IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 29 June 2024, accepted 28 July 2024, date of publication 31 July 2024, date of current version 9 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3436056

== RESEARCH ARTICLE

Machine Learning-Based Elephant Flow
Classification on the First Packet

PIOTR JURKIEWICZ “, BARTOSZ KADZIOLKA"”, MIROSLAW KANTOR, JERZY DOMZAL ",

AND ROBERT WOICIK

Institute of Telecommunications, AGH University of Krakow, 30-059 Krakéw, Poland

Corresponding author: Piotr Jurkiewicz (piotr.jurkiewicz@agh.edu.pl)

This work was supported by the Project “‘Precise and Reusable Models of Flow and Flowlet Properties in the Internet” funded by the

Polish National Science Centre under Project 2023/49/N/ST7/00532.

ABSTRACT In this paper, we explore the applicability of selected machine learning models to classify
incoming flows as elephants or mice on the first packet, using Internet Protocol (IP) and transport layer
headers (5-tuple). We show that traditional metrics such as accuracy or Fl-score are inadequate for
assessing performance in traffic engineering (TE) and quality of service (QoS) applications unless compared
at the same traffic coverage. Among the classifiers analyzed, Histogram-based Gradient Boosting with
octets-transformed input data provides the best performance, reducing flow operations by a factor of 36.49
and the average number of flow table entries by 16.35, while covering 80% of the traffic.

INDEX TERMS Flows, elephant, classification, traffic engineering, sdn.

I. INTRODUCTION

In the past years, flow-based traffic engineering became
a promising solution to handle continuously increasing
network demand [1], [2], [3]. In flow-based routing, an indi-
vidual entry containing the next hop is assigned to each
flow in the switch memory. This opens the possibility to
route different flows between the same endpoints using
distinct paths, bringing multipath load-balancing capabilities.
Moreover, paths for subsequent flows can be chosen based on
the current or predicted network load distribution, adaptively
bypassing overloaded links. Adaptive routing of flows also
has greater stability compared to dynamic load balancing in
the classic, IP prefix-based, routing [4].

Howeyver, the number of simultaneous flows in the network
far exceeds the capacity of flow tables in switches [5].
Controller’s throughput to handle new flows can also be
limited. One solution to these issues could be to create
individual entries only for the largest flows, while handling
the majority of smaller flows using default approach. This
would significantly reduce the number of entries in the tables
while still ensuring coverage of a substantial portion of traffic
by individual flow-specific entries. These intense flows are

The associate editor coordinating the review of this manuscript and

approving it for publication was Maurizio Casoni

referred to as elephant flows, while the remaining flows are
termed mouse flows. Actual distributions of flow lengths and
sizes are even more long-tailed than the Pareto rule suggests
(80/20). Recent analyses indicate that only 0.2-0.4% of flows
account for 80% of the total traffic [6], [7].

The challenge remains in how to detect the largest
flows. Ideally, flows should be classified along with their
first packet to avoid mid-connection reroutings, which can
impede transport protocols path state estimations. First
packet classification can also reduce controller’s load. Flow
classification is also used for improving quality of service
(QoS), both inside datacenters [8], [9] and in wide-area
communication, including inter-datacenter networks [10].
In many QoS applications it is also required to classify flows
right from the beginning to redirect them to an appropriate
queue or path. Earlier classification also allows a greater
share of flow’s traffic to be subject of flow type-specific
treatment. Such classification can base solely on information
contained in packet headers.

There are numerous studies on flow classification, yet most
focus on classifying flows not on the first packet, but after
observing a number of initial packets. Additionally, existing
studies overlook metrics relevant to traffic engineering and
QoS. They typically evaluate performance using traditional
classification metrics like accuracy or F1-score, which, as we

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

105744

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-0774-610X
https://orcid.org/0000-0003-3093-9089
https://orcid.org/0000-0002-8379-2810
https://orcid.org/0000-0002-9562-606X
https://orcid.org/0000-0002-8417-4416

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

IEEE Access

demonstrate in this paper, are not necessarily good indicators
of model performance for the aforementioned applications.

Therefore, in this study we aim to address this gap and
explore usage of machine learning algorithms to identify
large flows basing on 5-tuples (protocol and source and
destination IP addresses and ports) contained in the IP and
transport headers. The distinctive feature of our paper is that
we focus on metrics relevant from the traffic engineering and
QoS perspective, namely: the volume of traffic transmitted
by flows classified as elephants after their identification
(resulting traffic coverage), the reduction in the number
of created individual flow entries (flow table operations
reduction), and the average reduction in the number of flow
entries in tables (average occupancy reduction). We examine
four classifier models available in the scikit-learn
library [11] with three different representations of the input
data (raw, octets, and bits) and 25 different elephant flow
thresholds (training traffic coverage values).

Il. RELATED WORK

The idea of individually managing elephant flows dates back
to 1999, as first proposed by Shaikh et al. [12]. However,
it was largely theoretical due to hardware limitations at the
time. Recently, the concept has gained renewed interest with
the advent of software-defined networking (SDN). In SDN,
a central controller with a global network view can efficiently
handle large flows. The general approach involves installing
wildcard entries for shortest paths and monitoring traffic
to detect elephant flows. Upon detection, the controller can
compute and implement alternative, non-congested paths for
these flows to achieve load balancing.

Hedera [13] is a system designed to dynamically reroute
significant flows that exceed a certain threshold. These flows
are redirected by the controller to dynamically determined
paths based on flow statistics collected by edge devices
using OpenFlow counters. Similarly, DevoFlow [14] focuses
on elephant flows, using sampling methods and thresholds
for detection, although it only evaluates the overall network
performance as a measure of efficiency. A comparable system
is proposed by Xu et al. [15], using a variation of the Bloom
filter to detect elephant flows at edge devices.

The methods mentioned above use straightforward tech-
niques like sampling, counters, and thresholds for detecting
large flows. However, advanced machine learning techniques
have also been explored. Xiao et al. [16] apply a decision tree
to identify elephant flows, focusing on detection accuracy,
which might not be the best metric for traffic engineering.
Poupart et al. [17] evaluate three machine learning methods
for predicting flow size and identifying elephant flows using
a dataset of three million flows, analyzing true positive and
true negative rates.

Liu et al. [18] propose using a random forest of
decision trees to select eight features for a classifica-
tion model, suggesting a two-level architecture with pre-
classification at edge devices and precise classification at
the central controller. They classify flows into four types

VOLUME 12, 2024

(elephant, cheetah, tortoise, porcupine) and evaluate classi-
fication precision and delay. Similarly, Hamdan et al. [19]
analyze a two-level classification system with initial classifi-
cation at switches using the count-min sketch algorithm and
final classification at the controller with a decision tree. The
switch algorithm is periodically retrained on updated datasets
from the controller, using real traffic models but primarily
focusing on classification precision.

In 2022, He et al. [20] and Qian et al. [21] introduced
sketch-based strategies to improve flow table efficiency.
He et al. proposed a streamlined single-level approach, while
Qian et al. used TCAM-based storage for elephant flow labels
to balance accuracy in identifying elephant and mouse flows.
Both methods were evaluated using real ISP packet traces,
showcasing their practical utility.

Da Silva et al. [22] introduced a predictive model using
Locally Weighted Regression (LWR) to estimate new net-
work flow sizes and durations based on past patterns. In 2022,
they enhanced flow management with a hashing mecha-
nism inspired by the Cuckoo Search meta-heuristic [23].
Pekar et al. presented a threshold-agnostic heavy-hitter clas-
sification system [24], using template matching to identify
elephant flows based on initial packet size distribution.

The CrossBal system [25] uses Deep Reinforcement
Learning (DRL) for hybrid load balancing, detecting elephant
flows with a three-level mechanism involving threshold-
based filtering and rerouting. Wassie et al. [26] employed
deep learning with autoencoders, gradient boosting, and
autoML predictive algorithms like eXtreme gradient boosting
(XGBoost) [27] and gradient boosting machine (GBM) [28]
for improved flow management.

These studies typically classify flows after observing
several initial packets, but our goal is to identify flows
as quickly as possible, ideally from the first packet. Early
classification avoids mid-route rerouting, which can disrupt
transport layer operations and congestion control algorithms.

Flow classification from the first packet is shown by
Durner and Kellerer [29], using features from the 5-tuple
and the size of the first packet. Hardegen et al. [30] propose
multiclass prediction with a deep neural network based on
the 5-tuple of the first packet, similar to their earlier work
predicting flow bit rate [31]. In 2023, Gomez et al. [32]
assessed various machine learning algorithms for first-packet
flow classification, focusing on accuracy rather than impacts
on flow tables or traffic coverage. In 2024, Xie et al. [33]
introduced a two-stage decision tree system for elephant flow
classification based on the first packet’s headers, developed
in P4 but only tested in an emulator.

Recent works using neural networks for flow classification
emphasize QoS rather than traffic engineering. Alkhalidi
and Yaseen [34] use a one-dimensional convolutional neural
network to classify flows based on packet headers, reduc-
ing feature count and processing time while maintaining
accuracy. Yaseen et al. [35] classify traffic and assign
Differentiated Services Code Point (DSCP) fields with a
similar approach, tested within an SDN controller in Mininet.

105745

IEEE Access

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

All the aforementioned studies focus on classification
accuracy but overlook the effectiveness of algorithms for
traffic engineering goals. Misclassifying the largest flows
has a greater impact on traffic coverage than misclassifying
smaller flows, which is not accounted for in traditional
metrics. Additionally, prior studies do not analyze metrics
such as flow table entry reduction or post-classification traffic
volume, which are crucial for traffic engineering and QoS.

lll. METHODOLOGY

To classify a flow based on its first packet, we utilize
classifiers provided by the scikit-learn library [11].
It is an open source Python machine learning library, which
features various classification, regression and clustering
algorithms. Classification is a supervised machine learning
method that requires labeled input data for training the model.
We use binary classification, meaning both the training labels
and the model’s output are binary decisions (0/1). In our case,
these decisions determine whether a flow is a mouse (0) or an
elephant (1).

The primary assumption of this study is that we per-
form the classification (inference) upon the arrival of the
first packet of each flow. Flows classified as elephants
(decision 1) are then registered in a memory (flow table) and,
from that point on, can be subject to individual treatment. This
can involve routing through a flow-specific path for traffic
engineering or using specific queues for QoS provisioning.
Conversely, flows classified as mice (decision 0) are not
treated individually. Their packets can be routed through
default shortest paths or using default queues. Therefore,
there is no need to store individual per-flow states for
mice flows. This approach reduces the number of flows
requiring individual processing (reducing controller load and
the number of flow table operations) and also reduces the
number of entries in flow tables.

In an actual implementation, it would be necessary to
ensure that only the first packet of each flow is subjected to
inference. For Transmission Control Protoco (TCP), the first
packet of each flow can be easily identified using the SYN
flag. An alternative, protocol-agnostic solution would be to
use a Bloom filter to register hashes of flows classified as
mice, avoiding repeated classification of subsequent packets
in these flows. However, this is an implementation detail.
In this paper, we focus on the isolated problem of the
performance of machine learning classifiers, which can be
then used in various combinations as building blocks of more
advanced systems.

A. DATASET
The dataset plays a crucial role in influencing the perfor-
mance of any machine learning algorithm. To assess machine
learning models, we utilize length and size distributions of
flows from a dataset collected over 30 days in a big campus
network [6]. For data processing, the package [36] was used.
The aforementioned dataset encompasses over 4 billion
flows. The complete set of flow records occupies

105746

approximately 278 GB in binary format. Therefore, to train
and evaluate our models we use an anonymized subset of that
data. The subset covers one hour of traffic, which amounts
to 6,517,484 flows and 547 GB of transmitted data. The
period was carefully selected to ensure both that it was
anomaly-free and that the theoretical reduction rate curve of
a perfect elephant classifier calculated for flows during that
hour closely resembles that of the mixture derived from the
entire 30-day dataset. [P addresses in the published dataset
were anonymized using the prefix-preserving Crypto-PAn
algorithm [37]. The anonymization does not influence the
performance of ML models, as shown in [38].

