to select the
best pose and further optimize it to obtain the final pose.
Although DSAC achieves high-precision camera localiza-
tion, it is resource-intensive because it predicts scene coor-
dinates using image patches. Brachmann and Rother [25].
proposed DSAC++ that used entropy-controlled soft inlier
counting during the scoring phase to mitigate overfitting and
Shannon entropy and local linearization during the pose opti-
mization phase to tackle the issues of high gradient variance.
Subsequently, Brachmann and Rother [6]. designed a flexible
localization system, DSAC∗, which allowed the choice of
using depth information and scene models. In DSAC∗, the
scene coordinate regression network is replaced with ResNet,
thereby reducing memory consumption by 75% and achiev-
ing a certain degree of accuracy improvement. Cai et al. [26].
argued that multiview constraints benefited the learning pro-
cess and final performance and proposed the incorporation
of multiview geometric constraints in the training of scene
coordinate regression, building upon DSAC++. These con-
straints not only accelerated network convergence but also
improved accuracy. Compared with end-to-end camera-pose
estimation methods, scene coordinate regression methods
offer higher accuracy but require longer training times, have
slower runtime, and exhibit poorer generalization. Moreover,
scene coordinate.

B. CROSS-SCENE CAMERA-POSE ESTIMATION
Cross-scene camera-pose estimation refers to a model’s abil-
ity to directly generalize to unseen scenes without retraining,
which is also known as scene-agnostic camera-pose estima-
tion. Models with strong generalization ability in this aspect
are high-lighted in this section. Yang et al. [27]. proposed
a scene-agnostic network called SANet, wherein scene and
model parameters are independent of each other. The model
begins by performing image retrieval to select a subset of
scenes, which is then fed into the DRN38 network to generate
feature maps at different resolutions. The feature maps are
combined with 3D point cloud coordinates of the scenes and
their corresponding pixel feature vectors to construct a scene

FIGURE 2. UNet architecture.

pyramid. Query images are processed using DRN38 to obtain
a query image feature pyramid, and scene coordinates are pre-
dicted by matching the scene pyramid with the query image
feature pyramid. SANet exhibits better generalization ability
than other scene coordinate regression methods, although
its accuracy is lower. Tang et al. [28]. introduced a new
scene-agnostic model that leverages dense scene matching
to create a cost volume between the query image and scene.
Subsequently, a CNN processes this cost volume and its cor-
responding coordinates to predict dense scene coordinates.
In terms of accuracy, this model significantly outperforms
SANet and is comparable to DSAC++. Although the above
methods are scene-agnostic and show improved accuracy,
they face challenges in open scenes. Therefore, Sarlin et al.
proposed a feature-map-based scene-agnostic model called
PixLoc, which shows enhanced generalization due to the sep-
aration of model parameters from scene geometry. The model
uses NNs to extract multiscale feature maps from reference
and query images and computes feature residuals between
these feature maps. An optimization algorithm is then used to
minimize the feature residuals, yielding an optimized pose.

C. PIXLOC
The overall framework of PixLoc, which comprises a deep
NN—UNet—and an image alignment module, is shown in
Figure 1. UNet is used to extract features from the query and
reference images, and the image alignment module [29] is
employed to refine the pose and obtain the optimal pose.

UNet is a fully convolutional network introduced by
Ronneberger et al. [30]. in 2015; its structure, which com-
prises FE and feature enhancement components, is shown in
Figure 2. The FE component employs a VGG-style architec-
ture to extract feature information from an image, perform-
ing downsampling and including the original image scale.
Overall, the FE component produces feature maps at five
different scales; larger-scale features contain more detailed
information, whereas smaller-scale features contain higher-
level semantic information. The feature enhancement compo-
nent performs image upsampling and then combines it with
the corresponding scale’s feature map. Feature enhancement
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FIGURE 3. ST-PixLoc model in this article.

integrates both detail and semantic information, allow-
ing for better capture of the contextual features of image
pixels.

