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ABSTRACT The use of LiDAR technologies offer an effective alternative for enhancing monitoring and
surveillance tasks in secured areas, or hard-to-access areas. Conventional solutions allow detection and
identification capabilities, which are valuable for object and pattern recognition in environments with special
conditions. This paper proposes a method for structure a dataset by collecting data from LiDAR sensors and
reconstructing 3D point cloud scenes into images. Furthermore, training with these data using semantic
segmentation algorithms allows for the detecting of people in monitoring and surveillance contexts. The
process involves data acquisition techniques, preprocessing, and the application of tools and technologies
for semantic segmentation in the post-processing stage. Data is acquired from RPLidar sensor with a
spatial resolution of less than 0.4 degrees per step, ensuring greater accuracy in detecting small objects.
Scanning distances between 0.15 and 12 meters allow for the capture of 941 points per rotation angle.
The dataset is complemented with labels and images containing binary masks of regions of interest for
people detection using semantic segmentation. The main contribution of this paper is the methodological
description of constructing a dataset comprising 1,254 images in various scenarios, including indoors and
outdoors, with different levels of occlusion and illumination. This dataset facilitates the development of
machine learning algorithms and deep learning algorithms for pattern recognition, such as Mask R-CNN
(89.9% mean class accuracy) and U-NET (90.5% mean class accuracy). The results demonstrated an
approximate 2% improvement in mean class accuracy compared to other state-of-the-art algorithms in
semantic segmentation for point clouds.

INDEX TERMS DataSet, LiDAR, point cloud, person, semantic segmentation.

I. INTRODUCTION
The fourth Industrial Revolution has brought significant
advancements in technology and communication, partic-
ularly in the development of artificial intelligence, big
data, and the Internet of Things (IoT) among others [1].
These advancements have introduced several challenges in
security, especially regarding information management in
institutions and governments. In response, many countries
have transformed their defense and security policies to
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better protect their nations [2]. One of the technologies
implemented in security is LiDAR (Light Detection and
Ranging) sensors. LiDAR operates by sending laser pulses
to measure the time of flight (ToF) and phase until the pulse
hits objects and returns to the source. This measurement
estimates the distance and can create three-dimensional
maps of the surrounding environment. In such scenarios,
algorithms can be applied for the detection of objects, people,
vehicles, animals, and more. In the context of monitoring
and surveillance, LiDAR technology supports the control and
identification of patterns, enabling alerts in high-security set-
tings such as government buildings, military bases, or other
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sensitive facilities. The goal is to provide amonitoring system
with enhanced capabilities for the recognizing objects of
interest and/or people, thereby improving overall security
measures.

The use of LiDAR sensors offers significant advantages,
such as high resolution, enabling the capture of more than
50 points per square meter on average. This is achieved
through the time-of-flight concept, providing accurate infor-
mation about distance and position. LiDAR’s ability to return
precise data results in an accurate representation of the
environment or scanning area [3]. High-resolution LiDAR
sensors typically capture at least 200 points per square meter,
with some capturing over 100,000 points per second. This
translates to a density of at least 10-20 points per square
centimeter per sweep. Higher point density is especially
required when objects are farther from the sensor, such as
in topographic mapping applications in areas with dense
vegetation. In these cases, the LiDAR must operate in
low-light conditions and penetrate through of foliage to reach
the ground level [4].
Given the dynamic nature of data capture processes, there

are shortcomings when using image-based datasets, par-
ticularly for detecting people, necessitating unconventional
technologies such as LiDAR and RADAR (Radio Detection
and Ranging) sensors.

Reviewing the state of the art, initial mentions are of
anomalies in environments affecting the recognition of
elements of interest or those in a region of interest (ROI).
This requires defining a classifier for objects in reference
images, with the starting point for creating a dataset being
the identification of objects to be detected and/or classified.
Simon Gonzalez’s work involves developing a classifier to
detect abnormal patterns in diagnosing pneumonia, mass
detection, and respiratory in chest X-ray images [5]. Struc-
turing a suitable dataset allows for identifying or defining
possible noise or distortions during training, resulting in a
more robust system.

In [6] study, the importance and applicability of point
clouds generated by LiDAR sensors in artificial intelligence,
mainly in machine learning, are highlighted. Principal
Component Analysis (PCA) is applied for segmentation,
and a neural network is incorporated to simplify detection
in various geographical environments such as vegetation,
water sources, and man-made structures. This suggests using
LiDAR as an advantage in detection when segmentation is
applied to images.