B. INPUT FEATURES

The input data from the 5-tuple includes the following
information: source IP address, destination IP address, source
transport port, destination transport port, transport layer
protocol number — in total 104 bits. We examine three
different representations of the input data:

o raw: Header fields are not modified. This results in
an input vector consisting of five features: source
IP, destination IP, source port, destination port, and
protocol, all represented as 32-bit integers.

« octets: Header fields longer than 8 bits (IP addresses
and ports) are divided into separate octets, resulting
in 13 features, each represented as an 8-bit integer.
This transformation better captures patterns arising
from the hierarchical structure of IP addresses, such as
similarities in traffic among hosts in the same subnet,
while keeping the number of features significantly lower
than the bits format.

« bits: Header fields are split into individual bits, resulting
in an input vector of 104 features, represented as binary
values (0/1).

C. TRAINING LABELS

In the case of binary classification, the model output is
a binary decision (0/1). In our scenario, this decision
determines whether a flow is a mouse or an elephant,
indicating whether to add the flow to the table. Therefore,
before starting the training phase, an elephant flow size
threshold needs to be established to appropriately label the
training dataset.

In our experiment, we assumed 25 different values for the
elephant size threshold. These thresholds were not defined
directly. Instead, we determined thresholds by selecting a
percentage of the largest flows from the training set to achieve
a specified coverage of the entire network traffic. For these
selected flows, the model is trained with a decision of 1,
while for the remaining flows, the decision is set to 0. The
coverage values used in the training phase were defined by
the following equation:

1
1.37972966146121546

coverage=1— forie{l,...,25}

VOLUME 12, 2024

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

IEEE Access

The equation was chosen deliberately to yield exactly
80% training coverage as one of its values and to produce
evenly spaced resulting traffic coverages. This resulted in the
following training traffic coverage values:

0.275220, 0.474694, 0.619269, 0.724054, 0.800000,
0.855044, 0.894939, 0.923854, 0.944811, 0.960000,
0.971009, 0.978988, 0.984771, 0.988962, 0.992000,
0.994202, 0.995798, 0.996954, 0.997792, 0.998400,
0.998840, 0.999160, 0.999391, 0.999558, 0.999680

To obtain a curve representing flow table reduction as a
function of coverage, the entire training and fitting procedure
was repeated for all 25 values of training traffic coverage.

It should be noted that the resulting traffic coverage of a
classifier on a validation dataset will be lower than the traffic
coverage used for training. This is because traffic generated
by inaccurately classified elephant flows (false negatives)
will not be covered. Therefore, it is necessary to train models
using higher traffic coverage values than those desired during
their later operation.

D. TRAINING AND VALIDATION

We perform 5-folds cross-validation by partitioning the
dataset into 5 consecutive sets. Each set is then used once as
a validation set while the remaining 4 sets form the training
dataset. This means the training dataset consist of 5,213,988
flows, while the validation sets consist of 1,303,496 flows.
Consequently, each algorithm is trained 5 times for each
training traffic coverage. Then, its performance is evaluated
on the corresponding validation set. Finally, we calculate the
mean performance of all algorithms across all 5 folds, along
with the standard deviation.

As mentioned in the Section I, Internet flow size distribu-
tion is long-tailed, with only 0.2-0.4% of flows accounting
for 80% of the total traffic [6], [7]. Therefore, the training
data in our problem is significantly imbalanced. For example,
in fold O of our dataset with an 80% training traffic coverage,
the number of elephant flows is only 1,253, whereas the
number of mice flows is 1,302,244. In such cases, the
resulting model might be biased towards the more dominant
class — in our case, mice — thus reducing classification
accuracy for elephants. Moreover, many training algorithms
assume that the class distribution of the training dataset
is balanced, potentially yielding incorrect results for an
imbalanced dataset.

The recommended approach to tackle this issue is to
perform class balancing before training, either by sampling
an equal number of samples from each class or, preferably,
by normalizing the sum of the sample weights for each
class to the same value. In our initial attempt, we used the
sample_weight parameter to equalize the sum of sample
weights for mice and elephants during training. This indeed
improved the performance of all analyzed models. However,
we discovered that assigning sample weights equal to the
square root of the flow size (number of bytes transmitted)

VOLUME 12, 2024

yields significantly better results. The detailed investigation
of this phenomenon remains outside the scope of this paper
and will be the subject of further research. Consequently, the
training of all models presented in this paper is performed
with sample weights equal to:

sample_weight = \/flow_size)

with the exception of the KNeighborsClassifier, which
does not support training using explicit sample weights.

E. EVALUATION

The existing literature does not examine metrics such as flow
table reduction and post-flow classification traffic volume,
which are significant for traffic engineering and QoS.
Existing studies predominantly concentrate on classification
accuracy, measured through parameters like true positive rate,
true negative rate, and the accuracy of mouse/elephant binary
classification. Unfortunately, these metrics offer limited
insights into the efficency of the analyzed algorithms within
our research. Notably, misclassifying the largest flow in
the network has a more substantial impact on traffic
coverage than misclassifying a smaller flow. Traditional
metrics do not consider this critical distinction. As shown
in Section VI with the example of KNeighborsClassifier,
conventional metrics can be misleading. A classifier with
a high TNR can achieve very high accuracy despite being
unable to detect elephant flows effectively.

In response to these limitations, we propose the adoption
of specific metrics to evaluate machine learning algorithms
within the context of elephant flow detection. Specifically,
we suggest assessing the reduction in flow operations,
average flow table occupancy reduction, and the fraction of
traffic covered. It is important to acknowledge the inherent
tradeoff between the first two metrics and traffic coverage:
increasing the elephant detection threshold improves flow
table reduction but simultaneously lowers the fraction of
covered traffic.

In our experiment, we use a dataset of 6,517,484 flows,
representing one hour of traffic. For evaluation purposes,
we assume a constant flow arrival rate, equal to the average
flow arrival rate during the one hour covered by the whole
dataset:

6517484
3600

Each validation fold, consisting of 1,303,496 flows,
is therefore attributed to 720 seconds (12 minutes). The
start times of all flows belonging to the validation set
are equally distributed between O and 720 seconds of the
experiment. We use real flow duration values, as collected
in the dataset. To calculate the average flow table occupancy
reduction and traffic coverage, we maintain two numeric
arrays: bytes_sent and flow_entries. The length of
both arrays is 720, with initial values set to 0. Upon the arrival
of a new flow, we perform an inference to determine whether
the flow will be an elephant or a mouse. When a flow is

FPS = ~ 1810 [flows per second] 2)

105747

IEEE Access

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

classified as an elephant, we add 1 to all flow_entries
fields between the second of flow start and the moment of
the flow end plus timeout. We assume the same flow inactive
timeout as used in the NetFlow collector when gathering the
dataset, that is 15 seconds:

flow_entries; +=1 Y start <t < end + timeout (3)

For flows classified as elephants, we also calculate their
average rate by dividing the flow size (number of bytes) by
the flow duration. We then add the average number of bytes
per second (avg_bps) transmitted by the flow to all seconds
in the bytes_sent array during its lifetime:

bytes_sent; += avg_flow_bps Y start <t <end (4)

We determined that, with the flow arrival rate used in
our experiments, approximately 5 minutes are required to
achieve stable values of average coverage and occupancy
reduction metrics. Therefore, we assume a warm-up time
of 300 seconds. This means that to calculate metric values,
we use values for seconds in the range between 300
and 720.

Below we provide the formal definition of these metrics:

1) RESULTING AVERAGE COVERAGE

This metric measures the coverage of traffic (number of bytes
sent) in the network by flows classified as elephants during
the analyzed period. It is calculated by dividing the amount of
bytes transmitted by predicted elephant flows in the network
in each second by the amount of bytes transmitted in those
seconds by all flows.

RAC — 1 % bytes_sent _elephants;)
T &5, (bytes_sent_all,

T =720 — 300 =420

2) FLOW OPERATIONS REDUCTION

This metric measures the inverse of the ratio of flows
classified as elephants. We call it flow operations reduction
because, in the context of traffic engineering applications,
where individual entries are created only for flows classified
as elephants, this metric indicates by what factor the
number of flow entry operations (creation, deletion) will be
reduced.

all_flows

Flow Operations Reduction = ———— (6)
elephant_flows

3) AVERAGE OCCUPANCY REDUCTION
This metric measures the average reduction in the number
of entries in the flow table during the analyzed period. It is

calculated by dividing the number of flow entries in each
second in a situation when all flows have individual entries

105748

by the number of elephant flow entries when first-packet
elephant flow classification is performed.

720 .
flow_entries_all;

AOR = 2 >)
T 500 Sflow_entries_elephants;

T =720 — 300 = 420

To determine whether traditional machine learning classi-
fication metrics correlate with the above metrics proposed by
us, we also calculate and present the following metrics:

Definitions: TP —number of true positives, TN — number of
true negatives, FP — number of false positives, FN — number
of false negatives

4) ACCURACY

Accuracy measures the proportion of correctly classified
instances among the total number of instances. It is a
commonly used metric to evaluate the overall performance
of a classifier. High accuracy indicates that the model is
performing well on both the positive and negative classes.
However, accuracy can be misleading in cases of imbalanced
class distributions, as it does not account for the disparity
between classes.

TP + TN

Accuracy = 3
TP+ TN + FP+ FN

5) TRUE POSITIVE RATE (TPR) / RECALL

TPR, also known as Recall or Sensitivity, measures the
proportion of actual positive instances that are correctly
identified by the classifier. It is crucial for evaluating the
ability of the model to detect positive instances, especially in
contexts where missing positive cases is costly. A high recall
indicates that the classifier successfully captures the majority
of positive cases, but it does not account for false positives.

P

TPR = ——
TP + FN

©))
6) TRUE NEGATIVE RATE (TNR) / SPECIFICITY

TNR, or Specificity, measures the proportion of actual neg-
ative instances that are correctly identified by the classifier.
It is useful for assessing the model’s ability to detect negative
instances, especially when the cost of false positives is high.
A high specificity indicates that the classifier is effective
at identifying true negatives, but it does not address false
negatives.

TN

TNR = ——
TN + FP

(10)
7) FALSE POSITIVE RATE (FPR)

FPR measures the proportion of actual negative instances
that are incorrectly classified as positive. It is important
for understanding the rate of false alarms produced by the
classifier, which can be critical in applications such as fraud
detection or medical diagnosis. A low FPR indicates that the

VOLUME 12, 2024

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

IEEE Access

model produces few false positives, but it does not provide
information on false negatives.

FP

FPR = ————
FP+ TN

(1D
8) FALSE NEGATIVE RATE (FNR)

FNR measures the proportion of actual positive instances that
are incorrectly classified as negative. This metric helps to
understand how often the model misses positive instances,
which can be particularly important in scenarios where
false negatives have severe consequences, such as in disease
screening. A low FNR indicates that the model successfully
captures most positive instances.

FN

FNR = —
FN +TP

(12)
9) POSITIVE PREDICTIVE VALUE (PPV) / PRECISION

PPV, or Precision, measures the proportion of true positive
instances among all instances that are classified as positive.
It is essential for evaluating the accuracy of positive
predictions made by the model. High PPV indicates that
the model’s positive predictions are highly reliable, which
is especially important in contexts where false positives
are costly or problematic. PPV does not, however, provide
information about the model’s ability to detect all positive
instances.