The deep features learned by UNet are ultimately used
for pose estimation, which is achieved through direct image
alignment. The image alignment module is designed to find
the pose that minimizes the differences between the query and
reference images. It uses the LM algorithm to determine the
optimal pose. The LM algorithm takes as input the feature
maps extracted by UNet from the reference and query images
and outputs a predicted relative pose. LM is a commonly used
optimization algorithm that involves computations of various
factors, such as a robust cost function ρ and damping factors
λ. In previous DL optimization algorithms, NNs were used
to predict optimization parameters ρ̂′, damping factors λ, and
pose updates δ. Sarlin et al. argued that this approach severely
limits a model’s ability to generalize to new datasets, as it
couples the optimizer with visual semantic information from
the training dataset, and proposed decoupling the optimizer
from semantic information to achieve scene-agnostic results.
They treated λ as a fixed model parameter and learned it
alongside the CNN through gradient descent.

Compared with the end-to-end and scene coordinate
regression methods, PixLoc exhibits superior generalization
ability. Particularly, a single model training can be used for
camera-pose estimation across multiple scenes, enabling the
model to generalize to unseen scenes without the need for
specific training on each scene.

III. MATH
This article is inspired by direct image alignment methods,
using multi-scale image features for camera localization.
It measures the similarity of features between reference and
query images as a metric, aiming to minimize feature differ-
ences. The idea of image feature alignment is equivalent to
the direct method in visual odometry, which does not require
extracting feature points from images but directly solves cam-
era poses using pixel intensities, relying on the photometric
invariance assumption. In the direct method, the alignment is

based on the intensity information of the same pixels in two
images. According to the photometric invariance assumption,
the intensity of corresponding pixels is the same. However,
in practical scenarios, inaccuracies in pose estimation lead to
intensity differences. Therefore, it is necessary to construct
a nonlinear optimization problem based on intensity differ-
ences. This optimization problem minimizes the total error
of all pixels as the objective function by optimizing camera
poses.

Image feature alignment consists of two steps: multi-
scale FE and pose optimization, gradually reducing the error
between the reference and query images. The model first
utilizes the ResUNet-E network to extract multi-scale fea-
ture information from the reference and query images. Then,
based on the pose of the reference image, it aligns the cor-
responding pixels in the feature maps. Finally, it computes
the difference between two pixels (i.e., feature residuals)
and treats the feature residuals as the objective function for
the optimization algorithm. The LM algorithm is used to
optimize the pose and obtain the optimal pose. The LM
algorithm is heavily influenced by the gradients of image
features during the iteration process. Due to the significant
role of image gradients, this paper designs an image edge
extraction network before the ResUNet-E network. By pro-
cessing images in the dataset, it identifies points with large
gradients in the images, thereby increasing the weight of
points with large gradients in the images. The network model
ST-PixLoc in this article is shown in Figure 3.

By using deep learning methods and scene coordinate
regression methods to regress the camera pose from images,
the model identifies specific visual features of the scene.
However, its effectiveness is not significant when applied
to unknown scenes. Therefore, we focus on learning robust
and generalizable multi-scale features to enhance the perfor-
mance of image alignment methods and improve the model’s
generalization capability. In the two steps of the image align-
ment method, we improve the multi-scale FE network used
to calculate feature residuals and enhance the LM algorithm’s
capability to optimize camera pose.
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FIGURE 4. Image gradient optimization network.

FIGURE 5. ResUNet-E network model (a) Overall network structure (b) Specific network structure.

A. IMAGE GRADIENT OPTIMIZATION NETWORK
In the ST-PixLoc model, the LM algorithm is a core com-
ponent. It is a nonlinear least squares optimization method
that does not rely on the geometry or features of a specific
scene. ST-PixLoc uses the feature confidence predicted by
the FE network to weight the feature residuals in the LM
algorithm. This approach enables the ST-PixLoc model to
focus more on robust and high-confidence multi-scale feature
points, allowing ST-PixLoc to adapt to different scenes and
improve its generalization ability across various scenes.

