
Received 9 July 2024, accepted 28 July 2024, date of publication 31 July 2024, date of current version 12 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3436018

Integrated Smart Risk Management for Siwa Solar
Energy Systems: A Case Study and Strategies
MARWA HASSAN 1, ALI M. EL-RIFAIE 2, (Senior Member, IEEE), MAHMOUD BESHR1,
AND EMAN BESHR 1
1Arab Academy for Science, Technology & Maritime Transport, Cairo 11865, Egypt
2College of Engineering and Technology, American University of the Middle East, Egaila 15453, Kuwait

Corresponding authors: Marwa Hassan (eng_marwa@aast.edu) and Ali M. El-Rifaie (ali.el-rifaie@aum.edu.kw)

ABSTRACT This study introduces a novel risk measurement and control framework tailored to optimize
the stochastic energy trading strategy of a solar storage system at Egypt’s Siwa solar station. By integrating
key risk measurements Shortfall Probability (SP), Value at Risk (VaR), and Conditional Value at Risk
(CVaR)–into a stochastic optimization model, this framework caters to diverse risk preferences and
effectively addresses uncertainties associated with electricity prices and solar power production. Using
realistic data, simulation analysis reveals a significant finding: increasing the energy capacity of battery
storage significantly enhances the system’s arbitrage capability, leading to a notable profit increase of
approximately 20%. Furthermore, the integration of the risk framework demonstrates its effectiveness
by revealing significant improvements in key areas, including risk mitigation, system stability, financial
performance, decision-making insights, and adherence to international standards. These findings equip
decision-makers in the Egyptian energy sector with actionable strategies to optimize their energy trading
practices, thereby enhancing profitability and risk management in this dynamic industry.

INDEX TERMS Solar energy systems, risk management framework, stochastic optimization, energy storage
integration, decision-making under uncertainty.

I. INTRODUCTION
Advancements in integrating solar energy into the power grid
pose challenges for both system operators and solar power
producers due to the increased prevalence of intermittent
energy resources [1], [2], [3]. In response, there is a
growing recognition of the need for sophisticated methods
to measure and control risks. Energy storage technologies,
encompassing batteries, compressed air, and pumped storage,
have demonstrated effectiveness in managing solar power
fluctuations, optimizing peak loads, and bolstering power
system reliability. This has led to increased attention to
the strategic collaboration of solar energy resources and
energy storage in the electricity market [4], [5], [6], [7], [8].
Presently, ongoing research focuses on aligning solar energy
resources with diverse energy storage systems to optimize
operational and planning outcomes across various market
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mechanisms. Investigators are also exploring cooperative
operational strategies involving multiple energy storage
systems to maximize overall benefits. Recent advancements,
including the integration of deep reinforcement learning
in solar storage systems [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], aim to enhance robustness and
profitability. The impact of climate conditions, such as
variability in solar irradiance and weather fluctuations [20],
[21], [22], significantly influences the operational reliability
and economic viability of these systems. While solar storage
systems widely adopt stochastic optimization and conditional
value at risk (CVaR) to address uncertainties in the electricity
market, current risk control strategies often overlook other
important measurements like value at risk (VaR) and Shortfall
Probability (SP) [23], [24], [25], [26], [27], [28], [29],
[30], [31]. Thus, the comprehensive integration of these
risk measurements into decision-making models for solar
storage systems remains an underexplored area. To address
these research gaps, this paper introduces the Smart Risk
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Management Framework for Solar Energy Systems [32],
specifically tailored to manage the risks inherent in solar
energy systems. With a focus on the Siwa solar station in
Egypt, the framework aims to provide decision-makers with
a comprehensive approach to risk measurement and control.
The foundational concept of this work is grounded in the
utilization of [33] to tackle the unique challenges posed by the
distinctive energy market conditions in Siwa and the growing
significance of solar energy in the region. Moreover, delving
into the specifics of the Smart Risk Management Framework
for Solar Energy Systems reveals its tailored approach
to mitigating the dynamic risks associated with solar
energy systems. Unlike standalone systems, this framework
integrates risk monitoring with solar energy performance
evaluation to provide continuous feedback for effective
risk management. Comprising five key stages, including
Risk Identification, Analysis, Evaluation, Treatment, and
Monitoring, it ensures comprehensive risk management [34],
[35], [36], [37]. By aligning with ISO 31000 standard guid-
ance, the framework enhances its efficiency in addressing
various risks. With its proactive approach and continuous
feedback mechanism, it serves as a resilient strategy to
enhance the performance and resilience of solar energy
systems. By selecting Siwa as a case study, this research
aims to provide insights directly applicable to the unique
conditions of the Egyptian energy market. This approach
ensures that the findings are not only theoretically sound but
also practically meaningful and impactful for stakeholders
in the region. The subsequent sections of this paper delve
into comprehensive explanations of the risk-aware stochastic
decision framework, the risk measurements employed, and
the approaches to integrated risk measurement and control
for solar storage systems. This paper is organized into
distinct sections to provide a comprehensive exploration of
the subject matter. The Introduction (Section I) initiates the
discourse, setting the foundation for the subsequent sections.
Section II delves into the concept of Stochastic Optimization
with Risk Consideration, elucidating methodologies such
as (SP), VaR, and CVaR. These methodologies form the
theoretical backbone of the proposed framework, enabling
decision-makers to manage risk preferences and uncertainties
robustly. Section III discusses the Proposed Integrated
Risk Measurement and Control Methodologies, specifically
tailored for the solar storage system at Siwa. This section
details how SP, VaR, and CVaR are integrated into the opti-
mization model, highlighting their roles in enhancing risk-
aware decision-making.. Following this, Section IV outlines
the model’s objective function and associated constraints.
Section V presents the simulation methodology and analysis
framework, focusing on the practical implementation of the
proposed methodologies. Using realistic data, this section
aims to validate the effectiveness of the integrated risk frame-
work in real-world scenarios, without revealing specific find-
ings or results. Finally, Section VI serves as the conclusion,
summarizing the study’s methodology, contributions to the
field, and implications for decision-makers in the Egyptian

energy sector. It underscores how integrating the proposed
risk framework enhances decision-making processes and
provides actionable strategies for optimizing energy trading
practices, contributing to sustained profitability and system
reliability in the dynamic landscape of solar energy trading.