One shortcoming of conventional cameras for image
processing is their sensitivity to light intensity. LiDAR
and Radar sensors are better strategies in these cases
as they measure the distance between objects for proper
classification, improving detection when objects are partially
occluded, according to Farag [7].
Among the related datasets, Diaz’s work presents CARLA,

an open-source simulator for autonomous driving research.
It uses a video game engine for validation in simulated

environments [8], detecting objects such as people, animals,
and vehicles.

Cardenas and Cevallos utilized the KITTI Road/Lane
Detection dataset, which includes LiDAR sensors data
for lane and road detection. This dataset allows for the
classifying pedestrians, vehicles, and traffic signs, among
other objects [9]. However, it does not focus exclusively
on individual, limiting its application for person detection
and reducing the accuracy across various metrics. Martinez’s
work highlights the disadvantages of this dataset, noting the
lack of labels and labeling accuracy in point cloud images for
some objects. This introduces a limitation in usage [10] and
constitutes a major weakness in one of the most widely used
datasets in the area of autonomous driving.

In the review of related work, there are few LiDAR
sensor datasets available for human detection. Most are
not labeled or do not include segmentation mask files.
Thus, it is proposed to build a dataset using image scenes
obtained with LiDAR sensors focused on people detection.
This dataset will be include labeling file for each images
and allow visualization of the segmentation mask related
to these objects, simplifying training processes based on
semantic segmentation. This work contributes to the method-
ological development of new research, creating structured
datasets to improve security and surveillance in vulnerable
scenarios.

The use of technological elements such as LiDAR offers
significant advantages over traditional surveillance tools,
like cameras, LiDAR technology can operate effectively
under varying light conditions, including changes in contrast
changes, interference, occluded objects and changes in
perspective [11]. LiDAR technology generates point clouds
by measuring the distance between an object and the sensor
using laser light pulses [12]. A point clouds is a collection
of points representing coordinates in three-dimensional
space [13], making it an ideal tool for data acquisition.

Constructing a dataset is a specialized process where the
objectives and characteristics of the images to be captured are
defined. For this project, the focus is on detecting people. The
images are captured using specified technological elements,
and additional relevant information, such as descriptions
and characteristics, is added for each image. Preprocessing
tasks, including size adjustment, color normalization, noise
removal, and data enhancement, are then performed. For
this specific case, labeling tasks are required for semantic
segmentation.

Semantic segmentation is a deep learning technique that
divides an image into meaningful sections or regions, each
corresponding to an object that can be classified into various
classes or categories. A dataset has been constructed based
on images obtained from 3D point clouds captured by a
LiDAR sensor. This dataset contains information related to
scenes where people appear in various poses and angles.
Additionally, each scene includes a segmentation mask file,
allowing for the identification of objects within the scene,
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resulting in a more comprehensive dataset compared to
existing ones.

This work evaluates the performance of Mask-RCNN and
UNET for the ‘‘Person’’ class using the newly generated
dataset, demonstrating an improvement in person recognition
in indoor environments.

II. MATERIALS AND METHODS
This research focuses on identifying the necessary elements
to structure a dataset for the semantic segmentation task
aimed at detecting the ‘‘Person’’ class. The primary compo-
nent for the dataset construction is a point cloud obtained
from a LiDAR sensor. The methodology for this work is
shown in Figure 1.

FIGURE 1. Methodology applied in the research.

The methodology consists of 3 phases: (1) Initial phase:
Acquisition of the point cloud in XLSX format and pro-
cessing it to obtain an image of the projected point cloud,
(2) Preprocessing phase: Preprocessing the images and
structuring the initial dataset, including data augmentation,
(3) Segmentation phase: Labeling the dataset for seg-
mentation and creating binary mask images for semantic
segmentation.

A. DATA ACQUISITION
1) LIDAR POINT CLOUD ACQUISITION
To understand the data collection process, it is imperative
to emphasize the advantages of LiDAR technology. Table 1
presents general data and specifications of the LiDAR sensor
used in data acquisition.

TABLE 1. RPLIDAR S1 specifications.

TABLE 2. Point cloud variable characteristics.

The 2D LiDAR sensor used for image capture is the
RPLIDAR S1. This sensor provides distance and angle
measurements (with respect to the sensor) of the scenario and,
along with an Inertial Measurement Unit (IMU) that provides
the tilt angle measurements, generates a three-dimensional
point cloud by superimposing captures. The sensor’s charac-
teristics are listed in Table 2.