TP

PPV = —
TP + FP

13)
10) NEGATIVE PREDICTIVE VALUE (NPV)

NPV measures the proportion of true negative instances
among all instances that are classified as negative. It evaluates
the accuracy of negative predictions made by the model,
which is important in contexts where correctly identifying
negatives is crucial. High NPV indicates that the model’s
negative predictions are reliable, although it does not provide
information on the model’s ability to detect positive instances.

TN

NPV = ———
TN + FN

(14)
11) FALSE DISCOVERY RATE (FDR)

FDR measures the proportion of positive predictions that
are actually false positives. It is useful for assessing the
rate at which the model makes incorrect positive predictions,
providing a counterbalance to Precision. A low FDR indicates
that the majority of positive predictions are accurate, which is
crucial in applications where false positives are problematic
or costly. FDR is particularly important in fields such as
medical diagnostics, where minimizing false positives is
critical to avoid unnecessary treatments or anxiety. It helps
researchers and practitioners understand the reliability of
positive results and can guide decision-making processes in
various domains.

FP

FDR = —
FP+TP

15)

VOLUME 12, 2024

12) FALSE OMISSION RATE (FOR)

FOR measures the proportion of negative predictions that are
actually false negatives. It helps in understanding how often
the model incorrectly predicts negatives, which is critical
in contexts where false negatives have severe consequences.
A low FOR indicates that most negative predictions are
accurate, providing assurance that the model is not missing
many positive cases. FOR is especially relevant in scenarios
such as disease screening or security applications, where
failing to identify a positive case could have significant
repercussions. By monitoring FOR, analysts can assess the
completeness of their negative predictions and adjust model
thresholds or features accordingly.

FN

FOR = ——
FN +TN

(16)

13) FSCORE

FScore, or F1 Score, is the harmonic mean of Precision and
Recall. It provides a single metric that balances the trade-off
between those two, making it particularly useful when the
class distribution is imbalanced. A high F1 Score indicates
that the classifier has a good balance of Precision and Recall,
offering a more comprehensive measure of performance than
either metric alone. The F1 Score is widely used in machine
learning and information retrieval tasks, as it provides a
more nuanced evaluation of model performance compared
to accuracy alone. It is especially valuable when working
with imbalanced datasets, where simple accuracy might be
misleading.

Precision - Recall

Fr=2. — (17
Precision + Recall

14) INFORMEDNESS (BM)

Informedness, also known as Bookmaker Informedness
(BM), measures the probability that the classifier will
make an informed decision as opposed to random guessing.
It combines True Positive Rate (TPR) and True Negative
Rate (TNR) to provide a comprehensive metric of classifier
performance. A high BM value indicates that the model is
significantly better than random guessing in identifying both
positive and negative instances.

BM = TPR + TNR — 1 (18)

15) MARKEDNESS (MK)

Markedness measures the difference between the True
Positive Rate (TPR) and the False Discovery Rate (FDR),
reflecting the effectiveness of the classifier in making positive
predictions. It combines Positive Predictive Value (PPV) and
Negative Predictive Value (NPV) to provide a comprehensive
metric of the reliability of the classifier’s predictions. High
MK indicates that the classifier’s predictions are generally
accurate and reliable.

MK = PPV 4+ NPV — 1 19)

105749

IEEE Access

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

16) MATTHEWS CORRELATION COEFFICIENT (MCC)

MCC is a correlation coefficient between the observed and
predicted classifications, taking into account true and false
positives and negatives. It provides a balanced measure even
with imbalanced class distributions, offering a single metric
that reflects the overall performance of the classifier. A high
MCC indicates that the model performs well across all
classes, making it a robust metric for evaluation.

TP . TN—FP - FN
J(TP + FP)(TP + FN)(IN + FP)(IN + FN)
(20)

MCC =

17) THREAT SCORE (TS)

TS, also known as Critical Success Index (CSI), measures the
proportion of correct positive predictions relative to the total
number of instances that should have been predicted positive.
It is useful for evaluating the performance of classifiers in
scenarios where predicting rare events is important. A high
TS indicates that the model is effective at identifying positive
instances without producing too many false positives.

TP

S=— @21)
TP+ FN + FP

IV. MODELS

In this research, we analyze four classifier models provided
by the scikit-1learn library [11]. The first model is a
k-Nearest Neighbors classifier, whereas the remaining three
models are boosting-based classifiers. Tree-based classifiers
also provided good results. However, to keep the paper
concise and the graphs readable and uncluttered, we decided
to split their analysis into a separate paper. Nevertheless,
in Figure 13 in the Section VI, we provide a comparison
between all classifier types, including tree-based ones. Other
classifier models available in scikit-learn did notreach
convergence or provided poor performance, so we did not
include them in the comparison.

All the models were trained using their default hyperpa-
rameters as defined in scikit-learn version 1.4.2.
We conducted a limited number of experiments with
hyperparameter optimization; however, the improvements in
model performance were insignificant. A detailed analysis
of all hyperparameters for all examined models would go
far beyond the scope and size constraints of this paper.
Therefore, we decided to present only the results for the
default hyperparameters for all models, as they provide
a good balance between training time, model size, and
performance.

Below we provide short descriptions of all classifier
models analyzed in this paper:

A. KNeighborsClassifier

k-Nearest Neighbors is an instance-based learning algorithm
used for classification and regression. For a given input
sample, the algorithm searches for the k nearest samples
in the training dataset and assigns the majority class of

105750

these neighbors as the prediction. The distance metric
used to find the nearest neighbors is typically Euclidean
distance, but other metrics can also be used. The algorithm
is non-parametric and lazy, meaning it does not require
any training phase and directly uses the training data for
making predictions. This makes it computationally expensive
for large datasets, as it requires calculating distances to all
training samples for each prediction.

B. AdaBoostClassifier

Adaptive Boosting [39] is an ensemble technique that
combines the outputs of several weak learners to create a
strong classifier. It works by fitting a sequence of weak
learners, usually decision stumps (trees with one split),
to the training data. Each subsequent learner is trained on
the weighted version of the dataset, where the weights are
adjusted to focus more on the samples that were misclassified
by the previous learners. The final prediction is a weighted
sum of the predictions of all weak learners, where the weights
reflect the performance of each learner.

C. GradientBoostingClassifier

Gradient Boosting [28] is an ensemble method that builds
models sequentially, where each new model corrects the
errors made by the previous ones. It combines the predictions
of multiple weak learners, typically shallow decision trees,
in a stage-wise fashion. Each tree is trained to fit the
residual errors of the ensemble of previously trained trees.
The optimization is performed using gradient descent to
minimize a specified loss function. Gradient Boosting can
handle various loss functions, making it versatile for different
types of tasks.

D. HistGradientBoostingClassifier

It is an efficient implementation [40] of Gradient Boosting
that uses histogram-based binning to speed up the training
process. It discretizes the continuous features into bins
and builds histograms for each feature, which reduces the
computational complexity of finding the optimal splits. This
method is particularly advantageous for large datasets as it
reduces memory usage and improves training speed while
maintaining competitive performance. It supports various
loss functions and can handle missing values natively.

V. RESULTS

In Figure 1, 2, and 3, we present the complete results
of all analyzed metrics across the five validation dataset
folds. We selected three training traffic coverages (elephant
thresholds) from the 25 values examined: 80%, 96%, and
99.2%. The color intensity of the table fields indicates their
value relative to other fields in a particular column.

As shown in these figures, the same training traffic
coverage can result in vastly different resulting traffic cov-
erages, depending on the classifier type and its performance.
To compare classifier performance accurately, it is necessary
to do so for the same resulting traffic coverage. Therefore,

VOLUME 12, 2024

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

IEEE Access

we must normalize the performance metrics against the
resulting traffic coverage. To facilitate this comparison,
in Figure 4 we present interpolated metric values for three
resulting average traffic coverage values: 70%, 80%, and
90%. After interpolation for each fold, the mean and standard
deviation across all folds were calculated.

While Figure 4 shows metrics for three selected values
of resulting traffic coverage, subsequent graphs illustrate the
reduction in flow table operations and average occupancy
over a continuous range of resulting traffic coverage between
50% and 100%. It should be noted that the y-axis is on a
logarithmic scale. The goal is to achieve maximum reduction
while maintaining the highest traffic coverage. This means
that the closer the curve is to the top-right corner of the graph,
the better the performance of the particular classifier.

The values presented in the graphs were first interpolated
for the continuous spectrum of resulting traffic coverage,
and then the mean and standard deviation across all folds
were calculated. The black Data line represents the ideal
performance of an ideal classifier, which is able to perfectly
distinguish classify flows on the first packet. To obtain it,
we first sorted all flows in each validation fold in descending
order of size, and then selected the smallest possible number
of flows that collectively cover a specified percentage of
network traffic. This approach was described as the ““first”
method in [41].

Graphs are grouped in pairs on each page. The first graph
shows the reduction in flow entry operations, while the
second graph presents the average reduction in the number of
flow table entries during the analyzed period. It is important
to note that the y-axis scales differ between the two graphs.

In Figure 5 and 6, the mean values of flow performance
metrics for all analyzed classifiers and all three input data
representations are shown. Raw, octets, and bits input data
formats are shown as continuous, dashed, and dotted lines,
resepectively. Figure 7 and 8 present results narrowed down
to the raw input data representation. In addition to the
mean, they also include the standard deviation across all
five folds. It is represented as shaded areas around each
line. Similarly, Figure 9 and 10 show results for the octets
input. Finally, Figure 11 and 12 display results for the
case when input features were separate bits values. Line
for KNeighborsClassifier is missing on this graph, because
we were unable to complete the simulation within the 5-
day limit for the bits input data format in case of that
classifier.

VI. DISCUSSION

Figure 1, 2, and 3 show results for 80%, 96%, and 99.2%
training traffic coverage. It can be seen that resulting
average traffic coverage on the validation set is always
lower than the traffic coverage defined during training.
The difference varies across different models. In the case
of the KNeighborsClassifier, the gap between training and
resulting traffic coverage is the highest. Despite achieving
good accuracy, this model also has a high FNR. This means

VOLUME 12, 2024

that traffic generated by inaccurately classified elephant
flows (false negatives) is not covered. Misclassifying an
elephant flow has a more substantial impact on traffic
coverage than misclassifying a smaller flow. However, this
difference is not captured by the accuracy metric, which treats
false classifications in both classes equally. Examining the
remaining models, a general pattern emerges: higher FNR
results in lower resulting traffic coverage.

The results normalized against the resulting traffic cov-
erage presented in Figure 4 confirm this observation.
When compared for the same resulting traffic coverage, the
KNeighborsClassifier is the worst-performing model in terms
of flow operations and table occupancy reductions. It also
requires the highest training traffic coverage. Generally,
better-performing models can be trained on a lower traffic
coverage to achieve the same resulting coverage. Normal-
ization for the same resulting traffic coverage allows for
actual comparison of metrics across different models. Only
after such normalization does accuracy become a meaningful
metric. This is because normalization to the same resulting
traffic coverage eliminates the previously described inability
to account for the much higher influence of false negatives
(elephants misclassified as mice) than false positives (mice
classified as elephants) in the calculation of the metric.
After normalization, accuracy becomes correlated with flow
operations reduction and average occupancy reduction.
However, this correlation is not linear — incremental improve-
ments in accuracy result in significantly larger improvements
in flow table metrics.

Other metrics that, after normalization, are correlated with
flow table performance metrics include TNR and NPV. This
seems to contradict the previous emphasis on minimizing
FNR. If minimizing the FNR were crucial, it would
mean maximizing TPR. However, in coverage-normalized
comparisons, it is the TNR, not TPR, that is more correlated
with performance. This is because the disproportionate
influence of false negatives (elephants misclassified as mice)
is already filtered out during normalization by resulting traffic
coverage. In other words, we have already ensured the desired
amount of traffic coverage. What we want now is to reduce
the number of entries in flow tables, i.e., reduce the number
of mice flows classified as elephants. This means minimizing
false positives. And minimizing false positives is equivalent
to maximizing TNR and NPV.