II. STOCHASTIC OPTIMIZATION WITH RISK
CONSIDERATION
In recent times, there has been a growing inclination
towards the adoption of stochastic optimization method-
ologies to tackle decision-making complexities associated
with uncertainty and risk management. Stochastic program-
ming offers a robust mathematical framework for modeling
optimization problems that inherently involve uncertainties.
Stochastic optimization and robust optimization represent
two fundamental approaches to addressing uncertainties in
optimization problems. Stochastic optimization and robust
optimization represent two fundamental approaches to
addressing uncertainties in optimization problems. Stochastic
optimization, central to our study, leverages probabilistic
models to accurately characterize the variability and risks
inherent in decision-making processes. By directly incorpo-
rating probabilistic distributions of variables and constraints,
stochastic optimization enables more precise and adaptable
decision outcomes under uncertain conditions. This approach
not only provides a realistic representation of uncertainties
but also allows decision-makers to optimize for probabilistic
measures of performance, leading to solutions that are not
only robust but also optimal in probabilistic terms. In con-
trast, robust optimization methods, including scenario-based
optimization and robust counterpart optimization, aim to
ensure resilience against uncertainties by either considering
a predefined set of scenarios or formulating decision rules
based on worst-case scenarios within predefined bounds
[24]. However, these methods often oversimplify complex
stochastic environments andmay lead to suboptimal solutions
under conditions of high variability. Therefore, while robust
optimization methods provide stability against uncertainties,
stochastic optimization stands out by offering amore nuanced
and comprehensive approach to optimizing under uncertainty,
particularly suited for dynamic and uncertain environ-
ments. Here are several reasons why stochastic optimization
ensures greater robustness compared to robust optimization
methods:

1) Adaptability to Real-Time Data: Stochastic opti-
mization can incorporate real-time data updates, allow-
ing for continuous adaptation to changing conditions.
This dynamic naturemakes it more responsive and flex-
ible compared to robust optimization, which typically
relies on static, predefined scenarios.

2) Scalability with Scenario Generation: Stochastic
optimization can generate and manage a large number
of scenarios to better capture the variability and
uncertainties in the data. This capability provides more
comprehensive solutions that can adapt to awider range
of possible future states.
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3) Improved Performance Metrics: By optimizing for
various probabilistic performance metrics such as
expected value, variance, and tail risk measures (e.g.,
Conditional Value at Risk or CVaR), stochastic opti-
mization leads to decision-making that accounts for
a broader spectrum of risk considerations, enhancing
overall robustness.

4) Flexibility in Modeling: Stochastic optimization
offers flexibility in modeling complex dependencies
and correlations between random variables. This
detailed representation ensures that the optimization
process captures the true nature of uncertainties more
accurately than robust optimization, which might
simplify or overlook these intricate relationships.

For our research on solar energy trading strategies, the
application of stochastic optimization proves beneficial in
navigating the uncertainties of energymarkets. By integrating
probabilistic distributions and scenario-based modeling,
we enhance decision-making processes and optimize trading
strategies amidst fluctuating market conditions. Decision-
makers adopting a risk-neutral stance structure the objective
function within stochastic programming to maximize the
expected value of their objective function, incorporating
a discrete probability distribution of random parameters
across limited scenarios. However, for decision-makers
embracing a risk-averse perspective, the objective function
necessitates the incorporation of a risk measurement term.
This supplementary term is introduced with the goal of
assessing and mitigating the impact of low returns or losses
in extreme scenarios. The objective function for a risk-averse
decision maker in a stochastic optimization problem can be
expressed in the following manner:

max (1 − α) · Eω{g(ξ, ω)} + α ·Mω{g(ξ, ω)}. (1)

The objective is to maximize a composite function, incorpo-
rating expected profit adjusted by the risk aversion parameter
(1 − α), and the risk measure Mωg(ξ, ω). The variables ξ

and ω correspond to the vectors of decision parameters and
random parameters, respectively. The function g(ξ, ω) char-
acterizes the distribution of expected profit, with Eωg(ξ, ω)
representing the total expected profit. The risk measure
Mωg(ξ, ω) captures the risk associated with the distribution,
encompassing considerations such as SP, VaR, and CVaR.
The parameter α serves as the risk aversion coefficient,
influencing the balance between expected profit and risk.

A. RISK MANAGEMENT STRATEGIES FOR SOLAR
STORAGE SYSTEMS
1) RISK CONTROL BASED ON SP
Shortfall Probability (SP) serves as a pivotal metric in the
realm of risk-aware decision-making. It is formally expressed
as:

SP(ξ, η) = 1 − FSP (ξ, η) = 1 − P{g(ξ, ω) ≥ η}, (2)

whereFSP (ξ, η) denotes the cumulative distribution function
of expected profit. This formulation quantifies the probability

that the expected profit (g(ξ, ω)) falls below a specified
reference profit value (η) across various scenarios.

In addressing extreme scenarios, decision-makers strive
to minimize the Shortfall Probability (SP). This metric
gauges the risk of expected profit falling below a specified
level, indicating potential losses. To manage this risk,
SP is integrated into the stochastic programming objective
function as−FSP(x, ηSP). Maximizing the negative SP entails
minimizing the likelihood of falling short of the profit
target. This strategic approach assists decision-makers in
prioritizing risk reduction and enhancing overall profitability
in uncertain situations.

2) RISK CONTROL BASED ON VAR
Similar to SP, Value at Risk (VaR) has limitations in
detailing profits beyond a specific threshold (ηVaR). Although
inconsistent for fat tail risks, VaR meets all criteria, except
homogeneous additivity. Mathematically, VaR is expressed
as:

VaR(ξ, α) = FVaR(ξ, α) = inf{η : P{g(ξ, ω) ≥ η} ≤ 1 − α},

(3)

where FVaR(ξ, α) is the cumulative distribution function
defining the maximum potential loss or minimum expected
profit at confidence level α. In decision-making, the goal is
to minimize VaR, seeking a lower VaR for reduced risk and
improved profitability. This is integrated into the stochastic
programming objective function as −FVaR(x, αVaR). Maxi-
mizing the negative VaR aligns with minimizing actual Value
at Risk. VaR offers insights into potential losses at a specified
confidence level, empowering decision-makers to prioritize
risk reduction and enhance overall profitability in uncertainty.

3) RISK CONTROL BASED ON CVAR
Conditional Value at Risk (CVaR), also known as Expected
Shortfall, provides a comprehensive risk measure by con-
sidering the tail distribution beyond a specific threshold.
Distinguished fromValue at Risk (VaR), CVaR represents the
expected value of losses given they surpass theVaR threshold.
Mathematically, the CVaR equation is expressed as:

CVaR(ξ, α) = max
{
ηVaR − E

[
max

(
ηVaR − g(ξ, ωw), 0

)]
| ∀α ∈ (0, 1)

}
(4)

where g(ξ, ωw) denotes the probability density function of
the expected profit. This integral computes the weighted
average of losses beyond the VaR threshold, providing a
risk measure that is more sensitive to extreme scenarios.
In the realm of decision-making amidst uncertainty, the focus
on minimizing Conditional Value at Risk (CVaR) assumes
paramount significance. Embedding CVaR into the stochastic
programming objective function involves expressing it as
CVaR(ξ, α), where CVaR(ξ, α) stands as the cumulative
distribution function corresponding to CVaR.
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a: COMPARISON WITH CHANCE-CONSTRAINED MODELS
While CVaR provides a comprehensive measure of risk
by focusing on the tail distribution and extreme scenarios,
chance-constrained models offer a different approach to man-
aging uncertainty. Chance-constrained models, also known
as probabilistic constraints, ensure that specific constraints
are satisfied with a given probability. This is mathematically
represented as:

P(g(ξ, ω) ≥ η) ≥ β (5)

where g(ξ, ω) is a function of decision variables ξ and
random variables ω, η is a threshold value, and β is
the desired confidence level. This approach ensures that
constraints are met with high probability, providing robust-
ness against uncertainties. In contrast, CVaR focuses on
the expected losses beyond a specific threshold, offering
a more detailed view of potential extreme outcomes.
While chance-constrained models ensure that operational
constraints are met with high confidence, they may not fully
capture the severity of extreme losses. CVaR, by addressing
the tail distribution, enables a more comprehensive risk
management strategy, particularly important in scenarios
involving rare but severe events. In our study, incorporating
CVaR allows for a more nuanced approach to optimizing
under uncertainty, ensuring that both the frequency and
severity of adverse outcomes are effectively managed. This
enhances the robustness and resilience of the solar storage
system, providing decision-makers with a holistic view of risk
and performance under uncertain conditions.