In ST-PixLoc, the FE network extracts feature points
and generates feature descriptors from the query image and
the reference image. Subsequently, it establishes the feature
residuals between them. The LM algorithm iteratively opti-
mizes the pose based on these feature residuals. The Jacobian
matrix in the LM algorithm is divided into two parts: the
first part consists of the gradients of image features, and
the second part consists of the derivatives of the camera
pose with respect to the 2D coordinates of the image. The
product of these two parts forms the Jacobian matrix. In many
scenes with repetitive textures, the changes in the image are
not significant, leading to small variations in gradients and
causing biases in image alignment and feature recognition.
In such cases, it is difficult for the Jacobian matrix to per-
form incremental calculations during iteration. As a result,

subsequent iterations may fall into the same region, resulting
in a local optimal solution.

To address this issue, an Image Gradient Optimization Net-
work is designed to process the dataset, enhancing the weight
of points with larger gradients in the image. This helps the
neural network find the correct direction for gradient descent,
thereby reducing pose calculation errors caused by falling
into local optimal solutions. By using the Image Gradient
Optimization Network to obtain image edge information,
the obtained edge information is merged with the original
image (concatenation on the channels) to enhance the image
gradients.

The image gradient optimization network in this paper
is based on a fully convolutional network designed from
VGG16, whose structure is illustrated in the Figure 4. Com-
pared to the original VGG16 network, all fully connected
layers and the fifth pooling layer have been removed. The
removal of fully connected layers enhances the effectiveness
and computational efficiency of the VGG16 output. Pool-
ing layers downsample the feature maps, which is not con-
ducive to edge localization. Since extracting edge information
requires recalculating pixel values, the convolutional layers
in the image gradient optimization network first pass through
a 1× 1 convolutional layer to increase dimensionality. Then,
they go through another 1×1 convolutional layer to add up the
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FIGURE 6. SENet and ECA-Net architectures.

FIGURE 7. Detailed structure of ECA-Net module in ResUNet-E network
upsampling.

output elements to obtain composite features. Subsequently,
an upsampling layer (deconvolution) enlarges the size of the
featuremaps to restore the image size to its initial dimensions.
Finally, the outputs of each layer are concatenated, and a
1 × 1 convolution is applied for fusion to achieve the ability
to obtain various blended information.

The image gradient optimization network can enhance
image gradients, helping to improve the initial estimated
pose.

This improves the initial iteration quality of the LM
algorithm,making it less likely to fall into local optima during
the iterative optimization process. This enhances the perfor-
mance of the LM algorithm and the generalization capability
of ST-PixLoc.

B. ResUNet-E NETWORK
Before the LM algorithm iteratively optimizes the pose,
it needs to calculate the feature residuals between the query
image and the reference image. Obtaining robust multi-scale
features from both the query image and the reference image
is essential. The design concept of the proposed FE net-
work, ResUNet-E, is the same as that of UNet; its struc-
ture is shown in Figure 5(a). The network consists of two
parts—downsampling and upsampling—allowing for end-to-
end training.

The downsampling part extracts representative features; it
improves upon the UNet by replacing the VGG network with
ResNet50 to enhance FE capabilities. The improved network

removes the original network’s final pooling and fully con-
nected layers and retains the residual structure, thereby pre-
serving UNet’s fully convolutional nature. An image initially
passes through a 7× 7 convolutional layer and a max-pooling
layer, followed by passing through four residual modules,
each comprising three, four, six, and three basic residual
units. In addition, the network weights for ResNet50 are pre-
trained on ImageNet, which not only helps prevent overfitting
but also accelerates convergence. To ensure that the feature
map size output by the network matches the input image size,
padding strategies are adopted for all convolutional layers in
the network.

