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ABSTRACT The task of detecting surface defects on substation equipment faces several challenges,
including a variety of target categories, the scarcity of original defect image data, complex environmental
conditions, low accuracy in existing algorithms, as well as notable issues with false alarms and missed
detections. Overcoming these obstacles is crucial for the successful implementation of intelligent inspection
systems for substations. To address the problem of limited original data, we first employ the method of
ADD-GAN to augment the image training set. Furthermore, this paper proposes a target detection model
called YOLO-SD to detect various equipment defects in complex real-world scenarios. In order to enhance
the network’s feature extraction capabilities in the presence of complex backgrounds and to improve
detection accuracy, a novel deep perceptual feature extraction module named C3+ was introduced in this
research. Furthermore, we incorporates SimAM into the neck network of YOLO-SD. This integration not
only bolsters the network’s learning capacity but also equips it with the capability to autonomously learn and
dynamically fine-tune attention weights to suit different input scenarios. To tackle the challenges posed by
variations in size and shapes of different substation equipment defects in images, a novel fusion loss function
NWD-CIoU is designed. The improvements enhance the accuracy and robustness of YOLO-SD in defect
target detection across different scales. The experiment demonstrated that the YOLO-SD model achieved an
mAP@0.5 of 90.3% and mAP@0.5 : 0.95 of 63.9% in detecting defects in substation equipment. The F1
score reached 81.1%, IoU value was 90.5%. This model realized accurate detection of multi-scale substation
defect targets, reaching the state-of-the-art level in substation defects detection.

INDEX TERMS Defect detection, substation inspection, image data generation, YOLO, multi-scale targets.

I. INTRODUCTION
A. BACKGROUND
Substations serve as vital connections between the primary
power grid and the distribution network, acting as the
central hub of the smart grid [1]. As the power grid
continues to expand, the quantity of equipment housed within
substations is on the rise. The significance of equipment
maintenance and inspection tasks is progressively growing,
accompanied by escalating challenges that demand height-
ened attention and vigilance. The common equipment defects

The associate editor coordinating the review of this manuscript and
approving it for publication was Ravindra Singh.

found within substations include metal corrosion, meter
damage, transformer oil leakage, ground oil contamination,
damaged breathers, cracked insulators, floating debris, bird
nests, etc [2], [3]. During routine inspections of electrical
equipment within the substations, any abnormal operational
states or equipment defects that are not promptly identified
can potentially lead to equipment failures and even result in
various levels of power accidents.

B. CONTEXTUALIZATION
Currently, the inspection of substation equipment primar-
ily depends on inspectors performing routine inspections.
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Many traditional visual monitoring devices used for these
inspections lack the capability to effectively alert of safety
hazards or detect sudden faults. In the rapidly evolving
power industry, traditional inspection methods have proven
insufficient to meet the demands of operational maintenance
and safety control in substations. The shift towards intelligent
operation and maintenance inspections is increasingly seen
as an essential trend for the advancement of substations and
the broader power system. With the continuous development
of artificial intelligence technologies such as computer
vision and deep learning, intelligent fault detection in
substations has become a hot research field [4]. By utilizing
these advanced technologies, automated and efficient fault
detection and diagnosis of substation equipment can be
achieved, thereby enhancing the safety and reliability of the
equipment.

C. MOTIVATION AND RELATED WORKS
Nowadays, research on intelligent defect detection of equip-
ment within substations is still in its early stages, focusing
primarily on insulators [5], transformer windings [6], trans-
mission lines [7], etc. He et al. utilized insulator infrared
images to detect their contamination levels, proposing a
method based on statistical probability of various pollution
feature component values. By selecting initial hidden center
parameters for the radial basis function neural network
nodes and incorporating gradient descent algorithm and
random control factors to adjust hidden center parameters
and weight vectors, they improved the detection accuracy [8].
Sadykova et al. applied data augmentation to aerial images
of insulators, using the YOLO [9] detection model to detect
insulators under different target resolutions and lighting
conditions. They successfully employed various classifiers
to assess the condition of insulator surfaces in detected
images, determining the presence of anomalies such as
ice coverage [10]. In the process of abnormal detection in
substations, abnormal samples of substation equipment are
scarce. Object-based anomaly detection and other anomaly
detection methods find it difficult to effectively train models
for all equipment and cannot handle unknown anomalies,
resulting in poor robustness. To address this issue, Huang
et al. [11] adopted a weakly supervised learning method,
detecting anomalies by measuring the distance between the
test image and images of normal equipment, making it
applicable to all equipment. Aiming at the problems of local
temperature increase of cable, heating of insulator porcelain
disc, local heating of lightning arresters and transformers
in the process of abnormal heat generation fault diagnosis
of power equipment, Liu et al. proposes a target detection
method that YOLOv4 [12], combined with the infrared
image data of power equipment to locate and diagnose the
faulty heating area of power equipment [13]. Chander and
Abbasi [14] proposed a new hyperbolic fuzzy cross entropy
(FCE) measure to identify effective features from generated
frequency response trajectories and enhance the interpretive