4) INTEGRATED RISK CONTROL THROUGH COMBINED RISK
METRICS
Drawing upon diverse risk metrics outlined in reference
number [20], an integrated risk measurement framework
denoted as IRM (ξ, η′, α′

VaR, α′

CVaR) is introduced for the
expected profit distribution. This framework, as expressed
below, allows for a comprehensive evaluation of tail risks by
incorporating crucial parameters. Specifically, η′ represents
the control for tail risks, while α′

VaR and α′

CVaR denote the
significance levels for Value at Risk (VaR) and Conditional
Value at Risk (CVaR) respectively. The integration of these
parameters, along with CVaR, VaR, and Stochastic Program-
ming (SP), provides a flexible foundation for tailoring risk
management strategies:

IRM(ξ, η′, α′

VaR, α′

CVaR)

= α′

VaR · FSP(ξ, η′)

+ α′

VaR · FVaR(α′

VaR, ξ ) + α′

CVaR · FCVaR(α′

CVaR, ξ ) (6)

Here, ξ represents the expected profit distribution, η′ controls
tail risks of the expected profit distribution, α′

VaR is the
significance level for VaR, and α′

CVaR is the significance
level for CVaR. The functions FSP, FVaR, and FCVaR represent
Stochastic Programming, Value at Risk, and Conditional
Value at Risk functions, respectively, enabling a flexible
framework for tailoring risk management strategies.

B. MARKET ENVIRONMENT AND STOCHASTIC
PARAMETER CHARACTERIZATION
The SARIMA (Seasonal Autoregressive Integrated Moving
Average) model is selected for generating scenarios involving
random parameters such as solar power production, day-
ahead, and real-time electricity prices in the electricity
market. This choice is grounded in SARIMA’s robust
capability to capture both seasonal patterns and complex
temporal dependencies present in historical data. Electricity
markets are characterized by significant seasonality and
volatility, influenced by factors like weather conditions,
demand fluctuations, and the intermittent availability of
renewable energy sources. SARIMA distinguishes itself from
simpler models by integrating autoregressive and moving
average components alongside seasonal differencing. This
feature is crucial for accurately modeling the periodic
variations observed in electricity consumption and market
prices. The model’s flexibility allows for the simulation of
diverse scenarios by adjusting parameters based on historical
data, facilitating the generation of realistic forecasts essential
for informed decision-making in energy trading and risk
management. Moreover, SARIMA’s proficiency in handling
multivariate time series data and its robustness in capturing
nonlinear trends and irregularities further underscore its
applicability in forecasting electricity market dynamics.
By leveraging SARIMA, analysts can gain deeper insights
into market behaviors under varying conditions, thereby
enhancing strategies for pricing, hedging, and optimizing
resource allocation within electricity markets. As an illus-
tration, consider the day-ahead electricity price (ξDA,t,w),
a crucial random parameter influenced by SARIMA’s
ability to capture complex seasonal patterns and temporal
dependencies in market data. This parameter’s mathematical
form within the SARIMA framework can be represented as
follows:

(1 − α)
G∑
g=1

φgBg
P∏
i=1

(1 − βiBsi )(1 − B)d (1 − BS )DξDA,t,w

=

H∑
h=1

θhBh

1 −

Q∑
j=1

γjBsjϵDA,t,w

 , (7)

Here, S is the seasonal order, φ1, φ2, . . . , φG represent
G autoregressive parameters, θ1, θ2, . . . , θH represent H
moving average parameters, β1, β2, . . . , βP represent P sea-
sonal autoregressive parameters, γ1, γ2, . . . , γQ represent Q
seasonal moving average parameters. The error term ϵDA,t,w
follows an independent normal probability distributionwithin
the SARIMA model. The operator B is the backward shift
operator, and its function is given by: Bs(1 − B)dξDA,t,w =

ξDA,t−s,w. This representation ensures a unique and distinct
formulation while adhering to the specified changes.

C. RISK MEASURES AND THEIR APPLICABILITY
This study employs a rigorous approach to assess portfolio
risk using selected metrics: SP, VaR, and CVaR. SP serves
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as a foundational metric, offering insights into portfolio
volatility and stability by measuring the dispersion of
returns around the mean. VaR enhances risk assessment
by quantifying the potential maximum loss at a specified
confidence level over a defined time horizon, crucial for
managing downside risk under normal market conditions.
CVaR, or expected shortfall, extends VaR by estimating the
average loss magnitude beyond the VaR threshold, providing
insights into extreme risk scenarios. These measures are
selected for their ability to offer a comprehensive view of
risk exposure, essential for optimizing risk-adjusted returns
and managing portfolio volatility effectively. Alternative
measures such as the Sharpe Ratio, Jensen’s Alpha, and
Beta Coefficient were considered but ultimately excluded
from analysis. The Sharpe Ratio evaluates risk-adjusted
returns relative to volatility but does not specifically address
downside risk or extreme loss scenarios, critical for this
study’s risk management framework. Jensen’s Alpha and
Beta Coefficient, while valuable for assessing portfolio
performance and systematic risk exposure, do not provide the
granularity needed to quantify and manage the types of risks
identified in this study, such as tail risk and extreme market
fluctuations. Therefore, focusing on SP, VaR, and CVaR
aligns with the research goal of thorough risk assessment and
management, ensuring robustness in portfolio risk analysis.

III. SMART RISK MANAGEMENT FRAMEWORK FOR
SOLAR ENERGY SYSTEMS
The Smart Risk Management Framework for Solar Energy
Systems addresses dynamic risks in solar energy systems,
emphasizing tailored risk management to mitigate evolving
challenges. Previous research highlights limitations of stan-
dalone risk management, often failing to address dynamic
parameters during crises. This section offers improved
techniques for risk mitigation. A specialized risk manage-
ment framework is essential for solar panel power stations,
consisting of five key stages as shown in Figure 1:

• Risk Identification: Identify potential risks across
various contexts.

• Risk Analysis: Thoroughly analyze risks, including
probability, consequences, and related failures.

• Risk Evaluation: Classify severity and current risk
level, considering existing controls.

• Risk Treatment: Develop effective strategies to
mitigate assessed risks.

• Risk Monitoring and Feedback: Continuously mon-
itor critical risks, adjusting treatment strategies as
needed.

A. INTEGRATION OF ‘‘SMART’’ ELEMENTS
The concept of ‘‘smart’’ in our Smart Risk Manage-
ment Framework for Solar Energy Systems embodies the
integration of advanced technologies, data analytics, and
adaptive strategies to enhance the efficiency, accuracy, and
responsiveness of risk management processes:

FIGURE 1. Smart risk management framework for solar energy systems.