In visual localization, continuous frame images are typi-
cally used as input. Such consecutive frame images exhibit
subtle changes between each frame. As the number of con-
volutional layers increases, the image feature maps gradu-
ally reduce in size, causing minor details to be submerged
by redundant information during convolution operations,
thereby reducing localization accuracy. In addition, the
importance of information varies across different channels
and positions, but convolution operations indiscriminately
blend this information. To address these issues, we employed
a channel attention mechanism, known as ECA-Net [31].
This attention mechanism captures interchannel information
and discerns the importance of various parts of the input
features. Consequently, it assigns distinct weights to different
channels, extracting more critical and discriminative infor-
mation, thereby enabling the model to make more accurate
judgments.

ECA-Net is a lightweight attention mechanism that builds
upon SENet [32], alleviating the side effects of dimen-
sion reduction caused by fully connected layers. SENet and
ECA-Net structures are shown in Figure 6 (a) and (b),
respectively. Notably, ECA-Net removes the fully connected
layer and ReLU activation function from SENet and uses
one-dimensional convolution after average pooling to obtain
inter channel information. This attention mechanism captures
inter channel information and discerns the importance of
various parts of the input features. Consequently, it assigns
distinct weights to different channels, extracting more critical
and discriminative information, thereby enabling the model
to make more accurate judgments.

ECA-Net can be flexibly incorporated into various CNN
architectures, as demonstrated through extensive experiments
by Wang et al. [31]. revealing that integrating ECA-Net into
CNNs enhances network performance, with ECA-Net outper-
forming SENet and CBAM [33] comprehensively. To amplify
subtle features in images, emphasize scene details, enhance
network performance, and improve visual localization accu-
racy, we incorporated ECA-Net into the FE network. The
detailed structure is shown in Figure 7. ECA-Net is employed
after the upsampling operations in UNet, allowing the net-
work to focus on important features while ignoring less sig-
nificant ones. The improved network can effectively extract
critical scene information and fine details, enhancing visual
localization precision in complex scenes.
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Figure 5(b) shows the specific network structure of
ResUNet-E. After extracting high-level semantic information
from the image through the downsampling phase, it is neces-
sary to use upsampling to restore the original image details.
After undergoing four upsampling operations, the image is
restored to its original scale, and the network outputs three
feature maps at different scales F1, F2, F3. Downsampling
operations result in the loss of image information, mak-
ing information recovery challenging during upsampling.
Therefore, there are skip connections between upsampling
and downsampling operations for the purpose of utilizing
low-level information to aid image recovery. To emphasize
detailed information, ECA-Net is employed after the upsam-
pling operation to assist the network in achieving better
re-covery of the original image.

In the ST-PixLoc model, the FE network ResUNet-E uses
ResNet50 as the downsampling FE component. We are com-
mitted to improving the FE capability of the UNet network.
Compared to the VGG network, the deeper ResNet50 net-
work can extract more complex multi-scale features, which
include more detailed semantic information at different lev-
els. In the upsampling part, we added the channel attention
ECA-Net to achieve information distribution across different
channels and positions, making the features recovered during
the upsampling stage more distinguishable and improving
semantic quality. To obtain generalizable features and facil-
itate the upsampling decoding process, ECA-Net is a good
choice. It allows ST-PixLoc to meet efficiency requirements
while maximizing generalization capability.

C. LOSS FUNCTION OPTIMIZATION
In visual localization, it is common to use either the pose
estimation error Lem or geometric reprojection error Lre as a
standalone loss function. For instance, PixLoc solely employs
Lre as the loss function. These loss functions are defined as
follows:

Lem =
∥∥x − x̂

∥∥
2 + α

∥∥q− q̂
∥∥
2 (1)

Lre =
1
l

∑
l

∑
i

∥∥∥∏
(RlPi + tl) −

∏
(R̂lPi + t̂l)

∥∥∥
2

(2)

where x and x̂ denote the position coordinates of the ground
truth and estimated locations, respectively; q and q̂ denote
the angular deviations of the ground truth and estimated
values, respectively; α denotes the weighting coefficient used
to balance rotation and translation errors; Rl and R̂l denote
the ground truth and estimated rotationmatrices, respectively;
Pi denotes 3D points within the scene; tl and t̂l denote the
ground truth and estimated translation vectors, respectively;
and l denotes the number of feature map layers (three layers
are considered in this work).