The data acquisition uses cylindrical coordinates (three-
dimensional coordinate system) to describe the position of
a point in space. The parameters considered are the angle
θ (rotation angle of the LiDAR), the radial distance ‘‘r’’
(distance from the light beam reflection point to the origin),
and the perpendicular height (degree of inclination relative
to the Y-axis). To acquire data from scenes with people,
various positions (standing, walking, crouching) and angles
are used to obtain a 360-degree reference. Accessories such as
hats, different arm positions, and poses holding a cell phone
are also included. Figure 2 illustrates the data acquisition
process, using a mobile base that places the LiDAR 1 meter
above the ground, allowing vertical angular displacement for
a complete sweep of the captured scenes.

It’s important to emphasize that during the capture process,
the use is limited to 90 degrees so that the point cloud obtained
using the LiDAR focuses on the center of interest, thus
providing a greater emphasis on the point cloud. Considering
that the capture was conducted in environments with minimal
movement in the scene, in order to have greater control over
the obtained point clouds.

FIGURE 2. Scheme for data acquisition and point cloud reconstruction.

2) CONSTRUCTION OF THE IMAGE
As previously mentioned, the data are represented in
cylindrical coordinates, which are converted to Cartesian
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coordinates to facilitate the 3D representation of the point
cloud.This conversion is done using equations that translate
cylindrical coordinates to Cartesian coordinates. Equation 1
presents the formula for calculating ‘‘theta,’’ the angle
related to the LiDAR position, with a coverage range
between 0◦ and 360◦:

θ =
angle · π

180◦
(1)

Next, the tilt angle is converted into a numerical value
using Equation 2, in which φ is calculated by converting the
difference between the LiDAR tilt angle and a reference angle
during the scan. This value is calculated as follows:

φ =
tilt · π

180◦
(2)

Finally, using the reflection distance between the origin
and the surface on which the light beam is reflected, the
coordinate are calculated in an orthogonal system (x, y, z).
Each axis a different equation, combining sine and cosine
functions, resulting in Equations 3, 4, and 5, for the ‘x, y, z’
axes, respectively:

x = r · sinφ · cos θ (3)

y = r · sinφ · sin θ (4)

z = r · cosφ (5)

The resulting values are stored in an array and, using
Python graphics libraries, 3D images are created from the
point cloud. The images are preprocessed by applying
noise reduction filters, resulting in an initial dataset of
249 images. Priority was given to scenarios involving people.
The information related to the dataset is presented in Table 3.

TABLE 3. Characteristics by category initial dataset.

Figure 3 shows examples of the data: one person (A),
two persons (B), and empty scenes (C). To have a visual
understanding of the plots obtained by the LiDAR point
cloud.

FIGURE 3. Visualization of scenario types.

3) KALMAN FILTER FOR MEASUREMENT NOISE
For an a posteriori coordinate denoted by xk−1, yk−1 and xk ,
yk the a priori coordinate for a point k, the displacement of
the IMU is 1D, and the tilt angle information calculated by
the inertial navigation system is θ [16]. The displacement
dynamics between each pair of points can be expressed
as follows:

xk = xk−1 + 1D · cosφ (6)

yk = yk−1 + 1D · sinφ (7)

where the state variables correspond to:

x⃗ = [x, y, φ] (8)

The Kalman filter provides a robust response for noise
rejection [17]. With Mk and Pk as the covariance matrices,
8k as the fundamental matrix, Qk as the covariance matrix
associated with the system noise, Vk as the uncertainty matrix
of the measurements, and Zk as the matrix of measurements
provided by the sensors, the Kalman filter process is shown
in Figure 4.

FIGURE 4. Scheme for EKF. Taken from [17].

B. DATA PREPROCESSING
1) AUGMENTED DATASET
In machine learning, a large dataset is crucial for training
algorithms to achieve better predictions and detections.
Therefore, the dataset obtained in the previous section was
augmented using a script that employs the SMOTE (Syn-
thetic Minority Over-sampling Technique) statistical tech-
nique. This technique extends the dataset from pre-existing
instances without altering the number of majority values [15].
This script uses the open-source Keras library, which

allows the creation of neural networks through an intuitive
application programming interface (API) and is compatible
with frameworks such as TensorFlow, which works through
modular blocks that simplify its use [18].