• Advanced Data Analytics: Our framework employs
sophisticated data analytics techniques to process and
analyze vast amounts of data from various sources,
including historical solar power generation, weather
forecasts, electricity market trends, and real-time opera-
tional data. By leveraging machine learning algorithms
and statistical models, such as SARIMA for scenario
generation, we can identify patterns, predict future
outcomes, and quantify risks with higher precision.

• Real-TimeMonitoring and Adaptive Response: Con-
tinuous monitoring of system performance and market
conditions in real-time is facilitated through IoT devices
and sensors. These provide up-to-date information on
solar panel output, battery storage levels, and market
prices, enabling immediate anomaly detection and
adaptive responses to mitigate risks.

• Scenario Planning and Stress Testing: Our approach
includes comprehensive scenario planning and stress
testing to evaluate the resilience of the solar energy
system under various adverse conditions. By simulating
extreme weather events, market price fluctuations, and
equipment failures, we can assess the impact on system
performance and develop robust contingency plans. This
proactive strategy ensures preparedness for unexpected
challenges and minimizes potential losses.

• Automated Decision Support Systems: The smart
risk management framework incorporates automated
decision support systems that assist operators in making
informed decisions based on real-time data and predic-
tive insights. These systems utilize artificial intelligence
to provide recommendations for energy trading, load
balancing, and resource allocation, optimizing both
economic and operational outcomes.

• Integration with Energy Management Systems: Our
risk management approach is integrated with advanced
energy management systems (EMS) that oversee the
coordination and control of energy production, storage,

VOLUME 12, 2024 106029



M. Hassan et al.: Integrated Smart Risk Management for Siwa Solar Energy Systems

and consumption. The EMS ensures that energy is
efficiently distributed, stored, and utilized, aligning with
market conditions and operational goals. This integra-
tion facilitates seamless implementation of risk manage-
ment strategies, enhancing overall system performance.

• Dynamic Risk Assessment and Mitigation: Smart
risk management involves dynamic risk assessment
processes that continuously evaluate the risk landscape
and update risk profiles based on new data and insights.
Adaptive riskmitigation strategies are then implemented
to address emerging risks promptly. This dynamic
approach ensures that the risk management framework
remains relevant and effective in a constantly changing
environment

This framework integrates risk monitoring with solar energy
performance evaluation, providing continuous feedback for
efficient risk management [38]. Additionally, it leverages
simulation processes aligned with ISO 31000 standard
guidance [39], evaluating risk factors and ensuring treat-
ment adequacy. This proactive approach enhances resilience
against crises and supports sustainable energy production.

IV. RISK-INTEGRATED TRADING APPROACHES
A. OBJECTIVE FUNCTION
The objective function of the solar storage system is the
weighted sum of the total expected profit and all the risk
measurements. The weight coefficients α′

SP, α
′
VaR, and α′

CVaR
are defined as the sub-risk aversion degree of SP, VaR, and
CVaR, respectively. The value range of these risk-averse
degree parameters is [0, 1], and they need to satisfy the
following equation:

α′
SP + α′

VaR + α′
CVaR = 1 (8)

While ideally the sum of α′
SP, α′

VaR, and α′
CVaR equals 1,

practical applications often accommodate variations due to
several factors in real-world scenarios. Firstly, empirical
data and historical performance may indicate differing
levels of risk sensitivity across markets or specific assets.
Secondly, regulatory requirements or institutional policies
may necessitate adjustments to these parameters to meet
risk management standards or investor preferences. Thirdly,
modeling assumptions and simplifications in simulations
may result in deviations from theoretical ideals, providing
flexibility in risk management strategies. Lastly, individual
risk appetites and strategic objectives of stakeholders can
influence the assignment of these parameters, reflecting
nuanced approaches to risk assessment and management.
Based on (8) and the framework of stochastic optimization,
the objective function of the proposed risk control problem
can be established as:

max
ξ

( W∑
w=1

prwπWSw

+ α′
SP(πSC − θSP) + α′

VaRπVaR + α′
CVaRπCVaR

)
(9)

Here, ξ is the set of all the decision variables of the
proposed risk-aware stochastic optimization problem. prw
and πWSw are the probability and expected profit of scenario
w, respectively, and πSC is the scale parameter of SP. θSP,
πVaR, and πCVaR are the SP, VaR, and CVaR of the solar
storage system, respectively, while the sub-risk aversion
degree parameters are α′

SP, α
′
VaR, and α′

CVaR.
The expected profit πWSw for the stochastic energy trading

of the solar storage system in the electricity market is
calculated as:

πWSw =

T∑
t=1

{

θDAt ,wPDAt + θRTt ,wPRTt
− (FDEV+ + PRT+t,w + FDEV− + PRT−t,w )

− (FBS,ch + PBS,cht ,w + FBS,dis − PBS,dist ,w) (10)

Here, θDAt ,w and θRTt ,w are the day-ahead and real-time
electricity prices in the electricity market in the period t of
scenario w, respectively. PDAt and PRTt are the energy sold
by the solar storage system in the day-ahead and real-time
markets, respectively, where negative values mean the solar
storage system is buying energy from the markets. PBS,cht ,w
and PBS,dist ,w are the respective charging and discharging
energy of the battery storage in the period t of scenario
w, while PRT+t,w and PRT−t,w are the positive and negative
power deviations in real-time markets, respectively. FDEV+

and FDEV− are the respective positive and negative deviation
penalty costs for real-time power of the solar storage system,
while FBS,ch and FBS,dis are the charging and discharging
operation costs of the battery storage, respectively.

B. RISK MEASUREMENTS CONSTRAINS
In the stochastic optimization problem, the constraints used
to calculate SP include:∑

w

θSPzSPwηSP − πSolarw ≤ MSPzSPw ∀w

zSPw ∈ {0, 1} ∀w (11)

where ηSP represents the reference profit of the shortfall
probability, zSPw is the binary auxiliary variable, which is
1 when πSolarw ≤ ηSP and 0 otherwise, while MSP is a
sufficiently large constant.

The constraints used for calculating the VaR include:

W∑
w=1

prwzVaRw ≤ 1 − α′

VaRπ

VaR − πSolarw ≤ MVaRzVaRw ∀w (12)

where α′

VaR is the confidence level parameter of the VaR,
zVaRw is the binary auxiliary variable used to calculate it,
and equals 1 when πSolarw ≤ πVaR and 0 otherwise. The
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constraints used for calculating the CVaR include:

CVaR = ζ −
1

1 − α′

CVaR

∑
w

pwgwγw ≥ 0 ∀w

ζ − gw ≤ πSolarw (13)

where α′

CVaR is the confidence level parameter, while gw and
ζ are the auxiliary variables used to calculate the CVaR.
The detailed derivation and proof process of this calculation
method are shown in detail in [26].

C. OPERATIONAL LIMITATIONS IN SOLAR STORAGE
SYSTEMS
The operational constraints for the solar storage system in the
electricity market are as follows:

PBS,max ≤ PDAt ≤ PRES,max + PBS,max ∀t

(14)

PBS,max ≤ PRTt ≤ PRES,max + PBS,max ∀t

(15)

PRT+t,w − PRT−t,w ≥ 0 ∀t,w (16)

Here, PBS,max is the maximum power capacity of the
battery storage, PDAt and PRTt represent the energy sold
by the solar storage system in the day-ahead and real-
time markets, respectively. PRES,max is the maximum power
capacity of the solar resource. PRT+t,w and PRT−t,w are the
positive and negative power deviations in real-time markets,
respectively.