Summarizing, we confirmed that traditional classification
metrics are not adequate for assessing the performance
of elephant flow classification. Their values only become
meaningful when compared for the same resulting traffic
coverage. This means that results need to be normalized
before comparing their accuracy metrics.

An alternative approach to normalization against the
resulting traffic coverage would be usage using class
weights in the calculation of traditional metrics. However,
as mentioned in Section III, determining appropriate weights
is not straightforward. Figuring out how to calculate flow
weights to make the weighted accuracy metric reflect the

105751

IEE E ACC@SS P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

Training traffic coverage: 80%

Resuling BM MK Flow Average
Average True True False False TPR TNR PPV (Informed- ~ (Marked- Operations Occupancy
Coverage Positives Negatives Positives Negatives (Recall) (Specificity) ~ FPR FNR (Precision) NPV FDR FOR Accuracy ~FScore ness) ness) Mcc TS Reduction Reduction
KNeighborsClassifier, raw, 0 0.277 299 341 954 0239 0467 0.001 0316 0238 0333 0.188
KNeighborsClassifier, raw, 1 0.296 299 257 1189 0201 0538 0.001 0293 0201 0328 0471
KNeighborsClassifier, raw, 2 0.319 325 292 1041 0238 0527 0.001 0328 0238 0354 019
KNeighborsClassifier, raw, 3 0.332 322 249 1146 0219 0564 0.001 0316 0219 0351 0.188
KNeighborsClassifier, raw, 4~ 0.313 346 418 1016 0254 0453 0.001 0325 0254 0339 0194
KNeighborsClassifier, octets, 0 0.283 21 295 982 0216 0479 0.001 0298 0216 0321 0475
KNeighborsClassifier, octets, 1~ 0.303 299 254 1189 0201 0541 0.001 0.293 0201 0329 0472
KNeighborsClassifier, octets, 2 0292 291 217 1075 0213 0573 0.001 0311 0213 0349 0.184
KNeighborsClassifier, octets, 3 0.333 291 204 177 0.198 0588 0.001 0296 0.198 0341 0474
KNeighborsClassifier, octets, 4 0.326 334 284 1028 0245 0540 0.001 0.337 0245 0.364 0203
AdaBoostClassifier, raw, 0 0.360 359 6967 804 0287 0049 0.001 0084 0281 0117 0044
AdaBoos(Classifier, raw, 1 0.386 416 7406 1072 0280 0053 0.001 0.089 0274 0.120 0047 16664 8198
AdaBoostClassifier, raw, 2~ 0.436 460 3044 906 0337 0131 0.001 0.189 0334 0209 0104 | 37200 107.90
AdaBoostClassifier, raw, 3~ 0471 485 3240 983 0330 0130 0.001 0.187 0328 0206 0103 | 34993 101.33
AdaBoostClassifier, raw, 4~ 0.475 547 7618 815 0.402 0067 0.001 0115 039 0.162 0.061 15064 7158
AdaBoostClassifier, octets, 0 0.474 533 9256 720 0425 0054 0.001 0097 0.150 0.051 13316 66.91
AdaBoostClassifier, octets, 1~ 0.457 531 9302 957 0357 0054 0.001 0.094 0350 0136 0049 13256 67.20
AdaBoostClassifier, octets, 2 0.466 511 9076 855 0374 0053 0.001 0093 0367 0139 0049 13597 6512
AdaBoostClassifier, octets, 3 0.492 521 8854 947 0.355 0056 0.001 0096 0348 0.138 0050 13904 67.74
AdaBoostClassifier, octets, 4~ 0.499 573 8867 789 0.421 0061 0.001 0.106 0158 0056 13808 6576
AdaBoostClassifier, bits, 0~ 0.394 433 14830 820 0.346 0028 0.001 0052 0334 0096 0027 85.40 49.42
AdaBoostClassifier, bits, 1~ 0.407 441 13853 1047 0.296 0031 0.001 0,056 0286 0093 0029 91.19 56.63
AdaBoostClassifier, bits, 2~ 0.413 460 13270 906 0337 0034 0.001 0.061 0327 0.103 0031 94.94 5384
AdaBoostClassifier, bits, 3~ 0.432 471 13970 997 0321 0033 0.001 0.059 0310 0099 0031 90.26 5210
AdaBoostClassifier, bits, 4 0.416 454 11276 908 0333 0039 0.001 0.069 0325 0111 003% 11112 5883
GradientBoostingClassifier, raw, 0 0.448 493 3460 760 0393 0125 0.001 0.189 0391 0220 0105 32975 9825
GradientBoostingClassifier, raw, 1 0.480 558 2017 930 0375 0.161 0.001 0225 0373 0244 0127 37511 10231
GradientBoostingClassifier, raw, 2~ 0.455 497 2273 869 0.364 0179 0.001 0.240 0362 0254 0137 | 47058 109.09
GradientBoostingClassifier, raw, 3 0.503 545 1922 923 0371 0221 0.001 0277 0370 0285 0161 52837 10532
GradientBoostingClassifier, raw, 4~ 0.509 612 2353 750 0449 0206 0.001 0283 0304 0165 | 43963 99.11
GradientBoostingClassifier, octets, 0~ 0.495 570 5599 683 0455 0092 0.001 0154 0203 0083 21130 7814
GradientBoostingClassifier, octets, 1~ 0.532 658 5167 830 0.442 0.113 0.001 0.180 0222 0099 22378 7862
GradientBoostingClassifier, octets, 2 0.540 629 5322 737 0.460 0106 0.001 0172 0219 0094 21904 7535
GradientBoostingClassifier, octets, 3 | 0.561 648 5394 820 0.441 0107 0.001 04173 0216 0094 21574 7488
GradientBoostingClassifier, octets, 4~ 0.539 667 4650 695 0.490 0125 0.001 0.200 0246 0111 24516 7862
GradientBoostingClassifier, bits, 0~ 0.485 560 8380 693 0447 0063 0.001 0110 0.165 0058 14581 67.33
GradientBoostingClassifier, bits, 1 0.527 658 7272 830 0442 0083 0.001 0.140 0190 0075 16438 7001
GradientBoostingClassifier, bits, 2~ 0.524 610 8460 756 0.447 0067 0.001 0117 0471 0062 14372 6311
GradientBoostingClassifier, bits, 3 0551 635 7115 833 0433 0082 0.001 0138 0.186 0074 16819 67.24
GradientBoostingClassifier, bits, 4 0531 669 7231 693 0491 0085 0.001 0.144 0202 0078 16500 67.59
HistGradientBoostingClassifier, raw, 0 0540 639 11445 614 0510 0053 0.000 0096 0.162 0050 10787 41.59
HistGradientBoostingClassifier, raw, 1 0514 633 7624 855 0425 0.077 0.001 0130 0179 0069 15787 51.97
HistGradientBoostingClassifier, raw, 2~ 0593 717 10992 649 0525 0061 0.001 0110 0477 0088 11132 4127
HistGradientBoostingClassifier, raw, 3 0541 617 8382 851 0420 0069 0.001 0118 0.168 0063 14485 4626
HistGradientBoostingClassifier, raw, 4 0549 681 8439 681 0500 0075 0.001 0130 0.191 0069 14293 4386
HistGradientBoostingClassifier, octets, 0~ 0.549 687 5245 566 0548 0116 0.000 0191 0251 0106 21974 7027
HistGradientBoostingClassifier, octets, 1 0.579 790 4753 698 0531 0.143 0.001 0225 0274 0127 23516 7021
HistGradientBoostingClassifier, octets, 2 0.597 758 4784 608 0555 0.137 0.000 0219 0274 0123 23520 69.62
HistGradientBoostingClassifier, octets, 3~ 0.600 759 4095 709 0517 0156 0.001 0.240 0283 0136 26854 7200
HistGradientBoostingClassifier, octets, 4~ 0.579 781 3746 581 0573 0173 0.000 0265 0313 0153 28794 7507
HistGradientBoostingClassifier, bits, 0~ 0544 680 5651 573 0543 0.107 0.000 0179 0240 0098 20589 7128
HistGradientBoostingClassifier, bits, 1~ 0584 775 4866 713 0521 0137 0.001 0217 0266 0122 23108 7252
HistGradientBoostingClassifier, bits, 2~ 0587 746 4912 620 0546 0132 0.000 0212 0267 0119 23038 7165
HistGradientBoostingClassifier, bits, 3 0.604 752 4714 716 0512 0.138 0.001 0217 0264 0122 23847 7346
HistGradientBoostingClassifier, bits, 4 | 0.504 784 4200 578 0576 0.157 0.000 0247 0.157 0300 0141 26154 7447

FIGURE 1. Classification performance metrics for the 80% training traffic coverage - full results for all 5 folds.