accuracy of such trajectories. This measure was applied to
the identification and classification of transformer winding
defects within predefined frequency ranges.

The researches mentioned above have made significant
progress in defect detection on targets such as insulators
and conductors. However, there are several shortcomings
that need to be addressed. Firstly, the current methods focus
on detecting a single category of defects, limiting their
ability to detect multiple types of defects across various
substation equipments. Secondly, these methods are tested
in relatively simple implementation scenarios with plain
image backgrounds, which may not accurately reflect the
complexity of on-site substation environments [15]. Thirdly,
there is a need to enhance the accuracy of the detection
methods to ensure reliable results in real-world applications.
Furthermore, Abbasi and Mohammadi [16] presented a
comprehensive comparison and assessment between these
uncertainty methods based on accuracy, complexity, and
simulation time.

With the continuous advancement of machine vision
technology and the ongoing enhancement of computer
performance, the utilization of deep learning is progressively
expanding across diverse domains [17], [18]. Particularly
in the realm of automated defect detection, deep learning
technology has made remarkable strides [19], [20], [21].
By means of deep learning algorithms, computers are able to
grasp and interpret patterns and characteristics within visual
data, leading to the realization of more precise and efficient
automated detection tasks. With the continuous evolution of
technology, target detection models based on deep learning
have given rise to two distinct technical branches in network
structure: the two-stage detection models and the one-stage
detection models [22]. The representative of the two-stage
object detectionmodel is the R-CNN series models [23], [24],
[25]. By introducing a region proposal network to generate
candidate regions, and then classifying and regressing these
candidate regions, the accuracy of object detection is
enhanced. Although two-stagemodels excel in accuracy, their
reliance on two independent stages of processing leads to
a lack of real-time performance. This is due to the need
to classify and regress a large number of candidate regions
during the testing phase, resulting in a high computational
load that hinders real-time application scenarios. In response
to the real-time performance limitations of two-stage models,
researchers have begun exploring single-stage detection
models, exemplified by the SSD [26] and YOLO series
models [27].

D. MAIN CONTRIBUTIONS
In order to achieve precise and real-time detection of
various defects on the surfaces of substation equipment in
practical scenarios, this study introduces a substation defect
detection method based on an improved YOLOv7 model [28]
(YOLO-SD). The primary contributions are outlined
below:
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1) In order to enhance the network’s feature extraction
capabilities in the presence of complex backgrounds
and to improve detection accuracy, a novel deep
perceptual feature extraction module named C3+
is introduced in this research. By integrating C3+
into the YOLO-SD backbone network, the network
gains improved local deep attention and global pro-
cessing capabilities, enabling it to accurately capture
image features associated with substation defects. This
innovative design equips the backbone network to
effectively handle feature information across windows,
thus expanding the deep receptive field of the network
and preserving crucial weight information.

2) This study incorporates SimAM into the neck network
of YOLO-SD. This integration not only bolsters the
network’s learning capacity but also equips it with
the capability to autonomously learn and dynamically
fine-tune attention weights to suit different input
scenarios. These scenarios encompass intricate charac-
teristics of targets, minute details of distant targets, and
extensive features of close-range targets. Consequently,
the neck network can prioritize capturing the intricate
features of defects in electrical equipment while
disregarding extraneous data. As a result of enhancing
the precision of feature fusion, the overall detection
accuracy of YOLO-SD is refined.