These operational constraints ensure that the solar storage
system operates within its capacity limits and adheres to
market-specific constraints during day-ahead and real-time
energy trading.

BATTERY STORAGE CONSTRAINTS
The operating cost of the battery storage system is related to
the charging and discharging power, expressed as:

CBSw =

T∑
t=1

(
gBS,disPBS,dist,w + gBS,chPBS,cht,w

)
∀w (17)

The energy levels of the battery storage in different periods
are calculated by: The energy level and charge-discharge
power constraints of the battery are given as:

PBS,dist,w ≥ −PBS,max ∀t,w (18)

PBS,cht,w = PRT+t,w − PRT−t,w ∀t,w (19)

CBSw =

T∑
t=1

(
gBS,disPBS,dist,w + gBS,chPBS,cht,w

)
∀w (20)

EBSt,w = EBS,0 − PBS,dist,wηBS,dis +
PBS,cht,w

ηBS,ch
for t = 1, ∀w

(21)

EBSt,w = EBSt−1,w − PBS,dist,wηBS,dis +
PBS,cht,w

ηBS,ch

for t ≥ 2, ∀w (22)

EBSt,w ≥ EBS,min ∀t,w (23)

EBSt,w ≤ EBS,max ∀t,w (24)

PBS,dist,w ≤ PBS,maxzBS,dist,w ∀t,w (25)

PBS,cht,w ≤ PBS,maxzBS,cht,w ∀t,w (26)

zBS,dist,w + zBS,cht,w ≤ 1 ∀t,w (27)

zBS,dist,w , zBS,cht,w ∈ {0, 1} ∀t,w (28)

Here, zBS,cht,w is a binary variable representing the charging
state, which is 1 when the battery is charged and 0
otherwise, while zBS,dist,w is a binary variable representing the
discharging state, which is 1 when the battery is discharged
and 0 otherwise. EBS,max and EBS,min are the highest and
lowest energy levels of the battery, respectively. PBS,max
determines the maximum charging and discharging power of
the battery.

D. REAL-TIME POWER DEVIATION CONSTRAINT
This constraint ensures that the real-time power deviation is
kept within acceptable bounds.

W∑
w=1

(
PRT+t,w − PRT−t,w

)
≤ 1 ∀t (29)

Here, PRT+t,w and PRT−t,w are the positive and negative
power deviations in real-time markets for period t of scenario
w. 1max is set to 1, indicating the maximum allowable total
deviation in real-time power across all scenarios.
This constraint ensures that the cumulative positive and

negative power deviations at any given time do not exceed the
specified maximum deviation, helping control and manage
real-time power fluctuations within acceptable limits.

E. ENERGY TRADING APPROACHES WITH DIVERSE RISK
MANAGEMENT METHODS
In simplifying the stochastic optimization model based
on an integrated risk control methodology, various energy
trading strategies emerge, each adopting different risk-averse
approaches. First, the risk-neutral strategy, characterized by
α′
SP = α′

VaR = α′
CVaR = 0, focuses solely on maximizing

the total expected profit, as captured in equations (9)–(10)
and (20)–(22) of the optimization model. Subsequently, the
α′
SP risk control strategy, where α′

SP > 0, α′
VaR = 0,

and α′
CVaR = 0, incorporates both total expected profit and

the α′
SP risk measurement, encompassing equations (9)–(14)

and (21)–(29). The α′
VaR risk control strategy, characterized

by α′
SP = 0, α′

VaR > 0, and α′
CVaR = 0, considers total

expected profit and the α′
VaR risk measurement, with its corre-

sponding optimization models involving equations (9)–(10),
(14)–(16), and (20)–(29). Similarly, the α′

CVaR risk control
strategy, where α′

SP = 0, α′
VaR = 0, and α′

CVaR > 0, integrates
total expected profit and the α′

CVaR risk measurement,
comprising equations (8)–(10) and (17)–(20). Lastly, the
integrated risk control strategy, denoted by α′

SP > 0,
α′
VaR > 0, and α′

CVaR > 0, considers total expected profit
and three distinct risk measures–α′

SP, α
′
VaR, and α′

CVaR–in its
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FIGURE 2. Siwa solar station.

objective function, as detailed in equations (9)–(29) within
Section III-B. These strategies represent a comprehensive
exploration of risk-averse energy trading approaches, simu-
lated and analyzed using advanced computational methods.
While this study focuses on the methodologies outlined,
future research could delve deeper into comparative analyses
using advanced AI-driven simulations.

V. CASE STUDY
A. SIMULATION CONFIGURATION
To evaluate the effectiveness of integrated risk measurement
and control methodologies, the Siwa Solar Energy Project
serves as a case study. Developed by Abu Dhabi Future
Energy and Enviromena Power Systems, this solar power
plant, located in Siwa City, Egypt, is a pivotal component
of a UAE-funded initiative dedicated to rural electrification
in Egypt. Featuring 74,640 micromorph thin-film panels
covering an area of 175,000 square meters, the Siwa Solar
Energy Project boasts a capacity of 10 MW [40]. Figure 2
provides a visual representation of the solar installation,
while Table 1 and Table 2 detail its parameters and power
system components, respectively. For the analysis, historical
data pertinent to the Siwa Solar Energy Project, including
solar power generation, were obtained [41], [42], [43], [44],
[45], [46], [47]. Charging and discharging operational costs
for the battery storage component, which complements the
solar facility, were considered at a rate of 0.025 $/MWh.
The historical day-ahead and real-time electricity price data
were sourced from IMO, the trading hub node of the
East Mediterranean electricity market. To ensure a robust
analysis, a total of 70 scenarios for each random parameter
were examined, each carrying a probability weight of 0.01.
The optimization problem was successfully solved using the
YALMIP toolbox and the commercial solver MOSEK within

TABLE 1. Parameters of Masdar’s 10 MW solar PV power plant in Siwa.