The use of Keras is supported by the ’ImageDataGen-
erator()’ method, which generates images through random
transformations while ensuring that the center of interest in
the image remains intact. Parameters considered include::

• Rotation range: Image rotation cannot exceed
15 degrees.

• Rescale: The image resizing should less than 3px.
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• Crop Range: Image crop range cannot exceed 15%.
• Zoom range: Image zoom range cannot exceed 15%.
• Horizontal Rotate: Allows movement of the image
along the ‘X’ axis.

• Fill mode: Fill the image if necessary using the nearest
pixel method, where the image is filled from the nearest
pixels.

These random configurations enable the generation of at
least 8 times the original number of images. The script defines
these configurations to be randomized and employs a loop
to load images from the initial dataset, generating diverse
samples and storing them in a predetermined location with
specific names. The created samples are validated, allowing
for the selection of the most appropriate ones to augment
the dataset and ensure its quality. Figure 5 illustrates these
transformations for a specific case.

FIGURE 5. Image input and output representation of the data
augmentation algorithm.

2) IMAGE RESIZING
As part of the data preparation, images must be rescaled to
ensure uniformity in size for training, which helps maintain
model performance and reduce computational costs. A script
resizes the images in a directory to 300 × 300 pixels and
overwrites them. Figure 6 compares an original image with
a resized image.

FIGURE 6. Image resizing.

TABLE 4. Characteristics of the variables belonging to the DataSet.

3) DATASET PREPARATION
After capturing data from the point cloud, a dataset
is constructed based on the characteristics and variables
mentioned in Table 4. Images are generated from the
point cloud, and an initial dataset is created featuring
different scenarios, including people in everyday situa-
tions. Scenarios are categorized by the level of movement
around the point of interest during sampling: uncontrolled
(abrupt movements), semi-controlled (slight movements),
and controlled (no movement). Factors such as the occlusion
level of the point of interest and other aspects are also
considered.
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C. SEGMENTATION
Image segmentation is crucial in computer vision for assign-
ing a label to each pixel in an image, indicating which class
or category each pixel belongs to. Segmentation groups pixels
with the same label into a segment, facilitating image analysis
and extraction of relevant information [19]. The concept of
semantic segmentation gained prominence in 2014 with the
work of Long, Shelhamer, and Darrell, who introduced the
Fully Convolutional Network (FCN) architecture [20].
There are several methods of image segmentation, such

as binary, semi-automatic, and semantic segmentation.
Semantic segmentation is considered the most appropriate
technique in many cases, as it takes into account the specific
characteristics of the data set to achieve a more accurate and
detailed segmentation.

Binary segmentation is a simple segmentation method
that assigns a label of ‘‘1’’ or ‘‘0’’ to each pixel, based on
whether it belongs to an object of interest in the image. Semi-
automatic segmentation, combines manual and automatic
segmentation to obtain accurate segmentation. Semantic
segmentation, an advanced method that uses deep learning to
analyze object characteristics and assign semantic labels to
each pixel, producing accurate and detailed segmentations..

1) SEMANTIC SEGMENTATION
Semantic segmentation assigns a label or category to each
pixel in an image, offering advantages over other object
detection models by allowing precise delimitation of objects
by pixel category. Labels are used to define the input data’s
class or category, while segmentation masks hide or highlight
certain parts of the input data during segmentation [21].

Tags are used to define the input data with a certain class
or category. Under the concept of semantic segmentation,
labels are used to label each pixel in the image with the
class to which it belongs, e.g., background, object, border,
and others. These labels are used to train and evaluate image
segmentation models, such as convolutional neural networks.

On the other hand, segmentation masks are used to
hide or highlight certain parts of the input data during the
segmentation process. In image segmentation, masks are used
to hide pixels that are not part of the object to be segmented
and highlight the pixels that are. Segmentationmasks are used
in conjunction with labels, as they help to focus the model’s
attention on the important parts of the image.

So, a ’JSON’ file of labels is made in which the masks
are contained by way of pixel location on the polygons,
this labeling is done manually since trying to do it by
deep learning techniques presents many errors in terms
of accuracy, therefore, the labeling is done in the Visual
Geometry Group (VGG) Image Annotator tool, it is a free and
open-source tool for image annotation. It allows users to label
and annotate objects in images, which is useful for machine
learning and computer vision tasks [22].
In this tool the class ’Person’ is defined, and labels are cre-

ated using the Visual Geometry Group (VGG) Image Annota-
tor tool, which is free and open-source for image annotation.