3) A novel fusion loss function NWD-CIoU is designed
to tackle the challenges posed by variations in size
and shapes of different substation equipment defects
in images. It achieves this by modeling the pre-
dicted bounding box and the actual bounding box as
two-dimensional Gaussian distributions. The similarity
between these distributions is then measured using
the normalized Wasserstein distance. The NWD-CIoU
loss function enhances the robustness of defect target
detection across different scales, thereby improving the
detection accuracy of the YOLO-SD model.

The rest of the article is structured as follows: data
set preparation work is presented in Section II and our
proposed methods, including the YOLO-SD model and
the design details are presented in Section III, experi-
ments and discussion are done in Section IV to verify
the method’s validity. Finally, conclusions are given in
Section V.

II. IMAGE DATA GENERATION
In this paper, the types of defects to be detected in the
substations include a variety of types, such as insulators
damage, equipment surface oil contamination, ground oil
contamination, metal corrosion, and meter breakage. These
defects occur on different equipment within the substation.
Due to the complex environment of the substation and the
difficulty of inspection, capturing images of the defects
poses a significant challenge. We collected images of
the above 5 types of defects through monitoring, on-site

collection, and online search. We obtained 165 images of
equipment surface oil contamination, 186 images of ground
oil contamination, 204 images of metal corrosion, 220 images
of insulator damage, and 254 images of meter breakage. It is
evident that there is an imbalance in the quantity of images
depicting various types of defects that we have prepared.
Furthermore, this quantity falls significantly short of meeting
the requirements for the training set volume of the target
detection model based on deep learning.

To enhance the diversity of abnormal samples for defect
detectionmodels based on deep learning, in our another work,
an ADD-GAN algorithm [29] is proposed for generating
defects on substation equipments, as shown in Figure 1.
Building upon adversarial deep learning, the algorithm
introduces a local region defect generation network and a
joint discriminator for overall image and the defect image.
This approach allows for segmentation of local regions and
generation of relevant defects without altering the global
image features. Simultaneously, it pays attention to both the
overall image quality and the fusion consistency between
global and local defect images. As a result, ADD-GAN
can generate high-quality equipment defect images with rich
features and high realism. After using the ADD-GAN model
for generation, the number of images for each type of defect
reached 10000.

III. METHODOLOGIES
A. OVERVIEW
Due to the intricate nature of the substation environment,
images captured through monitoring or manual collection
frequently encounter significant background interference,
varying image quality, and inconsistent defect scales, pre-
senting formidable obstacles to target detection. Current
methodologies exhibit insufficient robustness in addressing
these challenges, leading to diminished accuracy in detecting
defects within substations.

To enhance the robustness of the target detection model for
detecting defects in substations, we have made improvements
to the YOLOv7 model and proposed a substation defect
detection model named YOLO-SD. YOLO-SD introduces a
novel deep perceptual feature extraction module called C3+
into the backbone, enabling the network to obtain stronger
local depth attention and global processing capabilities.
This allows the model to accurately capture image features
related to substation defects. Further, we integrate SimAM
into the neck network of YOLO-SD. This integration not
only enhances the network’s learning capacity but also
equips it with the capability to autonomously learn and
dynamically fine-tune attention weights to suit different input
scenarios. Finally, a novel fusion loss function NWD-CIoU
is designed to tackle the challenges posed by variations in
size and shapes of different substation equipment defects in
images.

In the following description, we will detail and explain the
specific methods.
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FIGURE 1. The ADD-GAN model.

FIGURE 2. The YOLOv7 model.

B. YOLOV7 MODEL
The YOLOv7 object detection framework is made up of
three key parts: Input, Backbone, Neck and Head, shown in
Figure 2. The Input section pre-processes the input image
by employing techniques like image augmentation, resizing,
and concatenating. The Backbone segment carries out

feature extraction across various scales using downsampling
techniques. The Neck portion performs feature inference
and produces the detection outcomes. The Backbone part
integrates several modules, including CBS, ELAN, and
MPConv. The Neck section incorporates CBS, SPPCSPC,
UpSampling, MPConv and ELAN-W modules. The Head
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part includes REP and CBM modules. To facilitate multi-
scale feature fusion for object detection tasks, YOLOv7
establishes a Feature Pyramid Network (FPN) by connecting
modules at different layers of the Backbone and Neck.