Training traffic coverage: 96%

Resulting BM MK Flow Average
Average True True False False TPR TNR PPV (Informed- ~ (Marked- Operations Occupancy
Coverage Positives Negatives Positives Negatives (Recall) (Specificity) ~ FPR FNR (Precision) NPV FDR FOR Accuracy ~FScore ness) ness) Mcc TS Reduction Reduction
KNeighborsClassifier, raw, 0 0.438 2616 3297 9751 0212 0.003 0442 0286 0209 0301 0.167
KNeighborsClassifier, raw, 1 0.460 2694 2865 10347 0207 0002 0485 0290 0204 0312 0.169
KNeighborsClassifier, raw, 2~ 0.458 2702 3201 9627 0219 0002 0458 0296 0217 0312 0174
KNeighborsClassifier, raw, 3 0.487 2830 2803 10930 0.206 0002 0502 0292 0203 0317 071
KNeighborsClassifier, raw, 4~ 0.468 2730 3522 9685 0220 0003 0437 0292 0217 0305 0471
KNeighborsClassifier, octets, 0 0427 2433 2790 9934 0197 0002 0466 0217 0195 0299 0.161
KNeighborsClassifier, octets, 1~ 0464 2579 2501 10462 0.198 0002 0508 0285 0196 0313 0.166
KNeighborsClassifier, octets, 2~ 0.462 2543 2595 9786 0206 0002 0495 0291 0204 0316 0470
KNeighborsClassifier, octets, 3 0478 2624 2245 1136 0191 0002 0539 0282 0.189 0317 0.164
KNeighborsClassifier, octets, 4 0466 2633 2958 9782 0212 0002 0471 0292 0210 0312 0471
AdaBoostClassifier, raw, 0 | 0.681 5566 57334 6801 0450 0044 0088 0.148 0.184 0.080
AdaBoostClassifier, raw, 1 | 0696 5891 59000 7150 0452 0046 0091 0.151 0.186 0082
AdaBoostClassifier, raw, 2 | 0.729 6754 84076 5575 0548 0065 0074 0131 0184 0070 14.35 9.21
AdaBoostClassifier, raw, 3 | 0.724 6476 64302 7284 0471 0050 0091 0153 0.190 0083 18.42 1.21
AdaBoostClassifier, raw, 4 | 0.753 6770 88783 5645 0545 0069 0071 0.125 0178 0.067 13.64 928
AdaBoostClassifier, octets, 0 | 0.690 5444 64835 6923 0440 0050 0077 0132 0390 0072 0.167 0071 18.55 1143
AdaBoostClassifier, octets, 1 | 0.701 5885 70556 7156 0451 0085 0077 0132 0397 0071 0.168 0070 17.05 147
AdaBoostClassifier, octets, 2 | 0.733 5843 77358 6486 0.474 0.060 0.070 0122 | 0414 | 0065 0.164 0.065 15.67 10.30
AdaBoostClassifier, octets, 3 | 0.726 6161 68606 7599 0448 0053 0082 0.139 0076 0173 0075 17.43 10.88
AdaBoostClassifier, octets, 4 | 0.740 5782 81479 6633 0.466 0063 0066 0116 0061 0.156 0062 14.94 993
AdaBoostClassifier, bits, 0 | 0694 5761 113871 6606 0466 0088 0048 0.087 0043 0127 0046 10.90 840
AdaBoostClassifier, bits, 1 | 0.712 5830 100364 7211 0447 0078 0055 0.098 0.049 0134 0.051 12.27 202
AdaBoostClassifier, bits, 2 | 0.723 5834 109356 6495 0473 0.085 0051 0092 0045 0132 0048 11.32 835
AdaBoostClassifier, bits, 3 | 0.718 6031 106216 7729 0438 0082 0054 0.096 0047 0.130 0.050 11.61 884
AdaBoostClassifier, bits, 4 | 0.741 5732 109043 6683 0462 0084 0050 0.090 0.044 0129 0.047 11.36 864
GradientBoostingClassifier, raw, 0 | 0.722 6314 54288 6053 0511 0042 0104 04173 0.099 0216 0095 2151 11.89
GradientBoostingClassifier, raw, 1 | 0.744 6512 47419 6529 0499 0037 0121 0194 0116 0231 0.108 2447 13.69
GradientBoostingClassifier, raw, 2 | 0.745 6620 52201 5709 0537 0040 0113 0.186 0.108 0232 0103 22.16 12.31
GradientBoostingClassifier, raw, 3 | 0.752 7004 51673 6756 0509 0040 0119 0193 0114 0231 0107 2221 12.25
GradientBoostingClassifier, raw, 4 | 0.754 6614 52098 5801 0533 0.040 0113 0.186 0108 0231 0103 2220 12,07
GradientBoostingClassifier, octets, 0 | 0.700 5910 46057 6457 0478 0036 0114 0.184 0.109 0219 0.101 25.08 13.81
GradientBoostingClassifier, octets, 1 | 0.735 6345 47266 6696 0487 0037 0118 0.190 0113 0225 0.105 2431 13.61
GradientBoostingClassifier, octets, 2 | 0753 6151 46340 6178 0499 0036 0117 0.190 0112 0228 0105 24.83 1326
GradientBoostingClassifier, octets, 3 | 0.750 6537 45935, 7223 0475 0036 0125 0.197 0119 0228 0110 2484 13.47
GradientBoostingClassifier, octets, 4 | 0.781 6323 47496 6092 0.509 0.037 0117 0.191 0.113 0.231 0.106 24.22 1321
GradientBoostingClassifier, bits, 0 | 0.731 6351 64475, 6016 0514 0050 0090 0153 0085 0198 0083 18.40 11.04
GradientBoostingClassifier, bits, 1 6726 61512 6315 0516 0048 0099 0.166 0093 0209 0,090 19.10 11.50
GradientBoostingClassifier, bits, 2 6497 64975, 5832 0527 0050 0091 0.155 0.086 0203 0084 18.24 10.84
GradientBoostingClassifier, bits, 3 | 0: 6896 63019 6864 0501 0049 0.099 0.165 0093 0205 0.090 18.64 11.05
GradientBoostingClassifier, bits, 4 6718 67612 5697 0541 0052 0090 0.155 0086 0205 0084 17.54 10.61
HistGradientBoostingClassifier, raw, 0 6783 58240 5584 0548 0045 0.104 0175 0.100 0224 0096 2005 11.28
HistGradientBoostingClassifier, raw, 1 7089 53979 5952 0544 0042 0116 0.191 0111 0236 0.106 2135 12.16
HistGradientBoostingClassifier, raw, 2 6973 55377 5356 0.566 0043 0112 0.187 0108 0237 0103 2091 11.54
HistGradientBoostingClassifier, raw, 3 7584 59350 6176 0551 0046 0113 0.188 0.108 0234 0104 19.47 10.86
HistGradientBoostingClassifier, raw, 4 6807 56838 5608 0548 0044 0107 0179 0102 0227 0.098 2048 11.37
HistGradientBoostingClassifier, octets, 0 6908 39621 5459 0559 0031 0.148 0235 0144 0276 0133 2801 13.48
HistGradientBoostingClassifier, octets, 1 7382 38398 5659 0566 0030 0.161 0251 0.157 0290 0144 2847 14.20
HistGradientBoostingClassifier, octets, 2 7146 37878 5183 0580 0029 0159 0.249 0.155 0292 0.142 2895 13.54
HistGradientBoostingClassifier, octets, 3 7754 37698 6006 0564 0029 0471 0.262 0.166 0298 0151 28,68 13.44
HistGradientBoostingClassifier, octets, 4 7276 39489 5139 0586 0031 0156 0246 0.151 0290 0.140 27.87 13.24
HistGradientBoostingClassifier, bits, 0 6740 41649 5627 0545 0032 0139 0222 04135 0263 0125 26.94 13.60
HistGradientBoostingClassifier, bits, 1 7077 39700 5964 0543 0031 0.151 0.237 0147 0274 0134 27.87 13.90
HistGradientBoostingClassifier, bits, 2 6820 39343 5509 0553 0030 0.148 0233 0143 0274 0132 2824 13.47
HistGradientBoostingClassifier, bits, 3 7371 39135 6389 0536 0030 0158 0245 0.153 0278 0139 28.03 13.69
HistGradientBoostingClassifier, bits, 4 7042 40302 5373 0567 0031 0149 0.236 0.144 0278 0134 2753 13.56

FIGURE 2. Classification performance metrics for the 96% training traffic coverage - full results for all 5 folds.

105752 VOLUME 12, 2024

P. Jurkiewicz et al

Machine Learning-Based Elephant Flow Classification on the First Packet

IEEE Access

Training traffic coverage: 99.2%

Resuling
Average True True False False TPR TNR

Coverage Positives Negatives Positives Negatives (Recall) (Specificity) ~ FPR FNR
KNeighborsClassifier, raw, 0 [/0/630° | 26293 28302 [1766967 1 0316 0023
KNeighborsClassifier, raw, 1 0.641 27308 27230 | 58021 0320 0022
KNeighborsClassifier, raw, 2 | 0.635 26777 28081 | 54337 0330 0023
KNeighborsClassifier, raw, 3 | 0.629 28234 26190 0313 0022
KNeighborsClassifier, raw, 4 | 0.651 27898 46087 | 52697 0346 0038
KNeighborsClassifier, octets, 0~ 0585 25467 27638 | 57793 0306 0023
KNeighborsClassifier, octets, 1 =~ 0639 26007 26326 | 59232 0306 0.022
KNeighborsClassifier, octets, 2~ 0619 25691 26866 | 55423 0317 0022
KNeighborsClassifier, octets, 3 0640 26859 25150 0297 0021
KNeighborsClassifier, octets, 4 0644 26441 40341 | 54154 0328 0033
AdaBoostClassifier, raw, 0 55277 259112 27983 | 0664 0212
AdaBoostClassifier, raw, 1 57677 256614 27652 0676 0211
AdaBoostClassifier, raw, 2 55241 250535 25873 0681 0205
AdaBoostClassifier, raw, 3 59528 255759 30818 0659 0211
AdaBoostClassifier, raw, 4 56895, 289788 23700 | 0706 0237
AdaBoostClassifier, octets, 0 58251 288133 25009 0700 0236
AdaBoostClassifier, octets, 1 60910 288096 24419 0714 0236
AdaBoostClassifier, octets, 2 59954, 304780 21160 | 0739 0249
AdaBoostClassifier, octets, 3 62474, 270855 27872 0691 0223
AdaBoostClassifier, octets, 4 57529 204366 23066 | 0714 0241
AdaBoostClassifier, bit 62458 353010 20802 | 0750 0289
AdaBoostClassifier, bits, 1 63421 338480 21908 | 0743 0278
AdaBoostClassifier, bits, 2 60525 332419 20589 | 0746 0272
AdaBoostClassifier, bits, 3 67110 334568 23236 | 0743 0276
AdaBoostClassifier, bits, 4 60631 345356 19964 | 0752 0282
GradientBoostingClassifier, raw, 0 58148 232127 25112 | 0698 0.190
GradientBoostingClassifier, raw, 1 58400 219533 26929 0684 0.180
GradientBoostingClassifier, raw, 2 55883 210735 25231 0689 0172
GradientBoostingClassifier, raw, 3 60955, 208111 29391 0675 0172
GradientBoostingClassifier, raw, 4 56845 237511 23750 | 0705 0194
GradientBoostingClassifier, octets, 0 58197 237708 25063 | 0699 0.195
GradientBoostingClassifier, octets, 1 59104, 225181 26225 0693 0.185
GradientBoostingClassifier, octets, 2 56862 206601 24252 0701 0185
GradientBoostingClassifier, octets, 3 62027 220759 28319 0687 0.182
GradientBoostingClassifier, octets, 4 57502 239654 23093 | 0713 0.196
GradientBoostingClassifier, bits, 0 61302 273336 21958 | 0736 0224
GradientBoostingClassifier, bits, 1 62388 263672 22941 0731 0216
GradientBoostingClassifier, bits, 2 60449 268665 20665 | 0745 0220
GradientBoostingClassifier, bi 65359 261137 24987 | 0723 0215
GradientBoostingClassifier, bi 60601 279888 19994 | 0752 0229
HistGradientBoostingClassifier, raw, 0 60661 218138 22599 | 0729 0179
HistGradientBoostingClassifier, raw, 1 62647 221005 22682 | 0734 0.181
HistGradientBoostingClassifier, raw, 2 60337 221477 20777 | 0744 0.181
HistGradientBoostingClassifier, raw, 3 65014 214416 25332 | 0720 0477
HistGradientBoostingClassifier, raw, 4 59994 231480 20601 0.744 0.189
HistGradientBoostingClassifier, octets, 0 60169 200361 23091 0723 0164
HistGradientBoostingClassifier, octets, 1 62003 195035 23326 | 0.727 0.161
HistGradientBoostingClassifier, octets, 2 59254 196688 21860 | 0.731 0.161
HistGradientBoostingClassifier, octets, 3 64049 191395 26207 0.709 0158
HistGradientBoostingClassifier, octets, 4 60105 214464 20490 | 0746 0175
HistGradientBoostingClassifier, bits, 0 62022 220207 21238 | 0745 0.181
HistGradientBoostingClassifier, bits, 1 63071 209164 22258 | 0.739 0172
HistGradientBoostingClassifier, bits, 2 60175 213742 20039 | 0742 0175
HistGradientBoostingClassifier, bits, 3 65916 207950 24430 | 0730 0471
HistGradientBoostingClassifier, bits, 4 60674 222543 19921 0.753 0.182

FIGURE 3. Clas

Resulting
Average Training TPR TNR PPV
Coverage Coverage (Recall) (Specificity) (Precision) NPV
KNeighborsClassifier, raw 0.7000 043 001 | 095 £001 093 001
KNeighborsClassifier, octets 07000 044 005 095 £001 093 +001
AdaBoostClassifier, raw 07000 047 002 095 £001
AdaBoostClassifier, octets 07000 043 003 095 £001
AdaBoostClassifier, bits 0.7000 043 003 092 +001 005 +0.00
GradientBoostingClassifier, raw 07000 044 £003 042 £0.01
GradientBoostingClassifier, octets 07000 042 £004 013 £0.01
GradientBoostingClassifier, bits 07000 042 £003 0.09 £0.00
HistGradientBoostingClassifier, raw 0.7000 046 +0.02 0.10 +0.01
HistGradientBoostingClassifier, octets 07000 047 £0.02
HistGradientBoostingClassifier, bits 07000 015 £0.01

0.88 +0.01
0.90 £0.01

KNeighborsClassifier, raw
KNeighborsClassifier, octets
AdaBoostClassifier, raw
AdaBoostClassifier, octets
AdaBoostClassifier, bits
GradientBoostingClassifier, raw
GradientBoostingClassifier, octets.
GradientBoostingClassifier, bits

0.07 £0.01

0.11 +0.01
0.11 £0.01

0.93 +0.01 0.09 £0.00

HistGradientBoostingClassifier, raw 011 £0.01
HistGradientBoostingClassifier, octets 0.16 +0.01
HistGradientBoostingClassifier, bits 015 £0.01

0.76 +0.01
0.81 £0.02
0.81 £0.02
0.81 +0.02
0.77 £0.01
0.84 £0.01

0.77 +0.03
0.82 +0.03

KNeighborsClassifier, raw
KNeighborsClassifier, octets
AdaBoos(Classifier, raw
AdaBoostClassifier, octets
AdaBoostClassifier, bits
GradientBoostingClassifier, raw
GradientBoostingClassifier, octets
GradientBoostingClassifier, bits
HistGradientBoostingClassifier, raw
HistGradientBoostingClassifier, octets
HistGradientBoostingClassifier, bits

0.85 +0.02

cation performance metrics for the 99.2% training traffic coverage - full results for all 5 folds.