TABLE 2. Power system details for Masdar’s 10 MW solar PV power plant
in Siwa.

the MATLAB 2021 environment. This approach facilitates
the practical application of the proposed methodologies
within the context of the Siwa Solar Energy Project, offering
insights into their efficacy and potential benefits for solar
energy systems. In the case testing, scenario reduction
techniques were implemented to streamline the analysis
while ensuring the scenarios examined were representative of
a wide range of potential outcomes. Initially, a comprehensive
set of scenarios was generated based on historical data, mar-
ket trends, and stochastic modeling. This set was then refined
using scenario reduction methods aimed at selecting a subset
that captures the variability and critical characteristics of the
broader range. Selection criteria prioritized diverse market
conditions, plausible extreme events, and scenarios sensitive
to key parameters such as electricity prices, solar generation
forecasts, and demand variations. This approach enhances
the interpretability of findings and improves computational
efficiency, enabling a thorough exploration of various risk
management strategies within a realistic testing framework.
The applied scenarios included extreme weather events,
market price drops, equipment failures, demand variations,
solar generation forecast errors, economic downturns, and
regulatory changes. For each scenario, specific contingency
plans were devised: backup energy storage and real-time
market purchases for extremeweather events; hedge contracts
and optimized operational efficiency for market price drops;
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TABLE 3. Scenario description and characteristics.

immediate maintenance response and redundant system
activation for equipment failures; adjusted load forecasting
models and demand response strategies for demand varia-
tions; enhanced forecasting algorithms and real-time data
adjustments for solar generation forecast errors; reviewed
financial hedging strategies and adjusted budgetary planning
for economic downturns; and updated compliance protocols
and monitored policy developments for regulatory changes.
Table 3 shows an example of the applied scenarios. The
applied scenarios shown in the table included extreme
weather events, market price drops, equipment failures,
demand variations, solar generation forecast errors, economic
downturns, and regulatory changes. For each scenario,
specific contingency plans were devised: backup energy
storage and real-time market purchases for extreme weather
events; hedge contracts and optimized operational efficiency
for market price drops; immediate maintenance response and
redundant system activation for equipment failures; adjusted
load forecasting models and demand response strategies
for demand variations; enhanced forecasting algorithms and
real-time data adjustments for solar generation forecast
errors; reviewed financial hedging strategies and adjusted
budgetary planning for economic downturns; and updated
compliance protocols and monitored policy developments for
regulatory changes. By incorporating these comprehensive
contingency plans, the analysis provides a structured and
practical framework for mitigating various risks associated
with solar energy systems.

VI. SCENARIO GENERATION AND REDUCTION
In our study, scenario generation and reduction play pivotal
roles in enhancing the efficiency and accuracy of stochas-
tic optimization models tailored for solar energy trading.
Initially, a comprehensive set of scenarios was generated
to encompass plausible variations in key parameters such
as solar irradiance, electricity prices, and demand patterns.
These scenarios were derived from historical data spanning
relevant time periods, ensuring realistic representation of
uncertainties inherent in energy markets. To streamline

computational feasibility without compromising model
robustness, a scenario reduction process was employed. This
process involved applying advanced statistical techniques to
identify a reduced, yet representative, subset of scenarios.
Specifically, the Fast Forward Selection algorithm was
utilized to systematically select scenarios that preserved the
variability and uncertainty profiles observed in the original
dataset. This approach not only optimized computational
resources but also ensured that the stochastic optimization
models remained reliable and accurate in predicting optimal
energy trading strategies. The selected reduced scenario set
was rigorously validated against the full scenario dataset to
verify the fidelity of optimization outcomes. Through this
iterative process of generation, reduction, and validation,
our approach not only enhances the practical applicability
of stochastic optimization in solar energy trading but also
contributes to mitigating the computational burden associated
with handling large datasets in real-time decision-making
contexts.

A. SCENARIO GENERATION
The initial scenarios were generated using a Monte Carlo
simulation, leveraging historical distributions of solar power
generation, day-ahead electricity prices, and real-time elec-
tricity prices. This method ensures a wide range of possible
outcomes, capturing the inherent variability and uncertainty
in the system.

B. SCENARIO REDUCTION
Given the computational complexity associated with a large
number of scenarios, we implemented a scenario reduction
technique to select themost representative scenarios. The Fast
Forward Selection algorithm was used to identify a subset of
scenarios that preserve the statistical properties of the original
set. This reduction process involved the following steps:

1) Compute pairwise distances between scenarios based
on their probability distributions.

2) Iteratively select scenarios that maximize the diversity
and representativeness of the reduced set.

3) Validate the reduced set by comparing key statistical
metrics (mean, variance) with those of the original set.

C. VALIDATION OF REDUCED SCENARIOS
The effectiveness of the scenario reduction was validated
by ensuring that the reduced set of 20 scenarios maintained
similar statistical characteristics to the original 70 scenarios.
Table 4 summarizes the key metrics before and after the
reduction process.

D. IMPACT ON OPTIMIZATION RESULTS
The reduced scenario set was then used in the stochastic
optimization models. The results, summarized in Table 5,
demonstrate that the key performance metrics remained
consistent with those obtained using the full set of scenarios,
indicating that the scenario reduction process did not
compromise the accuracy of the optimization outcomes.
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TABLE 4. Comparison of scenario sets.

TABLE 5. Optimization results with scenario sets.

The scenario reduction process significantly decreased the
computational burden while maintaining the integrity of the
optimization results. By using the Fast Forward Selection
algorithm, we ensured that the reduced set of scenarios
accurately represented the original variability and uncertainty
in the system. This approach provides a practical and efficient
solution for incorporating stochastic elements into the risk
management framework for solar energy systems.

E. ASSUMPTIONS AND LIMITATIONS
This study operates under several key assumptions to evaluate
the effectiveness of integrated risk measurement and control
methodologies at the Siwa Solar Energy Project. Firstly,
it assumes the electricity market behaves predictably with
reasonable price volatility, based on historical data from the
East Mediterranean electricity market. Secondly, operational
constraints at the Siwa Solar Energy Project are presumed
to be minimal, ensuring optimal functioning throughout the
analysis period. Data accuracy is also assumed, relying
on comprehensive historical records for solar generation,
electricity prices, and system parameters. However, several
limitations must be noted. Simplifications in solar generation
forecasting and market price modeling were necessary for
computational feasibility and practical application. While
validated, the scenario reduction technique employed may
overlook extreme scenarios or correlations between variables,
potentially affecting risk representation in optimization
models. Furthermore, findings are specific to the Siwa
Solar Energy Project and may not fully generalize to
other installations due to differing market dynamics and
environmental conditions. Data constraints, particularly in
real-time availability and quality for weather forecasts and
market predictions, also pose challenges that could impact the
accuracy of short-term decision-making. Recognizing these
assumptions and limitations is essential for interpreting the
study’s outcomes within their appropriate context, suggesting
avenues for future research to enhance modeling techniques
and broaden the applicability of risk management strategies
in solar energy systems.

F. SIMULATION AND RESULTS
The choice of a risk parameter (α′) value of 0.25 for CVaR and
VaR controls in our study is based on balancing risk aversion
with profit optimization in solar energy trading. This value
reflects a moderate level of risk aversion, which we found
through preliminary simulations strikes a practical balance
between protecting against significant losses and maximizing
profitability. Higher values ofα′ would increase risk aversion,
leading to a more conservative approach that may limit
potential profits in dynamic market conditions. On the other
hand, lower values of α′ would reduce risk aversion but
could expose the trading strategy to higher volatility and
increased susceptibility to market uncertainties. The decision
to set α′

= 0.25 aims to optimize the trade-off between
risk mitigation and profit potential within the stochastic
optimization framework tailored for solar energy systems.
This choice allows us to effectively manage downside risks
while retaining flexibility to capitalize on favorable market
opportunities. Integrating smart risk management principles
further strengthens our strategy by enhancing our ability
to proactively respond to market fluctuations and ensure
sustainable profitability over time. The expected values of
solar power generation, day-ahead, and real-time electricity
prices on one day are shown in Figure 3. In Figure 3 a (DA),
electricity prices exhibit a relatively stable and predictable
pattern with moderate fluctuations, reaching a maximum
of 35 dollars. Figure 3b (RT) emphasizes heightened and
more apparent fluctuations in real-time electricity prices,
peaking at 70 dollars. Overall, the discernible trend highlights
more pronounced fluctuations in real-time electricity prices
compared to both solar power production and day-ahead
electricity prices. The outcomes of the risk-neutral strategy
and the integrated risk control strategy in the day-ahead
market and the real-time market are illustrated in Figure 4.
In the context of the risk-neutral strategy, the day-ahead
market reflects a consistent energy trading pattern. Notable
fluctuations are observed in real-time market trading, espe-
cially during hours 11 to 14, indicating potential challenges
in responding to market dynamics. On the other hand, the
integrated risk control strategy shows improved stability in
both day-ahead and real-time markets, with reduced negative
fluctuations in comparison to the risk-neutral approach. This
reflects a more controlled and optimized energy trading
performance.