C. C3+ MODEL
The C3 module is an important component of the YOLOv5
[30] model, which aims to increase the network depth and
receptive field, thus enhancing feature extraction capability.
The C3 module consists of three Conv blocks, with the
first Conv block having a stride of 2 to reduce the size
of the feature map by half. This is done to increase the
network’s receptive field while reducing computational load.
The second and third Conv blocks have a stride of 1, meaning
they do not change the size of the feature map. This is
to maintain spatial resolution of the feature map, better
preserving local object information. Additionally, these two
Conv blocks further extract features to increase network
depth and receptive field. The Conv blocks in the C3
module use 3× 3 convolutional kernels. Between each Conv
block, Batch Normalization (BN) layers and LeakyReLU
activation functions are included to enhance model stability
and generalization performance.

In order to enhance the depth and receptive field of
the YOLOv7 backbone, and to boost the network’s feature
extraction capabilities, we introduce an improved C3module,
referred to as C3+. This module is seamlessly integrated
into the YOLOv7 backbone. The C3+ module harnesses
the benefits of the Swin Transformer Block and Switchable
Atrous Convolution (SA Conv) [31] to enable seamless
inter-window information interaction within the backbone
network. It not only preserves intricate depth details and
widens the network’s scope of perception but also integrates
attention mechanisms to promote a more profound explo-
ration of feature information. In essence, the C3+ module’s
architecture follows a residual network approach and cleverly
integrates cutting-edge feature processing modules, thereby
amplifying the feature extraction prowess of the YOLO-SD
backbone network when processing input image data.

The advanced perceptual feature extraction module C3+
integrates a sliding window mechanism and consists of the
CBS basic convolution module, Swin module, SA Conv,
as well as Concatenation operations. It is seamlessly com-
binedwith lightweight attentionmechanisms such as Channel
Attention (CA) and the parameter-free attention module
SimAM. The core architecture of C3+ is inspired by the
design principles of ResNet [32], as shown in Figure 3.

In Figure 3, the Swin module is derived from the essential
components of the Swin Transformer [33]. This research
incorporates the Patch Partition and Linear Embedding
operations from the Swin Transformer model into the Swin
module. The structural overview of the Swin module is
illustrated in Figure 4(a). Initially, this module employs
the Patch Partition operation to segment the input feature
map into distinct fixed-size and non-overlapping blocks,

enabling individual processing of each block. This seg-
mentation aids in capturing detailed local features more
effectively and enhances the computational efficiency of
the model. Subsequent to the Patch Partition operation, the
Linear Embedding operation transforms the input feature
information into a lower-dimensional feature space, reducing
feature dimensionality and obtaining more concise feature
representations. The processed feature information is then fed
into the Swin Transformer block, arranged in a structured
manner. This arrangement facilitates information transforma-
tion and interaction operations, leading to feature extraction
and integration.

The Swin Transformer block incorporates a sliding
window mechanism, allowing the model to access cross-
window information. This mechanism promotes interaction
between different windows, enabling the model to capture
both local and global contextual information within the
image. By facilitating the exchange of information across
windows, the model enhances its overall expressive power
and performance.

The Swin Transformer module’s architecture incorporates
two Window-based Multi-Head Self-Attention (WMSA)
blocks as shown in Figure 4(b). WMSA operates with a
standard window setup to process features independently
for each local window. On the other hand, WMSA utilizes
a shifted window configuration, integrating shift operations
to facilitate information exchange across different windows,
effectively broadening the model’s global receptive field.

The SA Conv module comprises Switchable Atrous
Convolution, Pre-Global Context, and Post-Global Context
modules, along with a Switch Mechanism [31]. This
module adjusts the dilation rate and switch value of Atrous
Convolution to capture details of targets across different
scales, mitigating information weight loss and bolstering
the model’s capacity to handle image data. The structure
of the SA Conv module is depicted in Figure 5. More
specifically, this module incorporates a switch mechanism
that dynamically selects and balances the ratio between
Regular Convolution and Atrous Convolution. The effective
fusion of Atrous Convolution with the Switch Mechanism
defines the SA Conv component, and the computation
formula for transitioning from regular convolution to the SA
Conv component is as follows:

Conv(x,w, 1)
Convert

−−−−−→
to SAConv

S(x)·Conv(x,w, 1)

+ (1 − S(x))·Conv(x,w+ 1w, r), (1)

where the hyper-parameter r , along with the trainable weight
1w play crucial roles in SA Conv. The switch function
S(x) is specifically designed to be implemented as an
average pooling layer with a 5 × 5 kernel, followed by a
1 × 1 convolutional layer. This switch function is dependent
on both the input data and its location within the network,
allowing the backbonemodel to dynamically adjust and adapt
to various scales as required.
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FIGURE 3. Structure of the C3+ module.