In typical scenarios, Lre provides strict geometric con-
straints, resulting in high localization accuracy. However,
in some complex scenes, the constraints imposed by Lre may
become ineffective, leading to lower localization accuracy.

FIGURE 8. The case of reprojection error failure.

As shown in Figure 8, the case of reprojection error failure,
where X is a 3D point in the scene, X ′ is the estimated coordi-
nate,C is the center of the camera, x is the true projection, and
x ′ is the projection of the estimated value. In the left figure of
Figure 8, if the estimated value is located behind the center of
the camera, there is a large gap between the true value and the
estimated value, but the reprojection error is still very small.
In this case, the constraining effect of the reprojection error
is almost zero. In the right figure of Figure 8, the estimated
value is very close to the center of the camera, and the point
projected to the image coordinate system will greatly deviate
from the true value. The initial reprojection error is very
large, and the constraining effect of the reprojection error
is small. This situation may cause the model to fall into an
erroneous local minimum. Therefore, we chose to integrate
Lem and Lre for joint model training, thereby reinforcing
constraints in complex scenes and enhancing localization
accuracy.

L =
1
l
(
∑
l

∥∥∥∏
(RPi + t) −

∏
(R̂Pi + t̂)

∥∥∥
2

+ λ(
∥∥t − t̂

∥∥
2 +

∥∥∥∥∥ trace(R−1R̂)
2

∥∥∥∥∥
2

)) (3)

where, λ is the fusion coefficient, ranging from 0 to 1.
Through experimental comparison, the optimal fusion coeffi-
cient value is 0.6. After introducing the pose estimation loss
into the loss function, in complex scenes, when the repro-
jection error fails, the geometric constraints are strength-
ened by fusing the pose estimation loss, effectively solving
the problem of reprojection error loss failure in complex
scenes.

IV. EXPERIMENTAL RESULTS
In this section, we describe the datasets used in the exper-
iments, outline the experimental procedures, and analyze
the results of the enhanced UNet on the 7-Scenes [25] and
Cambridge Landmarks datasets [11]. Comparative experi-
ments with other methods were also performed, involving
Active Search (a traditional visual localization method) [4]
and SANet (a scene-agnostic coordinate regression method).
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FIGURE 9. The extracted edge features from the traditional Canny operator and the edge features obtained from the image gradient optimization
network proposed in this paper are compared. Column A represents the Canny operator, and Column B represents the image gradient optimization
network proposed in this paper.

A. DATASETS AND EXPERIMENTAL SETUP
1) DATASET
We employ theMegaDepth dataset [34] to train networkmod-
els. This dataset is an outdoor open-scene dataset, comprising
network data from 196 well-known landmarks worldwide,
with approximately 100,000 images. Subsequently, the pre-
trained models are directly used for comparative experiments
on two publicly available color scene datasets the indoor
7-Scenes dataset and the outdoor Cambridge Landmarks
dataset to validate the proposed model’s performance. These
two datasets encompass complex scenes with features such
as repetitive textures, low textures, and dynamic objects, pro-
viding a comprehensive reflection of the visual localization
algorithm’s performance.

The 7-Scenes dataset comprises Chess, Heads, Office,
Fire, Pumpkin, Red Kitchen, and Stairs scenes. The dataset
includes challenging images with repetitive textures (Stairs),
low textures (Fire and Pumpkin), and object occlusion
(Red Kitchen). The Cambridge Landmarks dataset com-
prises King’s College, Old Hospital, Shop Façade, St Mary’s
Church (hereinafter, St M. Church), and Great Court scenes.
The dataset includes a significant amount of interference
from pedestrians, vehicles, etc. Data are collected at different
time points, representing varying lighting and weather condi-
tions.

2) EVALUATION
Localization accuracy is a key metric for assessing visual
localization, encompassing both translation and rotation
errors [10]. For comparability, we employ the median of
localization errors to evaluate the performance of the pro-
posed model. Further, to verify the model’s stability, we cal-
culate the percentage of successfully localized points with
a threshold of 5 cm/5◦ (translation error/rotation error) on
7-Scenes. On Cambridge Landmarks, we record the per-
centage of successfully localized points with a threshold of
25 cm/2◦ to reflect the model’s high-precision localization
performance.