2) SEGMENTATION MASK
Constructing an image segmentation mask involves identify-
ing and delimiting different regions within an image related
to objects or labels. These masks visually separate image
parts and assign labels to each class of interest, aiding object
recognition.

To prepare the dataset with the corresponding labels,
the ’utils’ dataset library is used, applying transformation
techniques to create lists of images with information about
their corresponding masks. Each mask stores regions of
interest as polygons, transforming these regions by setting
values of interest to 1 and the rest of the image to 0, creating
binary masks for each region of interest.

A Gaussian smoothing filter is then applied to the images
using the ‘skimage.filters‘ library, with a ‘‘sigma’’ parameter
of 1.2 to produce smoother segmentation mask images. The
processed images are stored using the Python library ‘Scikit-
image‘. Figure 7 presents an original image (A) and its
corresponding segmentation mask (B).

FIGURE 7. Results segmentation mask.
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FIGURE 8. Results of the dataset.

III. RESULTS AND DISCUSSION
During data acquisition, various scenarios were considered,
encompassing both indoor and outdoor environments, across
controlled, semi-controlled, and uncontrolled settings. This
approach ensures that the dataset includes diverse image
types, making the results less sensitive to potential variations
in detection across different environments.

Figure 8 illustrates examples of results obtained during
dataset acquisition for the class ’Person’. Section (A) shows
a photograph of the scene, section (B) displays the image
obtained from the 3D LiDAR point cloud, and section (C)
presents the corresponding segmentation mask image.

The dataset comprises 1245 images, with 1165 images
featuring people and 80 images depicting other objects
or environments where people are absent. Table 5 details
the total number of classified images based on predefined
characteristics for each image.

TABLE 5. Classification and total images of the dataset.

The dataset is characterized by important detection param-
eters such as object type, scene location, environment, source,
number of objects, and occlusion. Image normalization

ensures uniform dimensions of 300 × 300 pixels, alongside
preprocessing techniques that significantly increase dataset
volume. This augmentation enhances dataset diversity,
enabling more effective learning and reduced execution times
in Machine Learning applications.

The dataset, with predefined variables and preprocessing
steps, is publicly available on the ’Zenodo’ platform. Zenodo
facilitates sharing of image datasets among researchers and
data scientists, promoting exploration and development of
various projects related to data science and machine learning.

This publication includes acquired images, segmenta-
tion mask images organized in different folders, a file
containing semantic segmentation labels, and a CSV file
providing additional information for each image. The
dataset is assigned a Digital Object Identifier (DOI)
(https://doi.org/10.5281/zenodo.10547234), ensuring acces-
sibility for further research and development of machine
learning models. The augmented dataset results from apply-
ing the SMOTE oversampling technique, creating new
records for different defined classes within the dataset. This
augmentation improves overall dataset balance, leading to
enhanced performance of machine learning models trained
on this dataset. The produced dataset focuses extensively on
individuals, demonstrating superior reliability compared to
existing datasets. Notably, this dataset includes binary seg-
mentationmasks specifically related to individuals, providing
an additional advantageous feature. The use of cutting-edge
technologies such as LiDAR in image acquisition offers
significant advantages over traditional methods. The resultant
dataset encompasses 2D point cloud data, contributing
to increased reliability in object detection training. This
approach represents a substantial advancement in terms of
accuracy and reliability compared to conventional datasets,
thereby reinforcing its applicability for object detection
training purposes.

In Figure 9, section (A) highlights the distribution of
images related to individuals versus images depicting other
objects or scenes where people are not the focus. It is
evident that a significant percentage (94%) of images are
related to people, while a smaller percentage (6%) pertains
to scenes without people, which is useful for validation
and testing purposes. This balance ensures robustness in
the ‘‘Person’’ category detection, while also acknowledging
scenarios without people (0.4%), crucial for comprehensive
validation. Regarding the distinction between interior and
exterior scenarios, section (B) of Figure 9 shows that
94% of scenes are indoors, and 6% are outdoors. This
distribution underscores the predominance of indoor scenes
but assures no compromise in model performance due to
meticulous management and control during dataset creation
using LiDAR technology.

Themanagement of environments within the scenarios was
categorized into Controlled, Semi-Controlled, and Uncon-
trolled environments, with respective percentages of 94.3%,
5.3%, and 0.4%, as depicted in section (C) of Figure 9.
For training a model, it is ideal to predominantly include
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FIGURE 9. Identification of main elements of the DataSet (a) Object Type,
(b) Scene, (c) Enviroment.