FIGURE 4. The structure of the Swin module.

In this paper, the Coordinate Attention (CA) mechanism
[34] is integrated into the end of the C3+ module.
Its purpose is to reduce the loss of global positional
information weights, enhance the focus of the backbone
network during feature extraction, and directly input precise
feature information to the next layer of the network to
avoid retaining unnecessary redundant information. The
core idea of Coordinate Attention is to embed positional
information into the feature channel dimension, decomposing
channel attention into aggregating features along two spatial
directions. One direction captures long-range dependency
relationships, while the other preserves precise positional
information. Finally, the two are complementary fused to
learn the importance weights of different channels, thereby
enhancing focus on complex target features and suppressing
redundant or noisy channels. The specific operations include
two steps: coordinate information embedding and coordinate
attention generation. The CA structure is shown in Figure 6.
In this paper, the CA attention mechanism is incorporated at
the conclusion of the C3+ module after SA Conv. The aim is
to alleviate the loss of global positional information weight,
bolster the focus of the backbone network during the feature
extraction process, and feed precise feature information
directly into the subsequent layer of the network, thereby
preventing the preservation of superfluous redundant data.

D. INTRODUCING SIMAM IN THE NECK
A Simple, Parameter-Free Attention Module (SimAM) [35]
is grounded in neuroscience theory and introduces a novel

attention module that aims to enhance the performance
of neural networks by optimizing the energy function to
evaluate the significance of individual neurons. By doing so,
it dynamically adjusts the distribution of attention weights,
thereby shaping the focus of the network. One key strength
of this module is its ability to achieve these improvements
without introducing additional parameters to the existing net-
work architecture. Instead, it effectively utilizes its minimal
parameter set to estimate three-dimensional attention weight
distributions for feature maps.

Given the simplicity, parameter-free nature, and strong
adaptability of the SimAM attention module, this paper
integrates SimAM into the Neck network of YOLO-SD. The
introduction of SimAM helps enhance the learning capability
of the Neck network in YOLO-SD. Additionally, it can
automatically learn and dynamically adjust the distribution
ratio of attention weights based on various input scenarios,
such as complex features of the target, tiny features from
distant target scales, and oversized features caused by nearby
target scales. This guides the Neck network to focus more
on the detailed features of substation defects, filtering out
irrelevant information. Therefore, it improves the accuracy
of feature fusion in the neck network, enhancing the overall
detection accuracy of YOLO-SD.

After the above improvements, the network architecture
diagram of the YOLO-SD model is shown in Figure 7.

E. NWD-CIOU LOSS
To effectively capture distinguishing features, the proper
distribution of positive and negative samples is paramount.
While multi-scale defect detection is prevalent in real-world
substation scenarios, current YOLOv7 object detectors
primarily concentrate on targets of standard sizes. The
scale-dependent nature of the intersection over union (IoU)
metric introduces notable fluctuations in IoU scores across
targets of diverse scales. Particularly for smaller targets, even
minor shifts in position can yield significant IoU variations,
unlike with regular-sized objects where similar positional
adjustments have minimal impact on IoU values. This scale
sensitivity of the IoU metric manifests as abrupt changes in
specific bounding box placements, ultimately compromising
the accuracy of predicted bounding box alignment.

In an effort to address this issue, a novel evaluation
metric for detecting small objects usingWasserstein Distance
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FIGURE 5. Structure of the SA Conv module.

FIGURE 6. Structure of the CA module.

has been introduced [36]. Initially, bounding boxes are
represented as 2D Gaussian distributions. Subsequently,
a new metric known as the Normalized Wasserstein Distance
(NWD) is proposed to measure the similarity between
them by comparing their respective Gaussian distributions.
The NWD metric can be seamlessly integrated into the
assignment, non-maximum suppression, and loss functions
of any anchor-based detector, serving as a replacement for
the traditional IoU metric. NWD offers two key advantages:
firstly, it can accurately quantify the similarity in distribution
between small targets even in the absence of overlap;
secondly, its insensitivity to targets of varying scales renders
it particularly well-suited for assessing similarity among
small targets.