3) EXPERIMENTS
In the experiments, a learning rate of 0.00001 is used, with
a batch size of six training samples, and the Adam optimizer
is chosen. The training process continues for 20–100K iter-
ations until the network converges. The selection of weight
coefficient α for pose estimation error Lem is not the same
for different datasets, and after tuning, values of α around
1 and 5 are suitable for 7-Scenes and Cambridge Landmarks,
respectively. In the overall loss function, λ is set to 0.6. All
experiments are conducted using the PyTorch library on a
single NVIDIA GeForce RTX 3090Ti GPU.

B. EXPERIMENTAL DETAILS
In traditional edge detection methods, the Canny operator
yields the best results. We compare the effectiveness of the
Canny operator with our proposed image gradient optimiza-
tion network. As depicted in the Figure 9, traditional edge
detection methods tend to focus on regions with high gradi-
ents, which often leads to significant noise. Even the superior
performance of the Canny edge detection method can result
in missing edge lines. Conversely, DL-based edge detection
networks prioritize the overall coherence of scene edges,
generating stable and smooth edges by comprehending the
scene.

The image gradient optimization network is designed
based on VGG16 for image edge extraction. After obtaining
the edge information from the image, the original image is
fused with the binary edge image on the channel level to
enhance the influence of high-gradient regions in the image
on Camera Localization.

The ResUNet-E network in the article is highly adapt-
able, allowing for flexibility in adjusting the number of
convolutional layers, channel counts, etc., as per specific
requirements, enabling appropriate compression or expan-
sion. By modifying the network architecture, various feature
maps with different dimensions and scales can be obtained.

In this experiment, the scale l is set to 3, and the network
ultimately outputs three different-scale feature maps. Here,
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FIGURE 10. The figure shows the feature maps output at three different scales of the ResUNet-E network. Rows 1 to 7 represent the output scales for
the seven scenes in the 7-Scenes dataset, while rows 8 to 12 represent the output scales for the five scenes in the Cambridge Landmarks dataset.
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FIGURE 10. (Continued.) The figure shows the feature maps output at three different scales of the ResUNet-E network. Rows 1 to 7 represent the output
scales for the seven scenes in the 7-Scenes dataset, while rows 8 to 12 represent the output scales for the five scenes in the Cambridge Landmarks
dataset.

a smaller l indicates a smaller scale, with feature map dimen-
sions for each scale being Dl = 32, 128, 128. respectively.
When l = 1, the feature map F1 is obtained by passing
the output of the last layer of the encoder through a 3 × 3
convolutional layer. For l = 2, the output of the last layer
of the encoder undergoes 2 × 2 upsampling, followed by
an ECA-Net module, and then fused with the feature map
corresponding to the scale of the encoder part. This process
is repeated twice, followed by another 3 × 3 convolutional
layer to obtain feature map F2. Similarly, for l = 3, the
steps to obtain feature map F3 are the same as when l = 2.
Pose optimization is sequentially performed on the feature
maps of the three scales using the Levenberg-Marquardt

algorithm. The three scale featuremaps output by the network
are shown in Figure 10. We display the image features at
three different scales, mapped to RGB. The red features rep-
resent high-frequency edge features in their local direction,
the green features represent texture features, and the blue
features represent low-frequency features in smooth areas.
As the scale of the feature maps increases, the textures and
other details in the images also gradually increase.

In the pose optimization process, the LM algorithm is
employed to find the optimal pose. The algorithm takes as
input the feature residuals r ik between the multi-scale feature
maps F lq of the query image and F lk of the reference image.
By minimizing these feature residuals, the camera pose
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FIGURE 11. The process of pose optimization for separating model
parameters.

FIGURE 12. The figure shows the results of pose Optimization. The green
dots represent ground truth value, the red dots represent values before
Optimizatio, the blue dots represent values after Optimization.