FIGURE 10. Types of environments related to object type.

scenes from Controlled and Semi-Controlled environments.
These settings provide better focus on the subject of interest
in each image. However, consideration for Uncontrolled
environments in future training datasets remains relevant.

Figure 10 illustrates the distribution of images across
different environments and object types. Predominantly,
the dataset includes Controlled environments and scenarios
featuring people, while also encompassing other scenarios
with various objects and semi or uncontrolled scenes. This
diversity improves the accuracy of neural network training
using this dataset.

Figure 11 examines the relationship between occlusion
levels and the object type’s center of interest. It reveals that
93.58% and 6.42% of images exhibit occlusion levels 0 and 1,
respectively, demonstrating a predominant proportion within
the dataset. This robust distribution enhances detection
accuracy, aligning with the project’s objectives.

The dataset was meticulously constructed using data
augmentation, resizing, and semantic segmentation, ensure
the inclusion of a high-quality dataset focused on the
‘‘Person’’ category. This dataset offers advantages over

FIGURE 11. Relationship between occlusion and object type.

existing datasets by providing well-labeled, segmented data
with additional information beneficial for various machine
learning tasks.

Applications in security, particularly in detection tasks
using deep learning techniques, can benefit significantly from
this dataset. It supports the development of advanced surveil-
lance and security systems leveraging current software and
hardware technologies, thereby enhancing task management
within these applications, which is a primary goal of artificial
intelligence.

Regarding 3D point cloud datasets, particularly those
focusing on the ‘‘Person’’ category, significant progress
has been achieved. While existing datasets like UWA,
PartNet, S3DIS, and ScanNet predominantly cover buildings,
streets, and squares, data for complex outdoor object
scenes remain limited. Therefore, the created dataset empha-
sizes capturing outdoor scenes focusing on the ‘‘Person’’
category [23], [24], [25].

Furthermore, the incorporation of semantic segmentation
in this dataset offers advantages over other mentioned
datasets, providing precise object delineation. This precision
significantly enhances the performance and accuracy of
neural networks in tasks such as classification and detection.

Comparison of mean class accuracy among several state-
of-the-art semantic segmentation algorithms indicates supe-
rior performance of the U-Net and Mask R-CNN algorithms
trained with this dataset approach. Particularly, the Mask
R-CNN algorithm trained with the created dataset achieved
the highest mean class accuracy compared to other state-of-
the-art resultss.
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TABLE 6. Accuracy comparison between State of Art Point Cloud
semantic segmentation algorithms.

The following table compares mean class accuracy among
several state-of-the-art semantic segmentation algorithms
applied to a specific dataset [26], including PointNet,
VRN (Single view)++, PointCNN, Mask R-CNN, and
U-Net. Notably, implementations ofMask R-CNN andU-Net
demonstrate notable accuracy improvements over existing
methods (see Table 6).

While the dataset focuses on the ‘‘Person’’ category and
provides accurate segmentations, this focus may limit the
model’s ability to generalize to scenarios not represented
within the dataset. Additionally, the advanced algorithms
employed, such as Mask R-CNN and U-Net, require sub-
stantial computational resources. Therefore, optimizing these
algorithms for environments with limited computational
power is crucial for their broader applicability.

Although the ablation study demonstrated significant
improvements in accuracy, further evaluation is needed to
assess the robustness and generalization of the models in
real-world scenarios. Testing in diverse and challenging envi-
ronments will offer a more comprehensive understanding of
model performance. Furthermore, while data augmentation
provides benefits, it may not cover all possible variations
encountered in real-world data. This limitation could affect
the model’s performance when dealing with highly variable
or unexpected data.

IV. CONCLUSION
The final Dataset has 1254 images featuring people captured
from the LiDAR point cloud. Enhancements in image quality
could be achieved by employing higher resolution LiDAR or
increasing the number of scans per scene to augment the data
volume for improved object recognition or detection.

Generating a dataset that combines LiDAR images with
a CSV file provides detailed information about each image
in the dataset. It includes segmentation masks, essential for
certain model readings requiring binary masks (1’s and 0’s)
or image formats for effective training.

Future work involves applying this dataset to machine
learning models to validate its efficacy in intrusion detection.
Additionally, expanding the dataset to include various objects
such as vehicles and weapons will be crucial for enhancing
intrusion detection capabilities in different institutions and
buildings.
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