For small targets, there are always background pixels
present within the bounding box, as real objects are unlikely
to perfectly fit within a rectangle. Typically, foreground
pixels are concentrated towards the center of the bounding
box, while background pixels tend to be more prominent

towards the edges. To better weight each pixel within the
bounding box, one approach is to model the bounding box as
a two-dimensional Gaussian distribution N (µ, 6), as shown
below:

µ =

[
cx
cy

]
, 6 =

[
w2

4 0
0 h2

4

]
, (2)

where cx , cy represents the center coordinates of the bounding
box, and x and h represent the width and height of the box.
For two 2D Gaussian distributions µ1 = N (m1, 61) and
µ2 = N (m2, 62), their second order Wasserstein Distance
is as follows:

W 2
2 (µ1, µ2) = ||m1 − m2||

2
2 + ||6

1/2
1 − 6

1/2
2 ||

2
F , (3)

where || · || is the Frobenius norm. By simplifying it using
Gaussian distributions Ng and Nt , where Ng represents the
predicted bounding box Bg = (cxg, cyg,wg, hg) and Nt rep-
resents the ground truth bounding box Bt = (cxt , cyt ,wt , ht ),
the second order Wasserstein Distance between the two
bounding boxes can be simplified as follows:

W 2
2 (Ng,Nt ) = ([cxg, cyg,

wg
2

,
hg
2
]T , [cxt , cyt ,

wt
2

,
ht
2
]T )22,

(4)

Since W 2
2 (Ng,Nt ) is a distance unit, while the threshold

representing the similarity of bounding boxes should be
a ratio in the (0, 1) interval, it is necessary to normalize
W 2

2 (Ng,Nt ) to obtain the normalized Wasserstein distance
(NWD) as follows:

NWD(Ng,Nt ) = exp[−
W 2

2 (Ng,Nt )

C
]. (5)

Furthermore, NWD loss function is as follows.

LNWD = 1 − NWD(Ng,Nt ). (6)

NWD loss function works well for small-scale targets.
However, since the images of defects in substations are multi-
scale, we have also incorporated CIoU loss [37] in the loss
function part. CIoU takes into account the overlap area,
center point distance, and aspect ratio, these three geometric
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FIGURE 7. The YOLO-SD model.

measures, enabling faster and better bounding box regression.
The CIoU loss is as follows:

IoU =
Bpre ∩ Bgt
Bpre ∪ Bgt

, (7)

v =
4
π2 (arctan

wgt
hgt

− arctan
wpre
hpre

)2, (8)

α =
v

(1 − IoU ) + v
, (9)

LCIoU = 1 − IoU +
d2

c2
+ αv, (10)

where Bpre represents the predicted bounding box and Bgt
represents the ground truth. v is a parameter that assesses
the aspect ratio consistency between the width and height.
wgt stands for the width and hgt for the height of the
ground-truth bounding box, while wpre denotes the width
and hpre denotes the height of the predicted bounding box.
Additionally, α determines the balance between the aspect
ratios of the predicted bounding box and the ground-truth
bounding box. Furthermore, d represents the Euclidean
distance between the center point of the predicted bounding
box and the center point of the ground truth, and c signifies
the diagonal length of the smallest enclosing rectangle that

encompasses both the predicted bounding box and the ground
truth.

By assigning appropriate fusion weights λ to LNWD and
LCIoU , the NWD-CIOU loss function is proposed as a metric
by combining NWD with CIoU as follows:

LNWD−CIoU = λ·LCIoU + (1 − λ)·LNWD. (11)

IV. EXPERIMENTS AND DISCUSSION
A. EXPERIMENTAL PREPARATION
In this paper, we selected 5 types of substation equipment
defects, namely insulators damage, equipment surface oil
contamination, ground oil contamination, metal corrosion,
and meter breakage. We augmented the number of images
for each type of defect to 10000 using ADD-GAN method,
forming the training dataset for the YOLO-SD model.