BM MK Flow Average
PPV (Informed- ~ (Marked- Operations Occupancy
(Precision) NPV FDR FOR Accuracy ~FScore ness) ness) Mcc TS Reduction Reduction
0482
0501
0488
0519
0377
0480
0498
0489
0516
039
0176
0.184
0.181
0189
0.164
0.168 0.157 376 303
0475 0.163 373 299
0.164 0.155 357 283
0.187 0473 391 310
0163 0153 370 299
0.150 0143 314 262
0.158 X 0.150 324 268
0.154 0131 0250 0.146 332 270
0.167 0141 0257 0.158 3.25 268
0.149 0127 0244 0142 321 265
0200 0476 0299 0.184 449 347
0210 0184 0304 0192 469 361
0210 0.185 0309 0.191 489 370
0227 0198 0316 0.204 484 367
0193 0170 0204 0179 443 344
0197 0172 0204 0.181 441 341
0208 0182 0304 0.190 459 355
0201 0477 0302 0.185 460 352
0219 0192 0311 0199 461 352
0.194 0471 0297 0.180 439 338
0.183 0.161 0287 0472 390 310
0.191 0.168 0204 0179 400 316
0.184 0.162 0292 0473 396 306
0200 04175 0298 0.186 399 313
0178 0157 0287 0.168 383 302
0218 019 0328 0.201 468 347
0221 0.199 0331 0.205 460 339
0214 0194 0330 0199 463 339
0233 0.208 0336 0213 466 342
0206 0.185 0321 0192 447 333
0231 0.209 0341 0212 5.00 365
0240 0218 0351 0220 505 366
0232 0211 0346 0213 5.09 364
0251 0.226 0353 0.227 5.0 367
0219 0199 0337 0204 475 349
0220 0199 0335 0204 462 341
0232 0210 0345 0214 479 350
0220 0199 0336 0204 476 345
0241 0217 0348 0.221 476 344
0214 0195 0333 0.200 460 339
BM MK Flow Average
(Informed- (Marked- Operations Occupancy
Accuracy FScore ness) ness) Mcc s Reduction Reduction
089 +001 039 001 1131 £096 612 £0.44
089 +0.02 039 +004 1116 £266 604 109
095 +0.00 042 £0.02 2196 £256 1239 4093
095 £001 | 012 £001 038 £002 007 001 016 £001 007 +001 2036 278 1264 £145
092 001 009 000 036 002 004 £000 043 £000 005 £0.00 1321 +178 973 +1.13
019 001 042 002 011 001 022 £001 010 +001 |'36198 552
020 £001 039 003 013 £001 022 £+000 0.11 £0.01

0.15 +0.00 0.39 £0.03 0.09 £0.00 0.18 +0.00 0.08 +0.00

0.16 £0.01 43 +0.02 0.09 +0.01 0.20 +0.01 0.09 £0.01
0.26 £0.02 047 +0.02 0.30 £0.02 0.15 £0.01
0.24 £0.02 0.15 +0.01 0.28 £0.02 0.13 £0.01

0.83 +0.01 405 027 281 £0.14
0.85 +0.01 490 +0.58 3.23 $029
0.90 +0.01 1065 1068 7.29 $049

0.89 049 £0.01 . 954 +0.95 6.82 +0.50

0.86 0.13 £0.01 0.45 +0.02 0.06 +0.01 017 £0.01 0.07 £0.01
0.18 +0.01 0.10 £0.01 0.23 0.00 0.10 +0.00
0.19 £0.01 0.1 +0.00 0.24 +0.00 0.10 +0.00
0.16 £0.01 051 £0.02 0.09 +0.00 0.21 £0.00 0.09 £0.00
0.18 £0.01 050 £0.02 0.10 +0.00 0.23 £0.01 0.10 £0.00

025 £001 | 061 £002 | 016 001 028 £000 0.4 000
023 £001 | 051 £002 | 015 £001 027 £000 043 £000

00 241 £0.11 174 £0.07
248 +0.19 196 +0.10
0.49 +0.03 0.15 0. 470 +048 3.65 1034

051 +0.01 0.12 £0.02 0.25 +0.01

022 +0.03 0.13 +0.02 470 049 369 038
0.21 £0.01 0.46 +0.01 0.1 +0.01 0.22 +0.01 012 £0.01 4.05 024 331 £0.19
0.24 £0.02 0.13 £0.01 0.26 £0.02 0.14 £0.02
0.24 £0.03 - 0.13 £0.02 0.26 +0.01 0.14 £0.02
022 +0.02 051 +0.01 0.12 £0.01 0.25 +0.01 0.13 +0.01
0.22 £0.01 0.2 +0.01 0.26 +0.01 012 £0.01
0.25 £0.01 0.15 +0.01 0.29 +0.01 0.15 £0.01
0.24 £0.01 0.14 £0.01 0.28 +0.00 0.14 £0.01

FIGURE 4. Classification performance metrics normalized (interpolated) for 70%, 80%, and 90% resulting traffic coverage values - mean and

standard deviation across all 5 folds.

flow operation reduction metric accurately would be an
interesting problem for future research.

When comparing classifier performance, it can be seen
in Figure 5 and 6 that the HistGradientBoostingClassifier
provides the best reduction in flow operations and flow table
occupancy across the entire range of resulting traffic coverage

VOLUME 12, 2024

between 50% and 100%. As can be seen in Figure 13, with the
80% resulting traffic coverage target, it allows to reduce the
number of flow operations by a factor of 36.49 + 7.73 (mean
and standard deviation). It also reduces the average number
of individual flow entries by a factor of 16.35 4 2.46. Both of
these results are achieved using the octets input data format.

105753

IEEE Access

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

10000 5

1000

100 1

Flow Operations Reduction [x]

-
o
Ll

1 T T

—— Data

—— KNeighborsClassifier, raw
KNeighborsClassifier, octets
AdaBoostClassifier, raw
AdaBoostClassifier, octets
AdaBoostClassifier, bits
GradientBoostingClassifier, raw
GradientBoostingClassifier, octets
GradientBoostingClassifier, bits
HistGradientBoostingClassifier, raw
HistGradientBoostingClassifier, octets
HistGradientBoostingClassifier, bits

50 60 70

80 90 100

Resulting Average Traffic Coverage [%)]

FIGURE 5. Flow operations number reduction factor for the resulting traffic coverage between 50% and 100%. Mean reduction across all five data

folds for all input data representations is shown.

1000

-

o

o
1

_
o
1

Average Occupancy Reduction [x]

1 T T

—— Data

—— KNeighborsClassifier, raw

——- KNeighborsClassifier, octets
AdaBoostClassifier, raw
AdaBoostClassifier, octets
AdaBoostClassifier, bits

—— GradientBoostingClassifier, raw

—=~ GradientBoostingClassifier, octets

------ GradientBoostingClassifier, bits

—— HistGradientBoostingClassifier, raw

——~ HistGradientBoostingClassifier, octets

------ HistGradientBoostingClassifier, bits

50 60 70

80 90 100

Resulting Average Traffic Coverage [%]

FIGURE 6. Average flow table occupancy reduction factor for the resulting traffic coverage between 50% and 100%. Mean reduction across all five

data folds for all input data representations is shown.

The GradientBoostingClassifier and AdaBoostClassifier
models perform worse, achieving maximum flow operations
reductions by factors of 10.65 and 16.25, respectively. The
lowest performance is achieved by the KNeighborsClassifier,
which reduces the number of flow operations only by a factor
of 4.90 while maintaining 80% traffic coverage. This is likely

105754

due to its inability to take sample weights into account during
training.

When compared in terms of the traditional accuracy
metric, the HistGradientBoostingClassifier achieves 99%,
97%, and 91.4% accuracy in mouse/elephant classification
for resulting traffic coverages of 70%, 80%, and 90%,

VOLUME 12, 2024

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

IEEE Access

10000 1
] =— Data
] ~— KNeighborsClassifier, raw
AdaBoostClassifier, raw
——— GradientBoostingClassifier, raw
~—— HistGradientBoostingClassifier, raw

1000

Flow Operations Reduction [x]

10 1

1 T T

50 60 70

80 90 100

Resulting Average Traffic Coverage [%)]

FIGURE 7. Flow operations number reduction factor for the resulting traffic coverage between 50% and 100%. Mean reduction across all five data
folds for the raw input data is shown. The shaded area around each line represents standard deviation.

1000

10 4

Average Occupancy Reduction [x]

1 T T

=— Data

—— KNeighborsClassifier, raw
AdaBoostClassifier, raw

~—— GradientBoostingClassifier, raw

——— HistGradientBoostingClassifier, raw

50 60 70

80 90 100

Resulting Average Traffic Coverage [%]

FIGURE 8. Average flow table occupancy reduction factor for the resulting traffic coverage between 50% and 100%. Mean reduction across all five
data folds for the raw input data is shown. The shaded area around each line represents standard deviation.

respectively. These results correlate with flow table reduction
metrics and are similarly achieved with the octets input data
format. The KNeighborsClassifier achieves an accuracy of
84.8% for the octets input format. At first glance, this seems
like a good result. However, it translates to significantly lower
flow table metrics, as the flow table operations reduction
factor is 7.45 times lower. This indicates that elephant flow

VOLUME 12, 2024

classifier models need to achieve accuracy higher than 90%
to be considered as useful in traffic engineering and QoS
applications.

The HistGradientBoostingClassifier not only provided
better classification performance than the GradientBoost-
ingClassifier, but also significantly lower training and
inference times due to a more efficient implementation of

105755

lEEEACC@SS P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

10000 1
] =— Data
] === KNeighborsClassifier, octets
AdaBoostClassifier, octets
=== GradientBoostingClassifier, octets
=== HistGradientBoostingClassifier, octets

— 1000 +

R]

c]
il
=
o
>
e
]
14
(7]

c 100 5

Rl]

- 4
©
—
(]
[eN
(o]
2
o
[T

10 1

1 T T T T —=
50 60 70 80 90 100

Resulting Average Traffic Coverage [%)]

FIGURE 9. Flow operations number reduction factor for the resulting traffic coverage between 50% and 100%. Mean reduction across all five data
folds for the octets input data is shown. The shaded area around each line represents standard deviation.