TABLE 1. Comparison result of rotation errors on 7-Scenes.

(R, t) is optimized. This paper enhances the model’s ability
to generalize to new scenes by separating model parameters
from the pose optimizer. The damping factor λ is treated as
a fixed model parameter to decouple the optimizer from the
training data. The workflow is illustrated in the Figure 11.

TABLE 2. Comparison result of translation errors on 7-scenes.

Taking reference from the setting of the weighting coef-
ficients in the attention mechanism, we set λ as a trainable
parameter of the model. For the original non-trainable tensor-
type parameter λ, we convert it to a trainable parameter of the
parameter type. At the same time, λ is bound to the parameter
list of the ResUNet-Emodel, associated with themodel. Once
bound to the model’s parameter list, the parameter λ will be
updated iteratively along with the model training.

The results of pose optimization are shown in Figure 12,
with the left image being the reference image and the right
image being the query image. In the images, green pixels
represent the ground truth values corresponding to pixels in
the reference image, red pixels represent the initial values
of pixels projected from the reference image to the query
image, and blue pixels represent the optimized values. It can
be observed that the initial pose before optimization deviates
significantly from the ground truth values, whereas the pose
after optimization is closer to the ground truth, with near
overlap. After pose optimization, the error between the pixels
in the reference image and those projected to the query image
is reduced: for the first query image, the translational error
decreases from 3.89 pixels to 0.025 pixels, and the rotational
error decreases from 1.92 degrees to 0; for the second query
image, the translational error decreases from 1.44 pixels
to0.045 pixels; and for the third query image, the translational
error decreases from 1.61 pixels to 0.038 pixels.

C. RESULTS ON 7-SCENES
The experimental results for 7-Scenes are shown in Table 1
and 2 for the com-parison of translation and rotation errors,
respectively. As shown in Table 1 and Table 2, among the
scene-agnostic methods, PixLoc exhibits the best perfor-
mance. Compared with PixLoc, our model shows smaller
localization errors in all scenes, except Chess and Pumpkin,
with particularly better performance in Stairs with repet-
itive textures and Fire with low textures. In Chess, our
model exhibited smaller rotation errors, while in Pump-
kin, the localization errors of PixLoc and our model were
com-parable.

Analyzing the rotation errors, our model outperformed
PixLoc in all scenes, except Pumpkin, with an overall
improvement of 6.9%. In terms of translation errors, our
model outperformed PixLoc in all scenes, except Chess and
Pumpkin, with an overall improvement of 9.7%.
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FIGURE 13. The comparison results of accuracy and recall between the model proposed in this paper and the PIXLOC model on the
7-Scenes dataset.

TABLE 3. Comparison result of rotation errors on Cambridge Landmarks
dataset.

TABLE 4. Comparison results of translation errors on cambridge
landmarks.

The positioning accuracy was calculated with a threshold
of 5 cm/5◦ on 7-Scenes; the results are shown in Figure 13(a).
Overall, our model outperformed PixLoc, with an improve-
ment in positioning accuracy in all scenes, especially in
the complex scenes Stairs and Fire, where the positioning
accuracy increased by 4.80% and 7.90%, respectively. This
indicates that our model exhibited stronger adaptability and
better performance in complex scenes.

To further validate the performance of our model, we also
calculated the average positioning accuracy with thresholds
of 1 cm/1◦ and 2 cm/2◦ on 7-Scenes; the results are shown
in Figure 13(b). Our model outperformed PixLoc, with a
3.58% increase in average accuracy when using a threshold
of 2 cm/2◦.

Figure 14 shows plots of camera localization trajectories on
7-Scenes. The localization trajectories represent a camera’s
motion path during image capture, with outliers indicating
larger positioning errors and deviations from the original

trajectory. Thus, fewer outliers in the localization trajectory
indicate smaller positioning errors and better model perfor-
mance. In Figure 14, the images in the first and third rows
show the localization trajectory of PixLoc, while the images
in the second and fourth rows show the localization trajectory
of our model. It is evident that our model’s localization trajec-
tory is clearer and contains fewer outliers, indicating reduced
positioning errors.