In this study, we assess the performance of the YOLO-SD
model by examining its detection capabilities for 5 types
of substation equipment defects. The model is trained and
tested on the IW4210-8G server, with detailed specifications
provided in Table 1. Initialization of the YOLO-SD model
includes the parameters outlined in Table 2. To ensure
optimal performance, the input image resolution is set to
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FIGURE 8. Detection results of YOLO-SD.

TABLE 1. Configurations of the IW4210-8G server.

640 × 640, and a batch size of 8 is used during training.
Key parameters such as momentum, initial learning rate, and
decay are inherited from the original YOLOv7 model due to

TABLE 2. Initialization parameters of YOLO-SD network.

their proven effectiveness. To gain a deeper understanding
of the training process, we conduct 3000 training steps.
The learning rate is dynamically adjusted during training to
improve model performance and convergence. By adhering
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TABLE 3. Detection evaluation parameters of different species of defects.

to these training protocols and parameter configurations,
we effectively train the YOLO-SD model and evaluate its
efficacy in detecting the specified substation equipment
defects.

In the following sections, we will utilize average detection
time, mean Average Precision (mAP), F1 score, mAP under
various IoU thresholds, and other evaluation metrics.

B. RESULTS AND ANALYSIS OF YOLO-SD
In this paper, we collected images of the aforementioned
5 types of defects through monitoring, on-site collection, and
online search.

We gathered 165 images of equipment surface oil contam-
ination, 186 images of ground oil contamination, 204 images
of metal corrosion, 220 images of insulator damage, and
254 images of meter breakage. Further, we use ADD-GAN
method to increase the number of images for each class
to 10000. We use the aforementioned 50000 images to
train the YOLO-SD model, and validate it using a test set
composed of new defect images collected from the substation
site. Some test results are shown in Figure 8. It is evident
that the YOLO-SD model excels in accurately detecting
the categories and locations of defects in substations within
complex real-world scenarios. Moreover, it has the capability
to identify multiple defects within a single image.

Furthermore, we analyze the performance metrics of the
YOLO-SD model in detail, as shown in Table 3. It can be
observed that the detection results of the YOLO-SD model
on the aforementioned 5 types of substation equipment defect
test sets achieve an mAP@.5 value of 90.3% and an F1
Score value of 81.1%, demonstrating accurate detection of
substation equipment defects. Among them, the YOLO-SD
model exhibits the highest accuracy in detecting meter wear
defects, benefiting from themore prominent features of meter
damage defects among the various defects. The detection
accuracy of ground oil contamination is the lowest, attributed
to the indistinct image features of ground oil contamination
and its susceptibility to factors such as shadows and watering.

C. DISCUSSION OF NWD-CIOU LOSS
In this paper, we introduce a NWD-CIoU loss function for
multi-scale object detection tasks, aiming to strike a balance

TABLE 4. Detection evaluation parameters of different values of λ.

between the NWD loss and CIoU loss through the utilization
of a weight parameter λ. To validate the efficacy of the
proposed NWD-CIoU loss function, we systematically varied
the λ parameter from 0 to 1 during the training of the YOLO-
SD model. The performance outcomes of the trained model
on the test dataset are detailed in Table 4. The analysis of
metrics like mAP and IoU indicates that the model achieves
optimal performance when the value of λ is approximately
0.6. Moreover, the comparative results highlight that the
integration of the NWD-CIoU loss function enhances the
YOLO-SD model’s ability to accurately detect small defects
in images, enabling precise detection of multi-scale defective
targets. Therefore, in this paper, we choose λ = 0.6.

D. COMPARISON OF DIFFERENT DETECTION MODELS
The YOLO-SD model is benchmarked against SSD512 [26],
Faster R-CNN [25], YOLOv7 [28], YOLOv8 [38], and
the state-of-the-art substation defect detection model [13],
as illustrated in Table 5. Through a comprehensive analysis
of the comparison results, it is evident that YOLO-SD
outperforms the other advanced detection models in terms
of accuracy, especially in detecting multi-scale defect targets.
This accomplishment establishes YOLO-SD as the state-of-
the-art model in substation defect detection.