1000
=— Data
=== KNeighborsClassifier, octets
AdaBoostClassifier, octets

=== GradientBoostingClassifier, octets
=== HistGradientBoostingClassifier, octets

X

c

§el

© 100 1

S

°

(]

14

>

o

c

]

Qo

3

Q

O

(]

(0]

o]

> 10

o

o

>

<

1 T T T T
50 60 70 80 90 100

Resulting Average Traffic Coverage [%]

FIGURE 10. Average flow table occupancy reduction factor for the resulting traffic coverage between 50% and 100%. Mean reduction across all five
data folds for the octets input data is shown. The shaded area around each line represents standard deviation.

the Gradient Boosting algorithm. On the other hand, the Differences in model performance based on different input
KNeighborsClassifier had the slowest training and inference data representations are also evident. Using raw header fields
speed. Specifically, for the bits input data representa- resulted in significantly worse classification performance for
tion, we were unable to complete the simulation within the HistGradientBoostingClassifier. The performance of the
the 5-day limit, so we do not provide results for that model when using octets and bits input data formats was
combination. similar, with octets being slightly better. It should be noted

105756 VOLUME 12, 2024

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet I EEEACC@SS

10000 1
] =— Data
1 s AdaBoostClassifier, bits
GradientBoostingClassifier, bits
------ HistGradientBoostingClassifier, bits

1000

100 1

Flow Operations Reduction [x]

10 1

1 T T

50 60 70

80 90 100

Resulting Average Traffic Coverage [%)]

FIGURE 11. Flow operations number reduction factor for the resulting traffic coverage between 50% and 100%. Mean reduction across all five data
folds for the bits input data is shown. The shaded area around each line represents standard deviation.

1000
=— Data
------ AdaBoostClassifier, bits
GradientBoostingClassifier, bits

------ HistGradientBoostingClassifier, bits

X

c

§el

B 100 1

S

°

(]

14

>

o

c

]

Qo

3

Q

O

(]

(0]

o]

> 10

o

o

>

<

1 T T T . \
50 60 70 80 90 100

Resulting Average Traffic Coverage [%]

FIGURE 12. Average flow table occupancy reduction factor for the resulting traffic coverage between 50% and 100%. Mean reduction across all five
data folds for the bits input data is shown. The shaded area around each line represents standard deviation.

that splitting header fields into octets, instead of separate
bits, also results in a significantly lower number of input
features (13 vs. 104), which considerably reduces memory
usage and improves training and inference speed. Therefore,
transforming input header fields into octets is the preferable
approach.

VOLUME 12, 2024

For other classifiers, the input data format has less
influence. Interestingly, in the case of the GradientBoost-
ingClassifier, the bits input format performs significantly
worse than the other two formats, despite requiring the most
memory and computing time. Conversely, ensemble forest-
based classifiers, as shown in Figure 13, provided the best

105757

IEEE Access

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

70% 80%
Data, raw

KNeighborsClassifier, raw 11.31 £ 0.96 405 + 027
KNeighborsClassifier, octets 11.16 + 2.66 490 + 0.58
AdaBoostClassifier, raw 2196 + 2.56 1065 + 0.68
AdaBoostClassifier, octets 20.36 + 278 954 + 095
AdaBoostClassifier, bits 1321 + 1.78 726 + 0.70
GradientBoostingClassifier, raw 36.98 + 5.52 15.03 + 1.57
GradientBoostingClassifier, octets 4426 + 12.40 16.25 + 267
GradientBoostingClassifier, bits 33.18 + 6.82 1356 + 2.30
HistGradientBoostingClassifier, raw 4587 + 8.37 2370 + 3.82
HistGradientBoostingClassifier, octets 110.24 + 30.49 3649 + 7.73
HistGradientBoostingClassifier, bits 92.38 + 2544 3147 + 6.37
DecisionTreeClassifier, raw 1748 + 243 6.77 + 0.49
DecisionTreeClassifier, octets 4391 + 11.83 10.05 + 2.00
DecisionTreeClassifier, bits 2812 + 7.54 729 + 174
RandomForestClassifier, raw 1716 £ 1.55 6.80 + 0.70
RandomForestClassifier, octets 5332 = 13.67 18.16 + 4.27
RandomForestClassifier, bits 56.61 + 10.56 20.14 + 530
ExtraTreesClassifier, raw 1541 £ 1.30 6.38 + 0.45
ExtraTreesClassifier, octets 5122 + 10.33 18.05 + 3.41
ExtraTreesClassifier, bits 65.54 = 10.56 23.88 + 5.27

90%

211
2.48
4.70
4.70
4.05
5.59
6.19
5.99
9.28
11.15
9.60
2.46
2.69
2.16
278
4.69
4.86
2.83
5.00
5.46

Flow Operations Reduction (mean # std) [x]

KNeighborsClassifier, raw
KNeighborsClassifier, octets
AdaBoostClassifier, raw
AdaBoostClassifier, octets

0.956944
0.954838

AdaBoostClassifier, bits 0.955811
GradientBoostingClassifier, raw 0.951896
GradientBoostingClassifier, octets 0.950636
GradientBoostingClassifier, bits 0.946392
HistGradientBoostingClassifier, raw 0.927534 0.954748
HistGradientBoostingClassifier, octets 0.898353 0.954696

HistGradientBoostingClassifier, bits 0.904324
DecisionTreeClassifier, raw
DecisionTreeClassifier, octets
DecisionTreeClassifier, bits
RandomForestClassifier, raw
RandomForestClassifier, octets
RandomForestClassifier, bits
ExtraTreesClassifier, raw
ExtraTreesClassifier, octets
ExtraTreesClassifier, bits

Training Coverage (mean)

70% 80% 90%

+ 0.1 6.12 + 0.44 281 + 0.14 1.74 + 0.07
+ 0.19 6.04 + 1.09 323 + 0.29 1.96 + 0.10
+ 048 1239 + 0.93 729 + 049 365 + 0.34
+ 049 1264 + 145 6.82 + 0.50 369 £ 0.38
+ 0.24 9.73 + 1.13 568 + 0.49 331 + 0.19
+ 0.23 18.41 + 245 9.33 + 0.66 427 + 0.22
+ 0.89 2121 = 481 998 + 1.08 466 = 0.59
+ 0.63 18.03 + 3.01 869 = 1.10 454 + 044
+ 0.99 2162 = 3.22 1268 + 1.39 6.28 + 0.52
+ 1.14 16.35 + 2.46 719 + 0.58
+ 1.53 15.03 + 226 6.40 + 0.81
+ 0.23 8.60 + 1.06 419 + 0.32 193 + 0.13
+ 042 156.32 + 3.09 536 + 0.79 206 + 0.22
+ 0.35 1146 + 229 428 + 0.74 177 + 0.20
+ 0.18 8.14 = 0.69 409 + 035 209 + 0.10
+ 1.15 15.07 + 2.71 764 + 1.36 299 + 055
+ 0.89 16,63 + 217 826 + 1.61 3.08 + 042
+ 0.15 760 + 048 395 + 0.24 212 + 0.09
+ 0.96 1521 + 226 771 + 1.03 3.15 + 046
+ 1.26 17.33 + 2.23 9.23 + 1.53 335 + 0.58

Average Occupancy Reduction (mean * std) [x]
0.895 = 0.006 0.834 + 0.005 0.760 + 0.002
0.891 + 0.015 0.848 + 0.008 0.783 + 0.010
0.896 = 0.006 0.801 + 0.020
0.893 + 0.009 0.801 + 0.020
0.863 = 0.013 0.768 + 0.012
0.834 + 0.005
0.847 + 0.019

0.842 +

0.896 +

= + + + H+ + + H H

Accuracy (mean # std)

FIGURE 13. Combined comparison of all classifiers for 70%, 80%, and 90% resulting traffic coverage values.

performance with the bits input data. However, a detailed
investigation of tree-based classifiers will be the subject of
a separate paper.

When compared with results presented in other papers,
the HistGradientBoostingClassifier outperforms both the
RandomfForestClassifier and ExtraTreesClassifier, as shown
in Figure 13. It also achieves a significantly higher reduction
in the number of flow table operations than the simple
neural network classifier model presented in [42], which only
reduced flow table operations by a factor of 14.7 under the
most optimal hyperparameter configuration.

In summary, the HistGradientBoostingClassifier with
octets input data representation consistently emerges as
the top performer across all traffic coverage levels when
considering flow operations reduction and average flow table
occupancy reduction. When aiming to cover 80% of network
traffic with individual entries, it can reduce the average
number of entries in flow tables by a factor of 16.35. This
significant reduction enables flow-based traffic engineering
in networks with speeds an order of magnitude higher than

105758

previously possible with current switches and their flow
table capacities. Achieving 80% traffic coverage will still
allow for adaptive network load balancing, ensuring high
throughput and low packet loss for users. Additionally, the
HistGradientBoostingClassifier features reduced memory
usage and improved training speed compared to other models
analyzed. Therefore, it can serve as a strong starting point for
future research.

VIl. CONCLUSION

In conclusion, traditional metrics such as accuracy do not
fully capture the application-specific performance metrics
represented by flow operations reduction and average table
occupancy reduction. To use traditional metrics as proxies
for these application-specific metrics, it is necessary to
compare them at the same resulting traffic coverage. Even
with such normalization, the relationship between accuracy
and flow-specific metrics is not linear. An accuracy higher
than 90% (after normalization) needs to be achieved by a

VOLUME 12, 2024

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

IEEE Access

model to consider it useful in traffic engineering and QoS
applications.

The choice of data representation (raw, octets, bits)
significantly influences classifier performance. For most
classifiers, representations using octets and bits lead to
higher performance. Particularly, the octets representation is
noteworthy because it significantly enhances performance
while maintaining a low total number of features, thereby
reducing memory usage and computation time.

Among the classifiers analyzed, the Histogram-based
Gradient Boosting with octets input data format provides the
best reduction in flow operations and flow table occupancy
across the entire range of resulting traffic coverage between
50% and 100%. For 80% resulting traffic coverage, it reduces
the number of flow operations by a factor of 36.49 and
the average number of individual flow entries by a factor
of 16.35.

While this study offers comprehensive insights, future
work should explore the scalability of these findings to
another network environments. Additionally, investigating
the temporal stability of classifier performance and the
impact of evolving network characteristics on flow operations
reduction could provide valuable insights for long-term
deployments. As demonstrated in this paper, focusing on
boosting-based classifiers with octets data representation
appears to be the most promising path to maximizing
operational efficiency in network traffic classification tasks
and would serve as a solid starting point for more detailed
research.

Future research should also include exploring the capa-
bilities of performing real-time inference in networking
hardware at the flow arrival rate. It has been shown that it
is possible to perform inference using (size-limited) Random
Forest models at line rate on P4 switches, without any
additional machine learning coprocessors [43]. The question
remains whether the same is possible for Histogram-based
Gradient Boosting models. We also suspect that such
resource-limited models would be more affected by changes
in hyperparameters.

Moreover, we found that training classifiers with sam-
ple weights proportional to the square root of flow size
significantly improves performance compared to using
non-weighted training data or class-based sample weight
balancing. However, further research is needed in this area,
including investigating a range of other possible approaches
for calculating sample weights. Additionally, developing a
weighted accuracy calculation method to reflect flow-based
metrics without the need for normalization against the
resulting traffic coverage would be a valuable future research
topic.

DATA AVAILABILITY

The anonymized input data and code is available in
the GitHub repository: https://github.com/piotrjurkiewicz/
flow-models.

VOLUME 12, 2024

REFERENCES

[1] L. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in SDN-OpenFlow networks,” Comput. Netw., vol. 71,
pp. 1-30, Oct. 2014.

[2] D. Kreutz, . M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, ““Software-defined networking: A compre-
hensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

[3] A. Mendiola, J. Astorga, E. Jacob, and M. Higuero, “A survey on the
contributions of software-defined networking to traffic engineering,” IEEE
Commun. Surveys Tuts., vol. 19, no. 2, pp. 918-953, 2nd Quart., 2017.

[4] P. Jurkiewicz, R. Wojcik, J. Domzal, and A. Kamisinski, ‘“Testing
implementation of FAMTAR: Adaptive multipath routing,” Comput.
Commun., vol. 149, pp. 300-311, Jan. 2020.