Figure 5 offers a detailed hourly breakdown of the solar
storage system’s energy levels, providing insights into the
performance of both the integrated risk control strategy and
the risk-neutral strategy. Both approaches exhibit a collective
decision to accumulate energy, peaking at 2 MWh during
hour 14. However, distinctions emerge at specific hours,
such as hour 15, where the integrated risk control strategy
maintains a superior energy level of 1.41 MWh compared
to the risk-neutral strategy’s 0.93 MWh. This highlights the
nuanced and refined approach of the integrated risk control
strategy in preserving energy levels during specific hours.
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TABLE 6. Profit distribution for different risk control models.

TABLE 7. Impact of increased battery storage capacity on profit.

As depicted in Figures 3, 4, and 5, the influence of risk
management on the trading strategy of the solar storage
system is closely tied to the fluctuations between day-ahead
and real-time electricity prices. For example, during the
period from 11:00 to 14:00, where a substantial difference
exists between day-ahead and real-time prices, the trading
strategy of the solar storage system remains relatively stable,
showing minimal impact from the implemented risk control
methodologies. In contrast, when the disparity between
day-ahead and real-time electricity prices narrows down to
nearly zero, particularly after 16, the solar storage system
faces heightened uncertainties. To conduct a comprehensive
examination of the effectiveness and comparative attributes
of various risk control strategies, Table 6 presents an
in-depth analysis of five distinct methodologies outlined in
Section III-C. This scrutiny involves the utilization of specific
parameters–namely, α′ for SP risk control, α′ for VaR risk
control, and α′ for CVaR risk control, all set to 0.7. The
statistical assessment of expected profits underscores the
considerable risk mitigation capabilities of these strategies,
effectively fortifying the energy storage system against tail
risks associated with extreme scenarios. Upon closer exami-
nation of the statistical outcomes, it becomes evident that the
CVaR, VaR, SP, and integrated risk strategies yield substantial
enhancements in the solar storage system’s resilience against
extreme events. The minimum profits achieved through these
strategies are, respectively, 60%, 44%, 70%, and 48.67%
higher than those attained via the risk-neutral strategy.
Conversely, the marginal reductions in total expected profits–
2.07%, 3.45%, 4.14%, and 6.90%, respectively–underscore
the strategies’ effectiveness in balancing risk mitigation and
overall profitability.

A noteworthy feature is the proposed integrated risk
control strategy, which distinguishes itself by simultaneously
reducing the (SP) by 33.33%, while increasing both VaR and

FIGURE 3. Electricity prices comparison.

CVaR by 33.3% and 51.67%, respectively. This integrative
approach adeptly manages a spectrum of statistical properties
within the expected profit distribution, thereby enhanc-
ing adaptability in risk-aware energy trading processes.
Furthermore, the optimality of the SP, VaR, and CVaR
values derived from their respective risk control strategies
signifies alignment with diverse risk management prefer-
ences, accommodating decision-makers who favor distinct
risk measurement indicators. The gradual increment of the
integrated risk parameter, denoted as α′

r , spans from 0 to 0.7,
with each sub-risk coefficient set equal to α′

r
3 .

Figure 6 and 7 depict the results of risk measurements
and the expected profits. The findings reveal that with an
increasing risk coefficient, both CVaR and VaR experience
escalation, while the hortfall Probability (SP)decreases.
Consequently, there is a gradual reduction in the total
expected profit.

A more distinct shift in expected profit and risk measures
occurs as the integrated risk coefficient ascends from 0 to 0.4.
For instance, during this interval, VaR and CVaR undergo
notable increases of 20% and 34%, respectively, juxtaposed
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FIGURE 4. The anticipated outcomes of solar energy trading employing
risk-neutral and integrated risk control strategies.

FIGURE 5. Energy storage levels: risk-neutral vs integrated risk control.

with a substantial 33.3% reduction in SP and a minor
2.5% decrease in the total expected profit. However, as the
integrated risk coefficient further progresses from 0.4 to 0.6,

FIGURE 6. Risk assessment of solar energy storage with varying risk
parameters.

FIGURE 7. Risk assessment of solar energy storage with different energy
capacities.

the impacts on expected profit and risk measurements
become less pronounced. Specifically, VaR and CVaR exhibit
marginal increases of 1.7% and 0.68%, respectively, and
the total expected profit experiences a minimal reduction of
0.02%, while SP remains unchanged.

Consequently, the decision-making process should be
informed by specific concerns. If the primary focus is on
mitigating CVaR and VaR, opting for an integrated risk
parameter below 0.3 is advisable, as it significantly reduces
both without markedly compromising the expected profit.
Conversely, for decision-makers prioritizing the reduction of
SP, selecting an integrated risk parameter of 0.3 or 0.4 is more
optimal.

This analysis, grounded in the context of solar energy,
underscores the nuanced relationship between risk parame-
ters and their impact on expected profit and risk measures.
Careful consideration of these findings is crucial for
decision-makers seeking an optimal balance between risk
management and financial gains in solar energy applica-
tions. The final segment of the analysis delves into the
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FIGURE 8. The expected profits of solar storage system with different IR.

comprehensive exploration of the interplay between the
integrated risk parameter and expected profit, along with
the correlation between expected profit and energy capacity
in a battery storage system. In Figure 8, the expected
profit demonstrates a gradual decline as the integrated risk
parameter increases, revealing a clear sensitivity to risk con-
siderations. For instance, at an integrated risk parameter of
0.3, the expected profit sees a slight recovery to 1415 dollars,
suggesting a nuanced impact of risk management on financial
outcomes. Figure 8 provides a nuanced view of how expected
profits respond to varying IR values, spanning from 0 to 0.7.
It reveals a gradual decline in expected profit as the IR
parameter increases, emphasizing the sensitivity of financial
outcomes to risk management strategies. Notably, at an IR
value of 0.3, there is a slight recovery in expected profit to
1415, underscoring the critical balance required between risk
mitigation and financial gains in energy trading decisions.
In parallel, Figure 9 analyzes the impact of increasing energy
storage capacity, from 4 MWhr to 10 MWhr, on expected
profits. It illustrates a consistent upward trend in profitability
with higher storage capacities, culminating in an expected
profit of 1458 at 10 MWhr.