Furthermore, an analysis was conducted to understand
the underlying factors contributing to the reduced accuracy
observed in several other models, each displaying distinctive
levels of missed detections in the small target defect detection
task. This examination reinforces the effectiveness of the
C3+module integrated into the backbone, the SimAMmech-
anism implemented in the Neck, and the NWS-CIoU loss
function introduced byYOLO-SD. These enhancements have
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TABLE 5. Comparison results of different detection models.

TABLE 6. Results of the ablation experiments.

notably bolstered the models’ capacity to extract features
from targets of varying scales, particularly emphasizing small
targets, consequently facilitating precise defect detection in
substations.

E. ABLATION EXPERIMENT
In YOLO-SD, two significant components were incorpo-
rated: the C3+ module within the feature extraction network
and the SimAM mechanism in the neck. A series of
ablation experiments were conducted to assess the impact of
each functional module on the performance of the YOLO-
SD model. The detailed findings and outcomes of these
experiments are summarized in Table 6 for reference.

The improvements mentioned indeed play a crucial role
in enhancing the accuracy of the model. The incorporation
of the C3+ module within the backbone of the YOLO-SD
model significantly contributes to enhancing the overall
accuracy. This is attributed to the C3+ module’s ability to
empower the network with enhanced local depth attention
and global processing capabilities, facilitating the precise
capture of image features associated with substation defects.
This innovative design empowers the backbone network
to effectively manage feature information across windows,
thereby expanding the network’s depth receptive field and
preserving vital weight information.

On the other hand, the integration of the SimAM
module within the Neck component demonstrates a notable
improvement in enhancing IoU accuracy. This highlights that
the introduction of SimAM not only boosts the network’s
learning capacity but also equips it with the capability to
autonomously learn and dynamically adjust attention weights
to suit various input scenarios. These scenarios encompass
intricate features of the target, subtle details of distant targets,
and extensive features of nearby targets. Consequently, the
neck network can selectively capture the complex features
of electrical equipment defects while disregarding irrelevant

data. By elevating the accuracy of feature fusion, the overall
detection accuracy of YOLO-SD experiences a substantial
enhancement.

V. CONCLUSION
This paper is focused on tackling the issue of low detection
accuracy in substation defect detection, which is influenced
by various factors like the diverse types of defects, complex
environmental conditions, and significant variations in defect
image scales. By leveraging the YOLOv7 model and
implementing several enhancement techniques, the proposed
YOLO-SD model aims to achieve improved precision and
enhanced robustness in substation defect detection tasks.
This paper validates the effectiveness and reliability of the
algorithm through comprehensive experiments, highlighting
its main contributions and innovations as follows:

1) In the substation defect detection task, The YOLO-SD
model achieves anmAP@0.5 of 90.3% andmAP@0.5 :

0.95 of 63.9%. The F1 score reaches 81.1%, IoU value
is 90.5%, surpassing other models such as YOLOv7
and YOLOv8, reaching the state-of-the-art.

2) To improve the network’s ability to extract features in
complex backgrounds and enhance detection accuracy,
a new deep perceptual feature extraction module called
C3+ is introduced in the study. This novel design
enhances the backbone network’s capability to process
feature information across windows, thereby enlarging
the network’s deep receptive field and preserving
essential weight information.

3) In this study, SimAM is integrated into the neck
network of YOLO-SD. This incorporation not only
strengthens the network’s learning capacity but also
enables it to autonomously learn and dynamically
adjust attention weights to adapt to various input
scenarios. Consequently, the neck network can focus
on capturing the intricate features of defects in
electrical equipment while filtering out irrelevant data.
By improving the accuracy of feature fusion, the overall
detection accuracy of YOLO-SD is enhanced.

4) A novel fusion loss function, named NWD-CIoU,
is specially crafted to address the complexities arising
from variations in sizes and shapes of diverse substation
equipment defects captured in images. By integrating
the NWD-CIoU loss function, the YOLO-SD model’s
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defect detection capability is fortified to effectively
handle targets of different scales, ultimately leading to
a significant enhancement in detection accuracy.

However, the model proposed in this paper also encoun-
tered challenges such as insufficient data during training,
which affected the further improvement of the model’s
performance.

In future work, we will standardize the evaluation criteria
for image generation data to assess the quality of generated
images. Building upon this foundation, our focus will be
on augmenting the quantity and diversity of the substation
defect dataset, laying the groundwork for enhancing the
performance of defect detection methods for substation
equipments.
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