[5] G.Shen, Q.Li, S. Ai, Y. Jiang, M. Xu, and X. Jia, “‘How powerful switches
should be deployed: A precise estimation based on queuing theory,” in
Proc. IEEE INFOCOM Conf. Comput. Commun., Apr. 2019, pp. 811-819.

[6] P.Jurkiewicz, G. Rzym, and P. Borylo, “Flow length and size distributions
in campus internet traffic,” Comput. Commun., vol. 167, pp. 15-30,
Feb. 2021.

[71 P. Megyesi and S. Molndr, “Analysis of elephant users in broadband
network traffic,” in Proc. Meeting Eur. Netw. Universities Companies Inf.
Commun. Eng. Chemnitz, Germany: Springer, 2013, pp. 37-45.

[8] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
Reducing the flow completion time tail in datacenter networks,” in Proc.
ACM SIGCOMM Conf. Appl., Technol., Architectures, Protocols Comput.
Commun. New York, NY, USA: Association for Computing Machinery,
2012, pp. 139-150.

[9] Y.Liu, T. Yu, Q. Meng, and Q. Liu, “Flow optimization strategies in data
center networks: A survey,” J. Netw. Comput. Appl., vol. 226, Jun. 2024,
Art. no. 103883.

[10] B. Serracanta, A. Rodriguez-Natal, F. Maino, and A. Cabellos, ‘“Flow
optimization at inter-datacenter networks for application run-time accel-
eration,” 2024, arXiv:2406.12567.

[11] F Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
pp- 2825-2830, 2011.

[12] A. Shaikh, J. Rexford, and K. G. Shin, “Load-sensitive routing of long-
lived IP flows,” ACM SIGCOMM Comput. Commun. Rev., vol. 29, no. 4,
pp. 215-226, Oct. 1999.

[13] Y. Cao and M. Xu, “Dual-NAT: Dynamic multipath flow scheduling for
data center networks,” in Proc. 21st IEEE Int. Conf. Netw. Protocols
(ICNP), Oct. 2013, pp. 1-2.

[14] A.R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “DevoFlow: Scaling flow management for high-performance
networks,” in Proc. ACM SIGCOMM Conf., Aug. 2011, pp. 254-265.

[15] H. Xu, H. Huang, S. Chen, and G. Zhao, ‘““Scalable software-defined
networking through hybrid switching,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., May 2017, pp. 1-9.

[16] P. Xiao, W. Qu, H. Qi, Y. Xu, and Z. Li, “An efficient elephant flow
detection with cost-sensitive in SDN,” in Proc. Ist Int. Conf. Ind. Netw.
Intell. Syst. (INISCom), Mar. 2015, pp. 24-28.

[17] P. Poupart, Z. Chen, P. Jaini, F. Fung, H. Susanto, Y. Geng, L. Chen,
K. Chen, and H. Jin, “Online flow size prediction for improved network
routing,” in Proc. IEEE 24th Int. Conf. Netw. Protocols (ICNP), Nov. 2016,
pp. 1-6.

[18] W.-X. Liu, J. Cai, Y. Wang, Q. C. Chen, and J.-Q. Zeng, “Fine-grained
flow classification using deep learning for software defined data center
networks,” J. Netw. Comput. Appl., vol. 168, Oct. 2020, Art. no. 102766.

[19] M. Hamdan, B. Mohammed, U. Humayun, A. Abdelaziz, S. Khan,
M. A. Ali, M. Imran, and M. N. Marsono, “Flow-aware elephant
flow detection for software-defined networks,” IEEE Access, vol. 8,
pp. 72585-72597, 2020.

[20] H. He, Z. Peng, X. Zhou, and J. Wang, “LFOD: A lightweight flow table
optimization scheme in SDN based on flow length distribution in the
internet,” in Proc. 23rd Asia—Pacific Netw. Operations Manage. Symp.
(APNOMS), Sep. 2022, pp. 1-6.

[21] Z. Qian, G. Gao, and Y. Du, “Per-flow size measurement by
combining sketch and flow table in software-defined networks,” in
Proc. IEEE Int. Conf Parallel Distrib. Process. Appl., Big Data
Cloud Comput., Sustain. Comput. Commun., Social Comput. Netw.
(ISPA/BDCloud/SocialCom/SustainCom), Dec. 2022, pp. 644—-651.

105759

IEEE Access

P. Jurkiewicz et al.: Machine Learning-Based Elephant Flow Classification on the First Packet

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

M. V. B. da Silva, A. S. Jacobs, R. J. Pfitscher, and L. Z. Granville,
“Predicting elephant flows in internet exchange point programmable
networks,” in Proc. Int. Conf. Adv. Inf. Netw. Appl. Matsue, Japan:
Springer, 2019, pp. 485-497.

M. V. Brito da Silva, A. E. Schaeffer-Filho, and L. Z. Granville,
“HashCuckoo: Predicting elephant flows using meta-heuristics in pro-
grammable data planes,” in Proc. GLOBECOM IEEE Global Commun.
Conf., Dec. 2022, pp. 6337-6342.

A. Pekar, A. Duque-Torres, W. K. G. Seah, and O. M. C. Rendon, “Towards
threshold-agnostic heavy-hitter classification,” Int. J. Netw. Manage.,
vol. 32, no. 3, p. 2188, May 2022.

B. L. Coelho and A. E. Schaeffer-Filho, “CrossBal: Data and control plane
cooperation for efficient and scalable network load balancing,” in Proc.
19th Int. Conf. Netw. Service Manage. (CNSM), Oct. 2023, pp. 1-9.

G. Wassie, J. Ding, and Y. Wondie, “Traffic prediction in SDN for
explainable QoS using deep learning approach,” Sci. Rep., vol. 13, no. 1,
p. 20607, Nov. 2023.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining.
New York, NY, USA: Association for Computing Machinery, Aug. 2016,
p. 785.

J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, no. 5, pp. 1189-1232, Oct. 2001.

R. Durner and W. Kellerer, “Network function offloading through
classification of elephant flows,” IEEE Trans. Netw. Service Manage.,
vol. 17, no. 2, pp. 807-820, Jun. 2020.

C. Hardegen, B. Pfiilb, S. Rieger, and A. Gepperth, “Predicting network
flow characteristics using deep learning and real-world network traffic,”
IEEE Trans. Netw. Service Manage., vol. 17, no. 4, pp.2662-2676,
Dec. 2020.

C. Hardegen, B. Pfiilb, S. Rieger, A. Gepperth, and S. Reimann, “Flow-
based throughput prediction using deep learning and real-world network
traffic,” in Proc. 15th Int. Conf. Netw. Service Manage. (CNSM), Oct. 2019,
pp. 1-9.

J. G6émez, V. H. Riafio, and G. Ramirez-Gonzalez, “Traffic classification in
IP networks through machine learning techniques in final systems,” IEEE
Access, vol. 11, pp. 44932-44940, 2023.

S. Xie, G. Hu, C. Xing, and Y. Liu, “Online elephant flow pre-
diction for load balancing in programmable switch-based DCN,”
IEEE Trans. Netw. Service Manage., vol. 21, no. 1, pp.745-758,
Feb. 2024.

N. Alkhalidi and F. Yaseen, “FDPHI: Fast deep packet header inspection
for data traffic classification and management,” Int. J. Intell. Eng. Syst.,
vol. 14, no. 4, pp. 373-383, Aug. 2021.

F. A. Yaseen, N. A. Alkhalidi, and H. S. Al-Raweshidy, “SHE networks:
Security, health, and emergency networks traffic priority management
based on ML and SDN,” [EEE Access, vol. 10, pp.92249-92258,
2022.

P. Jurkiewicz, “Flow-models: A framework for analysis and modeling of
IP network flows,” SoftwareX, vol. 17, Jan. 2022, Art. no. 100929.

J. Xu, J. Fan, M. Ammar, and S. B. Moon, “On the design and performance
of prefix-preserving IP traffic trace anonymization,” in Proc. 1st ACM
SIGCOMM Workshop Internet Meas. New York, NY, USA: Association
for Computing Machinery, 1145, p. 263.

P. Jurkiewicz, ‘“‘Flow-models 2.0: Elephant flows modeling and detection
with machine learning,” SoftwareX, vol. 24, Dec. 2023, Art. no. 101506.
Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55,
no. 1, pp. 119-139, Aug. 1997.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
“LightGBM: A highly efficient gradient boosting decision tree,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., Long Beach,
CA, USA: Curran Associates, 2017, pp. 1-9.

P. Jurkiewicz, “Boundaries of flow table usage reduction algorithms based
on elephant flow detection,” in Proc. IFIP Netw. Conf. (IFIP Networking),
Jun. 2021, pp. 1-9.

B. Kadziolka, P. Jurkiewicz, R. W¢jcik, and J. Domzaol, “Elephant flow
classification on the first packet with neural networks,” IEEE Access,
vol. 12, pp. 65298-65309, 2024.

S.-Y. Wang and Y.-H. Wu, “Supporting large random forests in the
pipelines of a hardware switch to classify packets at 100-Gbps line rate,”
IEEE Access, vol. 11, pp. 112384-112397, 2023.

105760

- 5

B o
ey

a A

PIOTR JURKIEWICZ received the B.S. and M.S.
degrees in electronics and telecommunications
engineering from the AGH University of Krakow,
Poland, in 2012 and 2015, respectively, where he is
currently pursuing the Ph.D. degree with the Insti-
tute of Telecommunications. His research interests
include software-defined networking, flow-based
traffic engineering, and multipath and adaptive
routing.

BARTOSZ KADZIOLKA received the B.S. and
M.S. degrees in electronics and telecommuni-
cations engineering from the AGH University
of Krakow, Poland, in 2017 and 2019, respec-
tively, where he is currently pursuing the Ph.D.
degree with the Institute of Telecommunications.
His research interests include software-defined
networking, traffic engineering, and network
optimization.

MIROSEAW KANTOR received the M.S. and
Ph.D. degrees in telecommunications from the
AGH University of Krakow, Poland, in 2001 and
2010, respectively. In 2001, he joined the Insti-
tute of Telecommunications, AGH University of
Krakow, where he is currently as an Assistant
Professor. He has been a reviewer/a TPC mem-
ber of international journals/conferences. He has
actively participated in several European projects
and grants supported by the Ministry of Science

and Higher Education, Poland. He is the co-author of nearly 40 papers and
two books. His research interests include networking and cybersecurity.

N2

fm/

JERZY DOMZAL received the M.S., Ph.D., and
D.Sc. degrees in telecommunications from the
AGH University of Krakow, Poland, in 2003,
2009, and 2016, respectively. Currently, he is
a Professor and the Director of the Institute of
Telecommunications, AGH University of Krakow.
His international trainings were with the Univer-
sitat Politecnica de Catalunya, Barcelona, Spain,
in April 2005; the Universidad Auténoma de
Madrid, Madrid, Spain, in March 2009; and

Stanford University, USA, from May 2012 to June 2012. He is the author
or co-author of many technical papers, two patents applications, and two
books. Especially, he is interested in optical networks and services for future

internet.

ROBERT WOICIK received the Ph.D. and D.Sc.
(Hons.) degrees in telecommunications from
the AGH University of Krakow, Poland, in
2011 and 2019, respectively. Currently, he is
a Professor with the Institute of Telecommu-
nications, AGH University of Krakow. He was
involved in several international EU-funded sci-
entific projects, including SmoothIT, NoE BONE,
Euro-NF, smaller, and national projects. He was
a leader of three national science projects. He is

the co-author of more than 70 research publications, including 21 research
papers in JCR journals and several patents. His current research interests
include multipath routing, flow-aware networking, quality of service,
network neutrality. Recently, he has been working on several collaborative
research projects involving specialists from industry and academia.

VOLUME 12, 2024