D. RESULTS ON CAMBRIDGE LANDMARKS
The experimental results on the Cambridge Landmarks
dataset are presented in Table 3 for translational error compar-
ison and Table 4 for rotational error comparison. As shown in
Table 3 and 4, among the scene agnosticmethods, PixLoc per-
forms the best. Our model exhibits lower positioning errors
than PixLoc in all scenes except King’s College. In King’s
College, our model achieves a lower rotational error than
PixLoc. Analyzing the rotational error, our model demon-
strates improvements of 11.5%, 20.3%, 4.3%, 13.9%, and
33.3% in all scenes, resulting in an overall increase of 16.7%.
Regarding translational error, our model showcases improve-
ments of 1.9%, 26.6%, 16.4%, 12.6%, and 45.9% in all
scenes, leading to an overall increase of 28.2%.

In addition, positioning accuracy was evaluated with a
threshold of 25 cm/2◦ on Cambridge Landmarks. Overall, our
model outperforms PixLoc. Particularly, in St M. Church and
Great Court, our model achieves notable improvements of
3.58% and 18.16% in positioning accuracy, respectively, indi-
cating that our model excels in large-scale outdoor scenes.

E. ABLATION EXPERIMENT
We also conducted ablation experiments to compare and
analyze the contributions of each improvement point to our
model’s high-precision localization (threshold of 5 cm/5◦).
Recall rate was used as the performance metric in the eval-
uation to comprehensively assess the performance of the
network’s innovations. PixLoc was used as the baseline
model, and the improvement points, namely, Image Gradient
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FIGURE 14. The trajectory plots of camera localization for the seven scenes in the 7-Scenes dataset are shown in the figure. The first and third rows
depict the localization trajectories of the PixLoc model, while the second and fourth rows represent the localization trajectories of the method proposed
in this paper.

TABLE 5. Ablation experiment.

Optimization Network, ResUNet-E Network, and loss func-
tion optimization, corresponded to Point1, Point2, and
Point3, respectively. From Table 5, By enhancing image
gradients through the image gradient optimization network,
biases in image alignment recognition features are mitigated,
preventing the LM algorithm from easily falling into local
optima during the iteration process. it is evident that changing

the network to ResNet resulted in improved model accuracy
in five different scenes, with the most significant improve-
ments observed in Fire and Stairs, i.e., by 4.35% and 5.50%,
respectively. Adding the channel attention, ECA-Net, further
improved the model’s accuracy in six different scenes, with
the most notable improvement seen in Stairs, i.e, by 5.80%.
Optimizing the loss function also led to enhanced model
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performance, particularly in Office and Pumpkin, with accu-
racy improvements of 2.70% and 2.54%, respectively. The
accuracy in Chess and Pumpkin even exceeded that of the
model with all improvement points. Finally, incorporating
all improvement points significantly increased localization
accuracy in all scenes, especially in Stairs and Fire with
low or repetitive textures, which showed improvements of
4.80% and 7.90%, respectively. These results indicate that the
improved model is more suitable for use in low- or repetitive-
texture scenes.

V. CONCLUSION
In response to the challenges faced by scene-agnostic meth-
ods in achieving accurate localization in complex scenes,
we propose an improved visual localization method based
on UNet. By incorporating image gradient optimization net-
work, ResNet, ECA-Net, and optimizing the loss function,
the proposed model overcomes the challenges of localization
in complex scenarios. Experimental results conducted on two
public datasets demonstrate that our model reduces the aver-
age rotation and translation errors by 5.9% and 6.5%, respec-
tively, on the 7-Scenes dataset. In the Cambridge Landmarks
dataset, it improves the average rotation and translation errors
by 16.7% and 27.5%, respectively, enabling more precise
predictions of camera poses. Our model, ST-PixLoc, exhibits
more reliable localization performance when generalized to
unknown scenes.
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