The results further reveal that as the energy capacity of
the storage device increases, both CVaR and VaR experience
significant escalation, contributing to an overall increase in
total expected profit. However, this growth comes at the
expense of a decreased SP. Additionally, the growth trend
of CVaR and the total expected profit remains relatively
stable, while variations in SP and VaR exhibit a certain
degree of randomness. Analyzing these figures in tandem
provides valuable insights for decision-makers. Figure 10
visually represents the expected outcomes of solar energy
trading, revealing a substantial decrease in risk levels over
time following the implementation of the risk management
framework. Notably, risk levels averaged at 0.7 post-
implementation compared to the initial level of 1.0, signifying
amarked improvement in risk mitigation and system stability.
Similarly, Figures 11 and 12 depict upward trends in revenue
generation and cost savings, respectively. Revenue increased

FIGURE 9. The anticipated profits of an energy storage system with
varying capacities for storing energy.

FIGURE 10. Risk management over time.

FIGURE 11. Revenue generation over time.

by approximately 50%, while cost savings rose by about
40%, showcasing the framework’s effectiveness in enhancing
financial performance and operational efficiency.

Integration with the ISO 31000 standard significantly
enhanced risk management effectiveness. Figures 13 and 14
demonstrate comprehensive risk trend analysis and event
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FIGURE 12. Cost savings over time.

FIGURE 13. Overall risk level over time.

frequency monitoring, aligning with ISO 31000 principles.
Figure 15 highlights the continuous monitoring and feedback
loop’s positive impact on risk mitigation strategies over
time. Furthermore, Figure 16 illustrates increased trading fre-
quency/volume after applying the Smart Risk Management
Framework integration, indicating more proactive trading
decisions.

In Figure 17, the implementation of the Smart Risk
Management Framework significantly enhanced decision-
making insights, with an observed 87.5% improvement
in insight levels compared to conventional methods. This
underscores the framework’s efficacy in improving decision-
making processes. Figure 18 illustrates the dynamic nature of
solar energy production over a 24-hour period, emphasizing
the peak irradiance observed at midday, which represents the
system’s maximum energy generation potential under opti-
mal sunlight conditions. This variability in solar irradiance is
pivotal for understanding the risks inherent in solar energy
systems, particularly concerning their sensitivity to climate
conditions and weather fluctuations. These variations directly
influence energy output, thereby impacting operational and

FIGURE 14. Number of risk events over time.

financial performance. Fluctuations in irradiance, influ-
enced by changes in weather, create real-world scenarios
where energy generation levels fluctuate throughout the
day. Such variability underscores the need for robust risk
management strategies to mitigate uncertainties and ensure
consistent energy delivery. Integrating battery storage capac-
ity addresses these challenges by enhancing the reliability
and stability of solar energy systems. Table 7 presents the
financial outcomes associated with varying storage capacities
within the operational constraints of a 10 MW station
capacity. Starting with a baseline scenario of 2 MWh storage
capacity and a 10 MW station capacity, the initial profit is
$40,000. Increasing the storage capacity leads to higher prof-
its, with percentage increases calculated using Equation 30.
As shown in Table 7, the percentage increase in profit
ranges from 13.8% to 22.0% relative to the baseline profit.
This variability highlights the system’s enhanced ability to
capitalize on arbitrage opportunities with greater storage
capacity, demonstrating significant profitability escalation
while ensuring operational feasibility within the 10 MW
station capacity.

Percentage Increase =

(
New Profit − Baseline Profit

Baseline Profit

)
× 100% (30)

The increase in battery storage capacity enables the system
to store excess energy when prices are low and sell it when
prices are high, thereby maximizing arbitrage opportunities.
Variations in market prices or fluctuations may occasionally
result in profit increases higher than 20%. However, the
average increase of 20% provides a conservative estimate
that accommodates typical operational scenarios and market
conditions. It is important to note that the relationship
between battery storage capacity and profit is not strictly
linear. While increasing storage capacity generally leads to
higher profits due to more opportunities for arbitrage, other
factors such as market price volatility, storage efficiency,
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FIGURE 15. Effect of continuous monitoring and feedback loop on risk
levels.

FIGURE 16. Impact of risk management framework on trading strategy.

and operational constraints also play significant roles. These
factors can cause deviations from a linear relationship,
highlighting the complexity of optimizing storage capacity
for maximum profit.

In summary, the simulation results underscore the sub-
stantial benefits of the Siwa Solar Energy Project model.
These include higher profits, robust risk mitigation, efficient
capacity planning, flexibility in risk management strategies,
and informed decision-making based on probability-driven
insights. The integrated risk control strategy enhances
system resilience and achieves a notable profit increase of
approximately 20%. This outcome equips decision-makers
with crucial insights for optimizing risk-aware energy trading
strategies.

Furthermore, the implementation of this risk framework
demonstrates its efficacy by delivering significant enhance-
ments across various domains, such as risk mitigation, system
stability, financial performance, decision-making insights,
and alignment with international standards. These insights
empower decision-makers to navigate complexities adeptly

FIGURE 17. Impact of smart risk management framework on
decision-making insights.

FIGURE 18. Solar irradiation.

and achieve optimal outcomes in their risk-aware energy
trading strategies, thereby maximizing the effectiveness of
their risk management practices.

VII. CONCLUSION
This study introduces a novel risk measurement and control
framework tailored to optimize the stochastic energy trading
strategy of a solar storage system at Egypt’s Siwa solar
station. By integrating key risk measurements–Success
Probability (SP), Value at Risk (VaR), and Conditional Value
at Risk (CVaR)–into a stochastic optimization model, this
framework caters to diverse risk preferences and effectively
addresses uncertainties associated with electricity prices and
solar power production.

Simulation analysis using realistic data reveals a signifi-
cant finding: increasing the energy capacity of battery storage
significantly enhances the system’s arbitrage capability.
This not only improves total expected profit but also
enhances risk management performance. Decision-makers
can leverage this insight to optimize risk-aware energy

VOLUME 12, 2024 106039



M. Hassan et al.: Integrated Smart Risk Management for Siwa Solar Energy Systems

trading strategies in Egypt, leading to a notable profit increase
of approximately 20%.

Furthermore, the integration of the risk framework demon-
strates its effectiveness by revealing significant improve-
ments in key areas, including risk mitigation, system
stability, financial performance, decision-making insights,
and adherence to international standards. These findings
equip decision-makers in the Egyptian energy sector with
actionable strategies to optimize their energy trading prac-
tices, thereby enhancing profitability and risk management
in this dynamic industry. Looking ahead, the next step will be
to incorporate maintenance costs and capacity degradation of
the battery storage system to provide a more comprehensive
assessment of profitability. Additionally, integrating artificial
intelligence techniques to predict and mitigate potential risks
will be crucial. This expanded framework aims to offer
deeper insights and more robust strategies for optimizing
solar energy trading, ensuring sustained profitability and
system reliability over the long term. In summary, this
study contributes significantly to the field of energy trading
and risk management, providing valuable insights into the
relationship between risk parameters, energy capacity, and
expected profit in battery storage systemswithin the Egyptian
energy market. Stakeholders can utilize these insights to
optimize their energy trading practices, ultimately leading to
enhanced profitability and risk management in the sector.
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